請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44720完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏溪成(Shi-Chern Yen) | |
| dc.contributor.author | Shih-Kai Chen | en |
| dc.contributor.author | 陳詩凱 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:53:31Z | - |
| dc.date.available | 2014-08-20 | |
| dc.date.copyright | 2011-08-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-17 | |
| dc.identifier.citation | [1] 飲用水水質標準, 中華民國行政院環境保護署, Taiwan, 2008.
[2] Harris P.J.F., Liu Z., Suenaga K., Imaging the Atomic Structure of Activated Carbon, Journal of Physics-Condensed Matter, 20 (2008). [3] De La Casa-Lillo M.A., Lamari-Darkrim F., Cazorla-Amorós D., Linares-Solano A., Hydrogen Storage in Activated Carbons and Activated Carbon Fibers, The Journal of Physical Chemistry B, 106 (2002) 10930-10934. [4] Yuan G.H., Jiang Z.H., Aramata A., Gao Y.Z., Electrochemical behavior of activated-carbon capacitor material loaded with nickel oxide, Carbon, 43 (2005) 2913-7. [5] Jabit N.A., The Production And Characterization Of Activated Carbon Using Local Agricultural Waste Through Chemical Activation Process, Master Thesis, 2007. [6] 黃義修, 探討以活性碳吸附酸來提升Clostridium Butyricum產氫之研究, 中央大學化學工程與材料工程研究所, 2004. [7] Urbansky E.T., Brown S.K., Magnuson M.L., Kelty C.A., Perchlorate Levels in Samples of Sodium Nitrate Fertilizer Derived from Chilean Caliche, Environmetal Pollution, 112 (2001) 299-302. [8] Michalski G., Böhlke J.K., Thiemens M., Long Term Atmospheric Deposition as the Source of Nitrate and Other Salts in the Atacama Desert, Chile: New Evidence from Mass-Independent Oxygen Isotopic Compositions, Geochimica et Cosmochimica Acta, 68 (2004) 4023-4038. [9] Susarla S., Collette T.W., Garrison A.W., Wolfe N.L., McCutcheon S.C., Perchlorate Identification in Fertilizers, Environmental Science & Technology, 33 (1999) 3469-3472. [10] Perchlorate: A System to Track Sampling and Cleanup results is Needed, US Government Accountability Office (USGAO), 2005. [11] Kirk A.B., Martinelango P.K., Tian K., Dutta A., Smith E.E., Dasgupta P.K., Perchlorate And Iodide in Dairy and Breast Milk, Environmental Science & Technology, 39 (2005) 2011-2017. [12] Yu L., Cañas J.E., Cobb G.P., Jackson W.A., Anderson T.A., Uptake of Perchlorate in Terrestrial Plants, Ecotoxicology and Environmental Safety, 58 (2004) 44-49. [13] Urbansky E.T., Perchlorate in the Environment, Kluwer Academic/Plenum Publishers, New York, 2000. [14] Greer M.A., Goodman G., Pleus R.C., Greer S.E., Health Effects Assessment for Environmental Perchlorate Contamination: The Dose Response for Inhibition of Thyroidal Radioiodine Uptake in Humans, Environmental Health Perspectives, 110 (2002) 927-937. [15] Felz M.W., Forren A.C., Profound Hypothyroidism - A Clinical Review with Eight Recent Cases: Is it Right Before Our Eyes?, Southern Medical Journal, 97 (2004) 490-498. [16] Dean K.E., Palachek R.M., Noel J.M., Warbritton R., Aufderheide J., Wireman J., Development of Freshwater Water-Quality Criteria for Perchlorate, Environmental Toxicology and Chemistry, 23 (2004) 1441-1451. [17] Assessment Guidance for Perchlorate, US EPA Memorandum, 2006. [18] Pourbaix M., Atlas of Electrochemical Equilibria in Aqueous Solutions, N A C E International; Second English Edition edition 1974. [19] Smith M.B., March J., March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, John Wiley and Sons, New York, 2001. [20] Urbansky E.T., Perchlorate Chemistry: Implications for Analysis and Remediation, Bioremediation Journal, 2 (1998) 81-95. [21] Moyer B.A., Bonnesen P.V., 'Physical Factors in Anion Separations' in Supramolecular Chemistry of Anions, A. Bianchi, K. Bowman-James, E. Garcia-Espana, ed, John Wiley & Sons, New York, 1997, 1-44. [22] Behnke W., Zetzsch C., Heterogeneous Formation of Chlorine Atoms from Various Aerosols in the Presence of O3 and HCl, Journal of Aerosol Science, 20 (1989) 1167-1170. [23] Oum K.W., Lakin M.J., DeHaan D.O., Brauers T., Finlayson-Pitts B.J., Formation of Molecular Chlorine from the Photolysis of Ozone and Aqueous Sea-Salt Particles, Science, 279 (1998) 74-77. [24] Simonaitis R., Heicklen J., Perchloric-Acid - Possible Sink for Stratospheric Chlorine, Planetary and Space Science, 23 (1975) 1567-1569. [25] Prasad S.S., Lee T.J., Atmospheric Chemistry of the Reaction ClO+O2=ClO•O2 - Where It Stands, What Needs to Be Done, and Why, Journal Geophysical Reserch-Atmosphere, 99 (1994) 8225-8230. [26] Martin L.R., Wren A.G., Wun M., Chlorine Atom and ClO Wall Reaction-Products, International Journal of Chemical Kinetics, 11 (1979) 543-557. [27] Murphy D.M., Thomson D.S., Halogen Ions and NO+ in the Mass Spectra of Aerosols in the Upper Troposphere and Lower Stratosphere, Geophysical Reserch Letters, 27 (2000) 3217-3220. [28] Jaeglé L., Yung Y.L., Toon G.C., Sen B., Blavier J., François, Balloon Observations of Organic and Inorganic Chlorine in the Stratosphere: The Role of HClO4 Production on Sulfate Aerosols, Geophysical Reserch Letters, 23 (1996) 1749-1752. [29] Mendiratta S.K., Dotson R.L., Brooker R.T., Perchloric Acid and Perchlorates, in Kirk-Othmer Encyclopedia of Science and Technology, John Wiley & Sons, Inc., 1996. [30] Nabar G.M., Ramachandran C.R., Quantitative Determination of Perchlorate Ion in Solution, Analytical Chemistry, 31 (1959) 263-265. [31] Lollar B.S., Hirschorn S.K., Chartrand M.M.G., Lacrampe-Couloume G., An Approach for Assessing Total Instrumental Uncertainty in Compound-Specific Carbon Isotope Analysis: Implications for Environmental Remediation Studies, Analytical Chemistry, 79 (2007) 3469-3475. [32] Cyganski A., Kowalczyk P., Krystek J., Ptaszynski B., New Cetyltrimethylammonium Methods of Determination of Perchlorate, Chemical Analysis, 45 (2000) 911. [33] Shamsipur M., Soleymanpour A., Akhond M., Sharghi H., Hasaninejad A.R., Perchlorate Selective Membrane Electrodes Based on a phosphorus(V)- Tetraphenylporphyrin Complex, Sensors and Actuator B-Chemical, 89 (2003) 9-14. [34] Ganjali M.R., Norouzi P., Faridbod F., Yousefi M., Naji L., Salavati-Niasari M., Perchlorate-Selective Membrane Sensors Based on Two Nickel-Hexaazamacrocycle Complexes, Sensors and Actuators B: Chemical, 120 (2007) 494-499. [35] CDHS (California Department of Health Services), DHS Sanitation and Radiation Laboratory Branch, Determination of Perchlorate by Ion Chromatography, Revision No. 0, 35 (1997) 35-48. [36] Hautman D.P., Munch,D.J.,Eaton, A.D., Haghani, A.W., Method 314.0, Determination of Perchlorate in Drinking Water Using Ion Chromatography, Revision 1.0, EPA Doc. No. 815-B-99-003, Environmental Protection Agency, Cincinnati, OHIO, 1999. [37] Tian K., Dasgupta P.K., Anderson T.A., Determination of Trace Perchlorate in High-Salinity Water Samples by Ion Chromatography with On-Line Preconcentration and Preelution, Analytical Chemistry, 75 (2003) 701-706. [38] Gu B.H., Brown G.M., Chiang C.C., Treatment of Perchlorate-Contaminated Groundwater Using Highly Selective, Regenerable Ion-Exchange Technologies, Environmental Science & Technology, 41 (2007) 6277-6282. [39] Gu B., Brown, G. M., Alexandratos, S. D., Ober, R., Dale, J. A., Plant, S., 'Efficient Treatment of Perchlorate (ClO4-)-Contaminated Groundwater by Bifunctional Anion Exchange Resins,' in Perchlorate in the Environment, E. T. Urbansky, Ed., Kluwer Academic/Plenum, New York, 2000, 165-176. [40] Tripp A.R., Clifford, D.A., 'The Treatability of Perchlorate in Groundwater Using Ion Exchange Technology', in Perchlorate in the Environment, Urbansky, E.T., Ed., Kluwer Academic/Plenum, New York, 2000, 123-134. [41] Bonnesen P.V., Brown G.M., Alexandratos S.D., Bavoux L.B., Presley D.J., Patel V., et al., Development of Bifunctional Anion-Exchange Resins with Improved Selectivity and Sorptive Kinetics for Pertechnetate: Batch-Equilibrium Experiments, Environmental Science & Technology, 34 (2000) 3761-3766. [42] Gu B.H., Brown G.M., Maya L., Lance M.J., Moyer B.A.A., Regeneration of Perchlorate (ClO4-)-Loaded Anion Exchange Resins by a Novel Tetrachloroferrate (FeCl4-) Displacement Technique, Environmental Science & Technology, 35 (2001) 3363-3368. [43] Patrick J.W., Porosity in Carbons, John Wiley & Sons, New York, 1995. [44] Gu B., Coates J.D., Perchlorate: Environmental Occurrence, Interactions and Treatment, Springer, 2006. [45] Na C.Z., Cannon F.S., Hagerup B., Perchlorate Removal via Iron-Preloaded GAC and Borohydride Regeneration, Journal of the American Water Works Association, 94 (2002) 90-102. [46] Parette R., Cannon F.S., The Removal of Perchlorate from Groundwater by Activated Carbon Tailored with Cationic Surfactants, Water Research, 39 (2005) 4020-4028. [47] Wachinski A.M., Etzel J.E., Environmental Ion Exchange, Lewis Publishers, New York, 1997. [48] Tchobanoglous G., Schoeder E.D., Water Quality: Characteristics, Modeling and Modification, Prentice Hall, 1985. [49] Perchlorate Treatment Technology Update, US Environmental Protection Agency, 2005. [50] Yoona Y., Amyb G., Choc J., Pellegrinobd J., Systematic Bench-Scale Assessment of Perchlorate (ClO4-) Rejection Mechanisms by Nanofiltration and Ultrafiltration Membranes, Separation Science and Technology, 39 (2005) 2105-2035 [51] Yoon Y., Amy G., Cho J., Her N., Pellegrino J., Transport of Perchlorate (ClO4-) through NF and UF Membranes, Desalination, 147 (2002) 11-17. [52] Taube H., Observations on Atom-Transfer Reactions, Mechanistic Aspects of Inorganic Reactions, American Chemical Society, 1982, pp. 151-179. [53] Gu B.H., Dong W.J., Brown G.M., Cole D.R., Complete Degradation of Perchlorate in Ferric Chloride and Hydrochloric Acid under Controlled Temperature and Pressure, Environmental Science & Technology, 37 (2003) 2291-2295. [54] Rhee C.K., Wasberg M., Horanyi G., Wieckowski A., Strong Anion Surface Interactions - Perchlorate Reduction on Rh(100) Electrode Studied by Voltammetry, Journal of Electroanalytical Chemistry, 291 (1990) 281-287. [55] Hurley K.D., Shapley J.R., Efficient Heterogeneous Catalytic Reduction of Perchlorate in Water, Environmental Science & Technology, 41 (2007) 2044-2049. [56] Cao J.S., Elliott D., Zhang W.X., Perchlorate Reduction by Nanoscale Iron Particles, Journal of Nanoparticle Research, 7 (2005) 499-506. [57] Son A., Lee J., Chiu P.C., Kim B.J., Cha D.K., Microbial Reduction of Perchlorate with Zero-Valent Iron, Water Research, 40 (2006) 2027-2032. [58] Oren Y., Soffer A., Water Desalting by Means of Electrochemical Parametric Pumping .1. The Equilibrium Properties of a Batch Unit-Cell, Journal of Applied Electrochemistry, 13 (1983) 473-487. [59] Afkhami A., Conway B.E., Investigation of Removal of Cr(VI), Mo(VI), W(VI), V(IV), and V(V) Oxy-ions from Industrial Waste-Waters by Adsorption and Electrosorption at High-Area Carbon Cloth, Journal of Colloid Interface Science, 251 (2002) 248-255. [60] Alfarra A., Frackowiak E., Beguin F., Mechanism of Lithium Electrosorption by Activated Carbons, Electrochim Acta, 47 (2002) 1545-1553. [61] Ania C.O., Beguin F., Mechanism of Adsorption and Electrosorption of Bentazone on Activated Carbon Cloth in Aqueous Solutions, Water Research, 41 (2007) 3372-3380. [62] Langmuir I., The Evaporation, Condensation and Reflection of Molecules and the Mechanism of Adsorption, Physical Review, 8 (1916) 149-176. [63] Brunauer S., Emmett P.H., Teller E., Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, 60 (1938) 309-319. [64] Kisliuk P., The Sticking Probabilities of Gases Chemisorbed on the Surfaces of Solids, Journal of Physics and Chemistry Solids, 3 (1957) 95-101. [65] Henderson A.P., Seetohul L.N., Dean A.K., Russell P., Pruneanu S., Ali Z., A Novel Isotherm, Modeling Self-Assembled Monolayer Adsorption and Structural Changes, Langmuir, 25 (2009) 931-938. [66] Freundlich H., Remarks on the Treatise of M.W. Travers 'Adsorption and Occlusion'. Z Phys Chem-Stoch Ve, 61 (1907) 249-254. [67] Sasaki Y., Nagata H.D., Fujii Y.K., Lee S., Nagadome S., Sugihara G., A Thermodynamic Study on the Adsorption Behavior of Four Bile Salt Species on Graphite in Water, Colloid Surface B, 9 (1997) 169-176. [68] Mor L., Mor L.A., Sideman S., Brandes J.M., Time-Dependent Packed-Bed Adsorption of a Chemically-Bound Adsorbate, Chemical Engineering Science, 35 (1980) 725-736. [69] Weber T.W., Chakravo.Rk, Pore and Solid Diffusion Models for Fixed-Bed Adsorbers, AICHE Journal, 20 (1974) 228-238. [70] Randin J.P., Hinterma.He, A Calorimetric Study of Electroless Deposition of Nickel, Journal of The Electrochemical Society, 117 (1970) 160-167. [71] Mallory, G.O. and J.B. Hajdu, Electroless Plating: Fundamentals and Applications, American Society of Civil Engineers, 1990. [72] Malecki A., Micek-Ilnicka A., Electroless Nickel Plating from Acid Bath, Surface and Coatings Technology, 123 (2000) 72-77. [73] Wendt H., Riemenschneider P., Adsorption of Ions on Electrodes in Aqueous and Non-Aqueous Electrolytes, Chemie Ingenieur Technik, 50 (1978) 250-258. [74] Hunter, R. J., Foundations of Colloid Science, Oxford University Press, 2001. [75] 戴佑理, 鎳之奈米化及孔洞化在化學儲能上之應用, 國立成功大學化學工程學系碩士論文 (2003). [76] Mahmudov R., Huang C.P., Perchlorate Removal by Activated Carbon Adsorption, Separation and Purification Technology, 70 (2010) 329-337. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44720 | - |
| dc.description.abstract | 本研究是針對含有低濃度的過氯酸根水溶液,以活性碳做為吸附劑,利用吸附原理將過氯酸根從水中移除,為了提升活性碳吸附的處理速率,研究中利用活性碳表面改質以及電吸附,提升活性碳的吸附效率與吸附量,同時藉由吸附與質傳模型的應用,試著求取模型參數,以瞭解活性碳吸附過氯酸根時的吸附特性。
首先探討活性碳的物性與電化學性質,利用SEM觀察活性碳表面的微觀情形,發現當活性碳預載CTAC分子(Cetyl-Trimethyl-Ammoninum Chloride,氯化十六烷基三甲基銨) ,CTAC分子均勻分散於表面並呈現棉花團狀,而無電鍍鎳則在表面形成一層緻密的鎳金屬化合物,顆粒大小約15-20 nm。經由表面電位的測量,可以發現在低濃度過氯酸根時,未處理前活性碳表面零價點為4.38,預載CTAC的活性碳表面則零價點為5.30,無電鍍鎳的活性碳表面零價點為5.97。利用循環伏安法做電位掃瞄,可以發現在 -1.0 V到 +1.0 V中,活性碳床電極並不會與溶液中的過氯酸鹽產生氧化還原反應,可做為電吸附參數使用。 利用Langmuir isotherm吸附模型可以瞭解活性碳過氯酸根溶液的平衡關係,當溶液中只存在過氯酸根時,活性碳在25°C的平衡吸附量為17.87 mg/g-GAC,當溶液溫度逐漸升高時,平衡吸附量則逐漸降低。當溶液中存在硫酸根離子時,會與過氯酸根產生競爭性吸附,使得平衡吸附量下降,當硫酸根離子濃度為0.1M時,平衡吸附量則下降到10.09 mg/g-GAC。當活性碳表面預載CTAC分子時,平衡吸附量提高到31.34 mg/g-GAC/CTAC,但活性碳表面無電鍍上鎳化合物時,平衡吸附量卻反向降低至16.50 mg/g-GAC/E-Ni。最後可求得活性碳對過氯酸根之吸附熱為–27.57 kJ/mol,屬於物理吸附。 在填充床操作上,利用濃度對時間的變化,配合pseudo-first-order動態吸附模型,可以得知吸附量與動態速率常數。當pH值控制在較低值時,因為較高的表面電位有助於動態平衡吸附量的增加;當水中存在硫酸根離子時,過氯酸根會受到競爭吸附而使得動態平衡吸附量下降;在不同表面組成時,以表面預載CTAC之活性碳的動態平衡吸附量最多;藉由施加正電位可以有效提升吸附效率及動態平衡吸附量,主要原因是因為正電位可利用靜電力吸引負離子加速靠近吸附表面,同時也利用靜電相吸的原理增加了吸附表面吸附過氯酸根的能力。因此利用活性碳吸附時,以低pH值、低同離子濃度、高活性碳表面電位及施加正電位,都將提升吸附效率與動態平衡吸附量。 | zh_TW |
| dc.description.abstract | The activated carbon was used as adsorbent to remove perchlorate anions from the solution in this study. In order to increase the efficiency of adsorption and adsorbed amount, the surface modification of activated carbon and electrosorption process were used. The characteristics of perchlorate adsorption by activated carbon had been investigated by proposed adsorption model.
The SEM images showed that the CTAC molecules were deposited on the surface and the shape was cotton-like. The surface of E-Ni activated carbons was covered densely and the particle size were about 15-20 nm. The point of zero charge were investigated that 4.38 for granular activated carbon, 5.30 for CAC-preloaded activated carbon and 5.97 for E-Ni activated carbons. The Langmuir isotherm model was used for the equilibrium relation between the activated carbon and perchlorate anions. The saturated adsorbed amount of perchlorate was 17.87 mg/g-GAC which anion in the solution was perchlorate only. When 0.1 M of sulfate anions were in the solution, the equilibrium adsorbed weight was decreased to 10.09 mg/g-GAC because of competing adsorption. The saturated adsorbed amount of GAC/CTAC increased to 31.34 mg/g-GAC/CTAC. The heat of adsorption for perchlorate was estimated to be -27.57 kJ/mol and was classified as physical adsorption. In order to understand the kinetic adsorption phenomena, the pseudo-first-order kinetics adsorption model was used to characterize the circulating adsorption operations. Lower pH value induced a higher zeta potential of activated carbons and the adsorbed weight of activated carbons was increased from 5.616 mg/g-GAC to 6.246 mg/g-GAC. With the presence of 0.1 M sulfate anions, theadsorbed amount was decreased. The applied positive potential on the activated carbons could increase the adsorbed weight and kinetic adsorption rate constant effectively because the electrostatic attraction increase the moves of anions to surface. The study showed that low common anion concentration, higher zeta potential and positive electric potential applied could improve the adsorbed amount and decrease the adsorption time. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:53:31Z (GMT). No. of bitstreams: 1 ntu-100-F91524041-1.pdf: 8145583 bytes, checksum: e2c2ca4382439d7d7466559f34d4585d (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘 要 I
Abstract III 目 錄 V 表 目 錄 VIII 圖 目 錄 X 第一章 緒 論 1 1-1 研究動機 1 1-2 活性碳簡介 3 1-3 過氯酸鹽簡介 4 1-4 研究目標 8 第二章 文獻回顧 9 2-1過氯酸鹽之物化特性 9 2-2 過氯酸鹽之自然界來源與工業製造 13 2-3 過氯酸鹽量測技術演進 15 2-3-1 重量法 (Gravimetric Methods) 16 2-3-2 離子選擇性電極 (Ion Selective Electrode, ISE) 16 2-3-3 離子層析儀 (Ion Chromatography) 17 2-4 過氯酸鹽分離與去除技術 17 2-4-1 離子交換法 (Ion Exchange Method) 17 2-4-2 活性碳吸附法 (Activated Carbon Adsorption Method) 19 2-4-3 膜分離技術 (Membrane Separation Technology) 20 2-4-4 電化學還原法 (Electro-chemical Reduction Method) 23 2-5 電吸附處理技術 23 第三章 理論分析與相關技術 25 3-1 等溫吸附理論 25 3-2 填充床動態吸附理論 28 3-3 無電鍍鎳技術 (Electroless plating of Nickel) 33 3-4 電吸附技術 36 第四章 實驗內容 41 4-1 實驗藥品 41 4-2 實驗儀器 42 4-3 實驗項目及流程圖 49 第五章 結果與討論 55 5-1活性碳表面特性 55 B.E.T. 比表面積測定 55 SEM影像分析 58 SEM EDX組成分析 61 活性碳表面沉積量計算 61 活性碳表面電位測量 63 活性碳電動力學測試 65 5-2 活性碳等溫吸附特性 67 等溫模型特性模擬 67 溫度對等溫吸附的影響 69 同離子效應 71 吸附表面組成效應 72 過氯酸根吸附能計算 76 5-3 活性碳填充床吸附特性 77 pH值效應 77 流速效應 79 同離子效應 81 活性碳表面組成效應 84 電場效應 88 第六章 結論與建議 97 6-1 結 論 97 6-2 未來研究方向 98 參考文獻 99 符號說明 107 附 錄 111 A. 期刊投稿 111 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電吸附 | zh_TW |
| dc.subject | 過氯酸根 | zh_TW |
| dc.subject | 活性碳吸附 | zh_TW |
| dc.subject | Electrosorption | en |
| dc.subject | Perchlorate | en |
| dc.subject | Activated carbon adsorption | en |
| dc.title | 低濃度過氯酸根溶液在改質活性碳表面之吸附與電吸附特性研究 | zh_TW |
| dc.title | Study of Adsorption and Electrosorption with Surface-Modified Granule Activated Carbons for Dilute Perchlorate Solution | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王大銘(Da-Ming Wang),何國川(Kuo-Chuan Ho),周偉龍(Wei-Lung Chou),周正堂(Cheng-Tung Chou) | |
| dc.subject.keyword | 活性碳吸附,過氯酸根,電吸附, | zh_TW |
| dc.subject.keyword | Activated carbon adsorption,Perchlorate,Electrosorption, | en |
| dc.relation.page | 122 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 7.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
