請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44711完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃升龍(Sheng-Lung Huang) | |
| dc.contributor.author | Yu-Ling Hong | en |
| dc.contributor.author | 洪毓聆 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:53:21Z | - |
| dc.date.available | 2010-07-12 | |
| dc.date.copyright | 2010-07-12 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-02 | |
| dc.identifier.citation | [1] L. Tong, Q. Wei, A. Wei, and J. Cheng, 'Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation, and photothermal effects,' Photochemistry and Photobiology. 85, p. 21 (2009).
[2] L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, 'Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,' Proceedings of the National Academy of Sciences. 100, p. 13549 (2003). [3] J. West and N. Halas, 'Engineered nanomaterials for biophotonics applications:improving sensing,imaging,and therapeutics,' Annual Review of Biomedical Engineering. 5, pp. 285-292 (2003). [4] G. Paciotti, L. Myer, D. Weinreich, D. Goia, N. Pavel, R. McLaughlin, and L. Tamarkin, 'Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,' Drug Delivery. 11, pp. 169-183 (2004). [5] I. El-Sayed, X. Huang, and M. El-Sayed, 'Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,' Cancer letters. 239, pp. 129-135 (2006). [6] M. El-Sayed, I. El-Sayed, W. Qian, and X. Huang, 'Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,' Journal of the American Chemical Society. 128, p. 2115 (2006). [7] M. Everts, V. Saini, J. Leddon, R. Kok, M. Stoff-Khalili, M. Preuss, C. Millican, G. Perkins, J. Brown, and H. Bagaria, 'Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy,' Nano Letters. 6, pp. 587-591 (2006). [8] X. Huang, I. El-Sayed, W. Qian, and M. El-Sayed, 'Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: A potential cancer diagnostic marker,' Nano Letters. 7, pp. 1591-1597 (2007). [9] P. Jain and M. El-Sayed, 'Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,' J Phy Chem C. 111, pp. 17451-17454 (2007). [10] P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, 'Shape-and size-dependent refractive index sensitivity of gold nanoparticles,' J Phy Chem B. 110, pp. 7238-7248 (2006). [11] A. Oyelere, 'Gold nanoparticles: From nanomedicine to nanosensing,' Nanotech Sci & Appl. 1, pp. 45-66 (2008). [12] J. Murday, R. Siegel, J. Stein, and J. Wright, 'Translational nanomedicine: status assessment and opportunities,' Nanomedicine: Nanotechnology, Biology and Medicine. 5, pp. 251-273 (2009). [13] T. Huff, L. Tong, Y. Zhao, M. Hansen, J. Cheng, and A. Wei, 'Hyperthermic effects of gold nanorods on tumor cells,' Nanomedicine. 2, pp. 125-132 (2007). [14] G. Martin and H. Bowman, 'Model and solution for the thermal response of blood-perfused tissue during laser hyperthermia,' SPIE. 1202, p. 308 (1990). [15] C. Beacco, S. Mordon, and J. Brunetaud, 'Development and experimental in-vivo evaluation of mathematical modeling of coagulation by laser,' SPIE. 1646, p. 138 (1992). [16] T. Springer and A. Welch, 'Temperature control during laser vessel welding,' Applied Optics. 32, pp. 517-525 (1993). [17] H. Zenzie, G. Altshuler, M. Smirnov, and R. Anderson, 'Evaluation of cooling methods for laser dermatology,' Lasers in Surgery and Medicine. 26, pp. 130-144 (2000). [18] J. Torres, B. Anvari, B. Tanenbaum, T. Milner, J. Yu, and J. Nelson, 'Internal temperature measurements in response to cryogen spray cooling of a skin phantom,' Proc. SPIE. 3590, p. 11 (1999). [19] J. Valvano, J. Cochran, and K. Diller, 'Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors,' International Journal of Thermophysics. 6, pp. 301-311 (1985). [20] S. Link and M. El-Sayed, 'Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,' J. Phys. Chem. B. 103, pp. 3073-3077 (1999). [21] S. Link and M. A. El-Sayed, 'Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant,' J. Phys. Chem. B. 109, pp. 10531-10531 (2005). [22] P. Johnson and R. Christy, 'Optical constants of the noble metals,' Physical Review B. 6, pp. 4370-4379 (1972). [23] B. Yan, Y. Yang, and Y. Wang, 'Comment on “Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant”,' J. Phys. Chem. B. 107, p. 9159 (2003). [24] R. Averitt, S. Westcott, and N. Halas, 'Linear optical properties of gold nanoshells,' Journal of the Optical Society of America B. 16, pp. 1824-1832 (1999). [25] C. P. Bohren and D. R. Huffman, Absorption and scattering of light by small particles. New York: Wiley, 1983. [26] R. D. Averitt, S. L. Westcott, and N. J. Halas, 'Linear optical properties of gold nanoshells,' J Opt Soc Am B. 16, pp. 1824-1832 (1999). [27] K. Kelly, E. Coronado, L. Zhao, and G. Schatz, 'The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,' J. Phys. Chem. B. 107, pp. 668-677 (2003). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44711 | - |
| dc.description.abstract | 近年來,光熱療法已被用於治療癌腫瘤,奈米粒子之醫學上應用包括生物成像,生物感測、藥物輸送、癌細胞診斷和治療。透過改變奈米粒子的形狀由球形至奈米棒,其吸收和散射峰值的變化從可見光到近紅外的區域,並提供較大的吸收/散射截面的優勢和較深的組織穿透深度,而奈米金治療癌腫瘤的優勢在於低毒性與高選擇性。
本論文將熱傳方程式與奈米金的理論做結合,並以Wolfram Mathematica 7.0完成奈米金吸收峰值以及溫度曲線的模擬程式。實驗部分使用National Instrument LabVIEW 8.2完成了電腦溫度控制與時間控制雷射開關,將理論與實驗數據做比較,得到相似度極高的結果,驗證我們實驗的準確性與可行性。我們將奈米金溶液視作一簡單的癌細胞結構,在實驗與理論中,我們發現吸收係數小與雷射能量密度大,有助於提升內部溫度,調整適當的奈米金溶液吸收係數與雷射光能量密度的乘積值來提升奈米金溶液的內部溫度,即可殺死內部的癌細胞,再搭配雷射開關機制來控制表面溫度,便可達到內部升溫並且保護表面不過熱的目的,此特性為本論文重要新發現之一,為先前所忽略的。 除了以上描述奈米金光熱實驗與理論,本論文也發展出一套對於奈米金棒、奈米殼和感測光纖的非線性理論。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:53:21Z (GMT). No. of bitstreams: 1 ntu-99-R97941112-1.pdf: 1920542 bytes, checksum: 4da848981665ad4fe3160738c410b997 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 中文摘要 ii
英文摘要 iii 致謝 v 目錄 vi 圖目錄 vii 表目錄ix 表目錄ix 第一章 介紹 1 第二章 雷射與物質相互作用的熱效應理論 3 2.1. 熱傳導方程:CW雷射作用 3 2.2. 熱傳導方程:Pulsed雷射作用 14 第三章 奈米粒子光學理論 18 3.1. 奈米金棒(Gold nanorod)理論 18 3.2. 奈米殼(Nanoshell)理論 25 3.3. 奈米光纖(Nano fiber)理論與應用 27 第四章 紅外雷射對奈米金溶液之實驗與理論分析 29 4.1. 實驗系統架構圖 29 4.2. 儀器介紹 31 4.2.1. 資料擷取卡與控制開關 31 4.2.2. 熱電耦 32 4.3. 吸收率量測 34 4.4. 溫度量測實驗步驟 36 4.5. 紅外測溫原理與架構 37 4.6. 溫度控制與內部溫度提升 39 4.7. 穩定溫度與升溫速度 42 4.8. 實驗結果與討論 44 4.8.1. 不同吸收係數與光強度之比較 44 4.8.2. 紅外線溫度測量 49 第五章 結論與展望 51 參考資料 52 附錄A 金的參數表 55 附錄B 簡歷 56 | |
| dc.language.iso | zh-TW | |
| dc.subject | 半導體近紅外雷射 | zh_TW |
| dc.subject | 奈米金棒 | zh_TW |
| dc.subject | 奈米球殼 | zh_TW |
| dc.subject | 奈米光纖 | zh_TW |
| dc.subject | 光熱療 | zh_TW |
| dc.subject | 癌細胞 | zh_TW |
| dc.subject | 熱傳方程式 | zh_TW |
| dc.subject | 非線性光學理論 | zh_TW |
| dc.subject | 表面電漿共振 | zh_TW |
| dc.subject | thermal therapy | en |
| dc.subject | nanorod | en |
| dc.subject | nanoshell | en |
| dc.subject | nano-fiber | en |
| dc.subject | cancer cells | en |
| dc.subject | diode IR laser | en |
| dc.subject | surface plasmonic resonance | en |
| dc.subject | nonlinear optic theory | en |
| dc.subject | heat diffusion equation | en |
| dc.title | 奈米金與近紅外雷射選擇性表面電漿共振之理論與實驗 | zh_TW |
| dc.title | Selective surface plasmonic resonance of gold nanoparticles under near-IR lasers: Theory & Experiments | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林瑞騰(J.T. Lin) | |
| dc.contributor.oralexamcommittee | 黃鼎偉,劉席瑋 | |
| dc.subject.keyword | 奈米金棒,奈米球殼,奈米光纖,光熱療,癌細胞,熱傳方程式,非線性光學理論,表面電漿共振,半導體近紅外雷射, | zh_TW |
| dc.subject.keyword | nanorod,nanoshell,nano-fiber,thermal therapy,cancer cells,heat diffusion equation,nonlinear optic theory,surface plasmonic resonance,diode IR laser, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-05 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
