請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44712完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝旭亮(Hsu-Liang Hsieh) | |
| dc.contributor.author | Sen-Hua Li | en |
| dc.contributor.author | 李森畫 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:53:22Z | - |
| dc.date.available | 2013-09-29 | |
| dc.date.copyright | 2010-09-29 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-02 | |
| dc.identifier.citation | Ahmad, M., and Cashmore, A.R. (1993). Hy4 Gene of a-Thaliana Encodes a Protein with Characteristics of a Blue-Light Photoreceptor. Nature 366: 162-166.
Ahmad, M., and Cashmore, A.R. (1996). The pef mutants of Arabidopsis thaliana define lesions early in the phytochrome signaling pathway. Plant J 10: 1103-1110. Ang, L.H., Chattopadhyay, S., Wei, N., Oyama, T., Okada, K., Batschauer, A., and Deng, X.W. (1998). Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell 1: 213-222. Aukerman, M.J., Hirschfeld, M., Wester, L., Weaver, M., Clack, T., Amasino, R.M., and Sharrock, R.A. (1997). A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing. Plant Cell 9: 1317-1326. Ballesteros, M.L., Bolle, C., Lois, L.M., Moore, J.M., Vielle-Calzada, J.P., Grossniklaus, U., and Chua, N.H. (2001). LAF1, a MYB transcription activator for phytochrome A signaling. Genes Dev 15: 2613-2625. Barnes, S.A., Nishizawa, N.K., Quaggio, R.B., Whitelam, G.C., and Chua, N.H. (1996). Far-red light blocks greening of Arabidopsis seedlings via a phytochrome A-mediated change in plastid development. Plant Cell 8: 601-615. Bolle, C., Koncz, C., and Chua, N.H. (2000). PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes Dev 14: 1269-1278. Botto, J.F., Sanchez, R.A., Whitelam, G.C., and Casal, J.J. (1996). Phytochrome A Mediates the Promotion of Seed Germination by Very Low Fluences of Light and Canopy Shade Light in Arabidopsis. Plant Physiol 110: 439-444. Briggs, W.R., and Christie, J.M. (2002). Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci 7: 204-210. Buche, C., Poppe, C., Schafer, E., and Kretsch, T. (2000). eid1: a new Arabidopsis mutant hypersensitive in phytochrome A-dependent high-irradiance responses. Plant Cell 12: 547-558. Chen, I.C., Lee, S.C., Pan, S.M., and Hsieh, H.L. (2007a). GASA4, a GA-stimulated gene, participates in light signaling in Arabidopsis. Plant Science 172: 1062-1071. Chen, I.C., Huang, I.C., Liu, M.J., Wang, Z.G., Chung, S.S., and Hsieh, H.L. (2007b). Glutathione S-transferase interacting with far-red insensitive 219 is involved in phytochrome A-mediated signaling in Arabidopsis. Plant Physiol 143: 1189-1202. Chiang, H.M. (2010). Functional studies of FIN219-interacting protein 2 (FIP2) in Arabidopsis light signaling pathways. NTU master thesis. Chien, C.T., Bartel, P.L., Sternglanz, R., and Fields, S. (1991). The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci U S A 88: 9578-9582. Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J.M., Lorenzo, O., Garcia-Casado, G., Lopez-Vidriero, I., Lozano, F.M., Ponce, M.R., Micol, J.L., and Solano, R. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448: 666-671. Chiou, Y.C. (2008). Studies of the interaction between FIN219 and phytochrome A in Arabidopsis. NTU master thesis. Choi, G., Yi, H., Lee, J., Kwon, Y.K., Soh, M.S., Shin, B., Luka, Z., Hahn, T.R., and Song, P.S. (1999). Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature 401: 610-613. Chory, J., Peto, C., Feinbaum, R., Pratt, L., and Ausubel, F. (1989). Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell 58: 991-999. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743. Deng, X.W., and Quail, P.H. (1999). Signalling in light-controlled development. Semin Cell Dev Biol 10: 121-129. Deng, X.W., Caspar, T., and Quail, P.H. (1991). cop1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev 5: 1172-1182. Desnos, T., Puente, P., Whitelam, G.C., and Harberd, N.P. (2001). FHY1: a phytochrome A-specific signal transducer. Genes Dev 15: 2980-2990. Devlin, P.F., Somers, D.E., Quail, P.H., and Whitelam, G.C. (1997). The Brassica rapa elongated internode (EIN) gene encodes phytochrome B. Plant Mol Biol 34: 537-547. Eichenberg, K., Baurle, I., Paulo, N., Sharrock, R.A., Rudiger, W., and Schafer, E. (2000). Arabidopsis phytochromes C and E have different spectral characteristics from those of phytochromes A and B. FEBS Lett 470: 107-112. Elich, T.D., and Chory, J. (1997). Phytochrome: if it looks and smells like a histidine kinase, is it a histidine kinase? Cell 91: 713-716. Fairchild, C.D., Schumaker, M.A., and Quail, P.H. (2000). HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes Dev 14: 2377-2391. Fankhauser, C. (2001). The phytochromes, a family of red/far-red absorbing photoreceptors. J Biol Chem 276: 11453-11456. Fankhauser, C., and Chory, J. (1997). Light control of plant development. Annu Rev Cell Dev Biol 13: 203-229. Fankhauser, C., and Chory, J. (1999). Light receptor kinases in plants! Curr Biol 9: R123-126. Fankhauser, C., and Chory, J. (2000). RSF1, an Arabidopsis locus implicated in phytochrome A signaling. Plant Physiol 124: 39-45. Fankhauser, C., and Chen, M. (2008). Transposing phytochrome into the nucleus. Trends Plant Sci 13: 596-601. Fankhauser, C., Yeh, K.C., Lagarias, J.C., Zhang, H., Elich, T.D., and Chory, J. (1999). PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284: 1539-1541. Fields, S., and Song, O. (1989). A novel genetic system to detect protein-protein interactions. Nature 340: 245-246. Genoud, T., Millar, A.J., Nishizawa, N., Kay, S.A., Schafer, E., Nagatani, A., and Chua, N.H. (1998). An Arabidopsis mutant hypersensitive to red and far-red light signals. Plant Cell 10: 889-904. Genoud, T., Schweizer, F., Tscheuschler, A., Debrieux, D., Casal, J.J., Schafer, E., Hiltbrunner, A., and Fankhauser, C. (2008). FHY1 mediates nuclear import of the light-activated phytochrome A photoreceptor. PLoS Genet 4: e1000143. Guo, H., Mockler, T., Duong, H., and Lin, C. (2001). SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science 291: 487-490. Gyuris, J., Golemis, E., Chertkov, H., and Brent, R. (1993). Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75: 791-803. Halliday, K.J., Koornneef, M., and Whitelam, G.C. (1994). Phytochrome B and at Least One Other Phytochrome Mediate the Accelerated Flowering Response of Arabidopsis thaliana L. to Low Red/Far-Red Ratio. Plant Physiol 104: 1311-1315. Hardtke, C.S., and Deng, X.W. (2000). The cell biology of the COP/DET/FUS proteins. Regulating proteolysis in photomorphogenesis and beyond? Plant Physiol 124: 1548-1557. Hare, P.D., Moller, S.G., Huang, L.F., and Chua, N.H. (2003). LAF3, a novel factor required for normal phytochrome A signaling. Plant Physiol 133: 1592-1604. Hays, T.S., Deuring, R., Robertson, B., Prout, M., and Fuller, M.T. (1989). Interacting proteins identified by genetic interactions: a missense mutation in alpha-tubulin fails to complement alleles of the testis-specific beta-tubulin gene of Drosophila melanogaster. Mol Cell Biol 9: 875-884. Hennig, L., Stoddart, W.M., Dieterle, M., Whitelam, G.C., and Schafer, E. (2002). Phytochrome E controls light-induced germination of Arabidopsis. Plant Physiol 128: 194-200. Hiltbrunner, A., Viczian, A., Bury, E., Tscheuschler, A., Kircher, S., Toth, R., Honsberger, A., Nagy, F., Fankhauser, C., and Schafer, E. (2005). Nuclear accumulation of the phytochrome A photoreceptor requires FHY1. Curr Biol 15: 2125-2130. Hoecker, U., Xu, Y., and Quail, P.H. (1998). SPA1: a new genetic locus involved in phytochrome A-specific signal transduction. Plant Cell 10: 19-33. Hoecker, U., Tepperman, J.M., and Quail, P.H. (1999). SPA1, a WD-repeat protein specific to phytochrome A signal transduction. Science 284: 496-499. Hsieh, H.L., Okamoto, H., Wang, M., Ang, L.H., Matsui, M., Goodman, H., and Deng, X.W. (2000). FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev 14: 1958-1970. Huang, I.C. (2004). Functional studies of FIN219-interacting proteins in Arabidopsis. NTU master thesis. Hudson, M., Ringli, C., Boylan, M.T., and Quail, P.H. (1999). The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Dev 13: 2017-2027. Jang, D.Y. (2005). Investigation of functional relationship between FIN219 and FHY1 genes. NTU master thesis. Kendrick, R.E., and Kronenberg, G.H.M. (1994). Photomorphogenesis in plants. 2nd ed(Dordrecht The Netherlands, Kluwer). Kim, J., Yi, H., Choi, G., Shin, B., and Song, P.S. (2003). Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction. Plant Cell 15: 2399-2407. Kim, Y.M., Woo, J.C., Song, P.S., and Soh, M.S. (2002). HFR1, a phytochrome A-signalling component, acts in a separate pathway from HY5, downstream of COP1 in Arabidopsis thaliana. Plant J 30: 711-719. Kircher, S., Kozma-Bognar, L., Kim, L., Adam, E., Harter, K., Schafer, E., and Nagy, F. (1999). Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11: 1445-1456. Kircher, S., Gil, P., Kozma-Bognar, L., Fejes, E., Speth, V., Husselstein-Muller, T., Bauer, D., Adam, E., Schafer, E., and Nagy, F. (2002). Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 14: 1541-1555. Koornneef, M., Rolff, E., and Spruit, C.J.P. (1980). Genetic-Control of Light-Inhibited Hypocotyl Elongation in Arabidopsis-Thaliana (L) Heynh. Z Pflanzenphysiol 100: 147-160. Lin, R., Ding, L., Casola, C., Ripoll, D.R., Feschotte, C., and Wang, H. (2007). Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318: 1302-1305. Lupas, A. (1996). Coiled coils: new structures and new functions. Trends Biochem Sci 21: 375-382. McNellis, T.W., and Deng, X.W. (1995). Light control of seedling morphogenetic pattern. Plant Cell 7: 1749-1761. Mustilli, A.C., and Bowler, C. (1997). Tuning in to the signals controlling photoregulated gene expression in plants. EMBO J 16: 5801-5806. Nagy, F., and Schäfer, E. (2002). Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annu Rev Plant Biol 53: 329-355. Neff, M.M., Fankhauser, C., and Chory, J. (2000). Light: an indicator of time and place. Genes Dev 14: 257-271. Nemhauser, J., and Chory, J. (2002). Photomorphogenesis. In The Arabidopsis Book. American Society of Plant Biologists. ( Ni, M., Tepperman, J.M., and Quail, P.H. (1998). PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95: 657-667. Osterlund, M.T., Ang, L.H., and Deng, X.W. (1999). The role of COP1 in repression of Arabidopsis photomorphogenic development. Trends Cell Biol 9: 113-118. Osterlund, M.T., Hardtke, C.S., Wei, N., and Deng, X.W. (2000). Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405: 462-466. Park, D.H., Lim, P.O., Kim, J.S., Cho, D.S., Hong, S.H., and Nam, H.G. (2003). The Arabidopsis COG1 gene encodes a Dof domain transcription factor and negatively regulates phytochrome signaling. Plant J 34: 161-171. Parks, B.M., and Quail, P.H. (1993). hy8, a new class of arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell 5: 39-48. Qin, M., Kuhn, R., Moran, S., and Quail, P.H. (1997). Overexpressed phytochrome C has similar photosensory specificity to phytochrome B but a distinctive capacity to enhance primary leaf expansion. Plant J 12: 1163-1172. Quail, P.H. (1997). The phytochromes: a biochemical mechanism of signaling in sight? Bioessays 19: 571-579. Quail, P.H. (2002a). Photosensory perception and signalling in plant cells: new paradigms? Curr Opin Cell Biol 14: 180-188. Quail, P.H. (2002b). Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol 3: 85-93. Quail, P.H., Boylan, M.T., Parks, B.M., Short, T.W., Xu, Y., and Wagner, D. (1995). Phytochromes: photosensory perception and signal transduction. Science 268: 675-680. Reed, J.W., Nagpal, P., Poole, D.S., Furuya, M., and Chory, J. (1993). Mutations in the Gene for the Red Far-Red Light Receptor Phytochrome-B Alter Cell Elongation and Physiological-Responses Throughout Arabidopsis Development. Plant Cell 5: 147-157. Reed, J.W., Nagatani, A., Elich, T.D., Fagan, M., and Chory, J. (1994). Phytochrome A and Phytochrome B Have Overlapping but Distinct Functions in Arabidopsis Development. Plant Physiol 104: 1139-1149. Robson, P., Whitelam, G.C., and Smith, H. (1993). Selected Components of the Shade-Avoidance Syndrome Are Displayed in a Normal Manner in Mutants of Arabidopsis thaliana and Brassica rapa Deficient in Phytochrome B. Plant Physiol 102: 1179-1184. Rockwell, N.C., Su, Y.S., and Lagarias, J.C. (2006). Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57: 837-858. Rӧsler, J., Klein, I., and Zeidler, M. (2007). Arabidopsis fhl/fhy1 double mutant reveals a distinct cytoplasmic action of phytochrome A. Proc Natl Acad Sci U S A 104: 10737-10742. Saijo, Y., Sullivan, J.A., Wang, H., Yang, J., Shen, Y., Rubio, V., Ma, L., Hoecker, U., and Deng, X.W. (2003). The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev 17: 2642-2647. Saijo, Y., Zhu, D., Li, J., Rubio, V., Zhou, Z., Shen, Y., Hoecker, U., Wang, H., and Deng, X.W. (2008). Arabidopsis COP1/SPA1 complex and FHY1/FHY3 associate with distinct phosphorylated forms of phytochrome A in balancing light signaling. Mol Cell 31: 607-613. Schwechheimer, C., Serino, G., Callis, J., Crosby, W.L., Lyapina, S., Deshaies, R.J., Gray, W.M., Estelle, M., and Deng, X.W. (2001). Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. Science 292: 1379-1382. Sharrock, R.A., Clack, T., and Goosey, L. (2003). Signaling activities among the Arabidopsis phyB/D/E-type phytochromes: a major role for the central region of the apoprotein. Plant J 34: 317-326. Shen, Y., Feng, S., Ma, L., Lin, R., Qu, L.J., Chen, Z., Wang, H., and Deng, X.W. (2005). Arabidopsis FHY1 protein stability is regulated by light via phytochrome A and 26S proteasome. Plant Physiol 139: 1234-1243. Shen, Y., Zhou, Z., Feng, S., Li, J., Tan-Wilson, A., Qu, L.J., Wang, H., and Deng, X.W. (2009). Phytochrome A mediates rapid red light-induced phosphorylation of Arabidopsis FAR-RED ELONGATED HYPOCOTYL1 in a low fluence response. Plant Cell 21: 494-506. Shinomura, T., Nagatani, A., Chory, J., and Furuya, M. (1994). The Induction of Seed-Germination in Arabidopsis-Thaliana Is Regulated Principally by Phytochrome-B and Secondarily by Phytochrome-a (Vol 104, Pg 363, 1994). Plant Physiol 105: 773-773. Smith, H. (2000). Phytochromes and light signal perception by plants--an emerging synthesis. Nature 407: 585-591. Soh, M.S., Hong, S.H., Hanzawa, H., Furuya, M., and Nam, H.G. (1998). Genetic identification of FIN2, a far red light-specific signaling component of Arabidopsis thaliana. Plant J 16: 411-419. Staswick, P.E., and Tiryaki, I. (2004). The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16: 2117-2127. Stolpe, T., Susslin, C., Marrocco, K., Nick, P., Kretsch, T., and Kircher, S. (2005). In planta analysis of protein-protein interactions related to light signaling by bimolecular fluorescence complementation. Protoplasma 226: 137-146. Tanaka, R., and Tanaka, A. (2007). Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58: 321-346. Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S.Y., Howe, G.A., and Browse, J. (2007). JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448: 661-665. von Arnim, A.G., Osterlund, M.T., Kwok, S.F., and Deng, X.W. (1997). Genetic and developmental control of nuclear accumulation of COP1, a repressor of photomorphogenesis in Arabidopsis. Plant Physiol 114: 779-788. Wadsworth, G.J., Redinbaugh, M.G., and Scandalios, J.G. (1988). A procedure for the small-scale isolation of plant RNA suitable for RNA blot analysis. Anal Biochem 172: 279-283. Wang, H., and Deng, X.W. (2002a). Phytochrome signaling mechanism. In The Arabidopsis Book. American Society of Plant Biologists. ( Wang, H., and Deng, X.W. (2002b). Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. EMBO J 21: 1339-1349. Wang, H., and Deng, X.W. (2003). Dissecting the phytochrome A-dependent signaling network in higher plants. Trends Plant Sci 8: 172-178. Wang, H., Ma, L., Habashi, J., Li, J., Zhao, H., and Deng, X.W. (2002). Analysis of far-red light-regulated genome expression profiles of phytochrome A pathway mutants in Arabidopsis. Plant J 32: 723-733. Whitelam, G.C., Johnson, E., Peng, J., Carol, P., Anderson, M.L., Cowl, J.S., and Harberd, N.P. (1993). Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5: 757-768. Wu, F.H., Shen, S.C., Lee, L.Y., Lee, S.H., Chan, M.T., and Lin, C.S. (2009). Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods 5: 16. Yang, S.W., Jang, I.C., Henriques, R., and Chua, N.H. (2009). FAR-RED ELONGATED HYPOCOTYL1 and FHY1-LIKE associate with the Arabidopsis transcription factors LAF1 and HFR1 to transmit phytochrome A signals for inhibition of hypocotyl elongation. Plant Cell 21: 1341-1359. Yeh, K.C., and Lagarias, J.C. (1998). Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc Natl Acad Sci U S A 95: 13976-13981. Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2: 1565-1572. Zeidler, M., Bolle, C., and Chua, N.H. (2001). The phytochrome A specific signaling component PAT3 is a positive regulator of Arabidopsis photomorphogenesis. Plant Cell Physiol 42: 1193-1200. Zeidler, M., Zhou, Q., Sarda, X., Yau, C.P., and Chua, N.H. (2004). The nuclear localization signal and the C-terminal region of FHY1 are required for transmission of phytochrome A signals. Plant J 40: 355-365. Zhou, Q., Hare, P.D., Yang, S.W., Zeidler, M., Huang, L.F., and Chua, N.H. (2005). FHL is required for full phytochrome A signaling and shares overlapping functions with FHY1. Plant J 43: 356-370. Zhou, Y.C., Dieterle, M., Buche, C., and Kretsch, T. (2002). The negatively acting factors EID1 and SPA1 have distinct functions in phytochrome A-specific light signaling. Plant Physiol 128: 1098-1108. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44712 | - |
| dc.description.abstract | 在阿拉伯芥中,光敏素A(phytochrome A, phyA)是感受遠紅光的光接受體,並且調節各種受到遠紅光引發的光型態發生反應;先前的研究已發現了多種phyA訊息調控因子,例如FIN219 (far-red insensitive 219)以及 FHY1 (far-red elongated hypocoty 1),然而各個成員之間的調控機制尚不明瞭。已知FIN219是phyA調控的遠紅光訊息傳遞中的傳訊因子之一,同時FHY1基因也專一參與在遠紅光訊息傳遞的下游,前人研究發現兩者表現出非等位非互補性(nonallelic noncomplementation)的遺傳關係,暗示FIN219與 FHY1可能參與在同一個訊息傳遞中。將fin219 null突變株與fhy1-T突變株進行雜交測試時,發現F3子代的同型合子雙突變株在強遠紅光中呈現像fhy1-T的外表型,弱遠紅光下則是對於光照有更不敏感的長下胚軸外表型,比個別親代突變株的下胚軸還長,推測兩者蛋白質之間可能會有結合作用共同去調控phyA調控的植物生長發育。因此分別利用酵母菌雙雜交系統以及雙分子螢光互補系統測試兩蛋白質之間的結合能力,證實FHY1與FIN219發生交互作用的位置主要在細胞核,或者同時位在細胞質和細胞核中,並且證實FHY1以N端的部分與FIN219發生交互作用。另外,分別利用北方墨點法和西方墨點法比較野生型、fin219 null突變株及fhy1-T突變株中,各別FHY1和FIN219在基因層次以及蛋白質層次的表現情形,結果顯示FIN219會負調控FHY1基因表現量,但會幫助FHY1在細胞中的累積;而FHY1則是會些微負調控FIN219,說明兩者之間可能存在一種負向回饋的調控關係。進一步利用轉殖株外表型的檢定,發現大量表現FHY1及FIN219皆會部份回復個別fin219 null和fhy1-T突變株的外表型。總結上述結果,認為FIN219與FHY1在遠紅光的訊息傳遞路徑中,具有結合能力共同正向調控阿拉伯芥中的光型態發生,然而植物中FIN219和FHY1之間交互作用的生理意義,以及進一步會影響到哪些調控機制則尚待更多實驗研究來解開這個謎題。 | zh_TW |
| dc.description.abstract | Far-red insensitive 219 (FIN219) was previously shown to be involved in phytochrome A-mediated far-red (FR) light signaling in Arabidopsis. Far-red Elongated Hypocoty l (FHY1) is a positive regulator and required for FR-regulated nuclear accumulation of phyA. Previous study indicated that the fin219/fhy1 transheterozygote exhibited a long hypocotyl phenotype in FR similar to their homozygous parental mutants, suggesting that fin219 and fhy1 mutants are nonallelic noncomplementary. However the molecular mechanism underlying the genetic interaction of FIN219 and FHY1 remains largely unknown. We use molecular genetics and cell biology approaches to understand their interaction and expression patterns in Arabidopsis. Firstly, we crossed the T-DNA insertion mutants of fin219 null and fhy1-T to generate a homozygous double mutant, which further exhibited an enhanced far-red insensitive phenotype compared to its respective parental mutants in weak FR, but same as fhy1-T in strong FR. In phenotypic analysis of transgenic plants, we found that over-expression of FIN219 or FHY1 in fhy1-1 or fin219 null respectively can partially rescue respective long-hypocotyl phenotype. Hence, we hypothesize that FIN219 may interact with FHY1. By using yeast two-hybrid and bimolecular fluorescence complementation approaches, we demonstrated that they interacted with each other in the nuclei only, and also in both the nuclei and the cytoplasms, and further found that the N-terminal region of FHY1 is responsible for the interaction with FIN219. In subcellular localization studies, FIN219-YFP displayed different patterns in the fhy1-T protoplasts compared with that in wildtype, whereas FHY1-CFP was localized with the same patterns in the protoplasts of different mutant or transgenic plants. Further expression studies revealed that FIN219 negatively regulated FHY1 transcripts and positively FHY1 protein in both darkness and FR; whereas, FHY1 slightly negatively regulated FIN219 protein, instead of FIN219 transcript levels in darkness and FR. Taken together, these data indicate that FIN219 and FHY1 interacted with each other and were positively involved in phyA-mediated photomorphogenesis in Arabidopsis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:53:22Z (GMT). No. of bitstreams: 1 ntu-99-R97b42015-1.pdf: 2924586 bytes, checksum: 0c8119a7488f14c144260c7d420992fc (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 目錄 I
摘要 III Abstract IV 縮寫對照表 VI 前言 1 一、緒論 1 二、光敏素 2 三、植物的光訊息傳遞 3 四、FIN219參與植物生長發育的調控機制 4 五、FHY1參與在光敏素A所調控的訊息傳遞路徑 6 六、光訊息成員中FIN219和FHY1的關係 8 七、研究目標 9 材料與方法 10 一、植物材料與生長條件 10 二、Genomic DNA 萃取 10 三、雙突變株的建立與基因型判定 11 四、阿拉伯芥轉殖株的基因轉殖 11 五、RNA表現量分析 12 六、蛋白質表現量分析 12 七、花青素與葉綠素含量的檢測 12 八、阿拉伯芥原生質體 (protoplast)的分離和轉殖 13 九、酵母菌雙雜交系統(yeast two-hybrid system) 13 結果 15 一、fin219 null fhy1-T雙突變株生理性狀與基因表現分析 15 1. T-DNA插入的fhy1突變體中FHY1基因表現量以及在不同光源中下胚軸的外表型 15 2. 篩選fin219 null fhy1-T同型合子的雙突變株 16 3. fin219 null fhy1-T雙突變株在弱遠紅光下呈現更不敏感的性狀 17 4. fin219 null fhy1-T雙突變株參與在遠紅光調控的生理性狀 17 5. fin219 null fhy1-T雙突變株的基因表現情形 18 二、FIN219和FHY1之間的交互作用 18 1. 酵母菌雙雜交方法(Yeast two-hybrid)顯示FHY1具有自我轉錄活性 18 2. 雙分子螢光互補方法(BiFC)證實FIN219和FHY1發生交互作用,主要位在細胞核,或細胞核及細胞質中皆存在 19 三、FIN219和FHY1之間的調控關係 20 1. FHY1的基因表現量在fin219 null中上升,FHY1蛋白質表現量在fin219 null中下降 20 2. FIN219的基因表現量在fhy1-T中不變,黑暗中FIN219蛋白質表現量在fhy1-T中些微上升 21 3. FIN219-YFP蛋白質在fhy1-T突變株中的表現位置改變 21 4. FHY1-CFP蛋白質在野生型、fin219 null突變株和pGR::FIN219轉殖株中表現位置不會受到影響 22 5. 大量表現FHY1可以部分回復fin219 null突變株的外表型 22 6. 大量表現FIN219可以部分回復fhy1-1突變株的外表型 23 討論 24 一、fin219 null fhy1-T雙突變株生理性狀 24 二、FIN219和FHY1之間在基因層次和蛋白質層次的調控關係 25 三、FIN219和FHY1在細胞中發生交互作用 28 結果圖片 32 參考文獻 49 附錄一、實驗操作流程 57 附錄二、PCR相關資訊 69 附圖 70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 雙分子螢光互補系統 | zh_TW |
| dc.subject | 遠紅光 | zh_TW |
| dc.subject | 酵母菌雜合法 | zh_TW |
| dc.subject | 非遺傳非互補 | zh_TW |
| dc.subject | 光敏素訊息調控 | zh_TW |
| dc.subject | non-allelic non-complimentation | en |
| dc.subject | FHY1 | en |
| dc.subject | FIN219 | en |
| dc.subject | phyA | en |
| dc.subject | FR | en |
| dc.subject | BiFC | en |
| dc.subject | yeast two-hybrid | en |
| dc.title | FIN219與FHY1在阿拉伯芥遠紅光訊息傳遞中的調控關係之研究 | zh_TW |
| dc.title | Study of Regulatory Relationship between FIN219 and FHY1 in PHYA-mediated Far-red Light Signaling Pathway in Arabidopsis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葉開溫,鄭石通,吳素幸,王隆祺 | |
| dc.subject.keyword | 光敏素訊息調控,遠紅光,雙分子螢光互補系統,酵母菌雜合法,非遺傳非互補, | zh_TW |
| dc.subject.keyword | FHY1,FIN219,phyA,FR,BiFC,yeast two-hybrid,non-allelic non-complimentation, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-05 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
