請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44700完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許輝吉 | |
| dc.contributor.author | Wei Cheng | en |
| dc.contributor.author | 鄭威 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:53:09Z | - |
| dc.date.available | 2015-09-09 | |
| dc.date.copyright | 2010-09-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-05 | |
| dc.identifier.citation | 1. Hsu, H.C., Cheng, W. and Lai, P.L. (1997) Cloning and expression of a developmentally regulated transcript MXR7 in hepatocellular carcinoma: biological significance and temporospatial distribution. Cancer Res, 57, 5179-84.
2. Hsu, H.C., Tseng, H.J., Lai, P.L., Lee, P.H. and Peng, S.Y. (1993) Expression of p53 gene in 184 unifocal hepatocellular carcinomas: association with tumor growth and invasiveness. Cancer Res, 53, 4691-4. 3. Hsu, H.C., Jeng, Y.M., Mao, T.L., Chu, J.S., Lai, P.L. and Peng, S.Y. (2000) Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol, 157, 763-70. 4. Capurro, M., Wanless, I.R., Sherman, M., Deboer, G., Shi, W., Miyoshi, E. and Filmus, J. (2003) Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology, 125, 89-97. 5. Zhu, Z.W., Friess, H., Wang, L., Abou-Shady, M., Zimmermann, A., Lander, A.D., Korc, M., Kleeff, J. and Buchler, M.W. (2001) Enhanced glypican-3 expression differentiates the majority of hepatocellular carcinomas from benign hepatic disorders. Gut, 48, 558-64. 6. Zhou, X.P., Wang, H.Y., Yang, G.S., Chen, Z.J., Li, B.A. and Wu, M.C. (2000) Cloning and expression of MXR7 gene in human HCC tissue. World J Gastroenterol, 6, 57-60. 7. Hippo, Y., Watanabe, K., Watanabe, A., Midorikawa, Y., Yamamoto, S., Ihara, S., Tokita, S., Iwanari, H., Ito, Y., Nakano, K., Nezu, J., Tsunoda, H., Yoshino, T., Ohizumi, I., Tsuchiya, M., Ohnishi, S., Makuuchi, M., Hamakubo, T., Kodama, T. and Aburatani, H. (2004) Identification of soluble NH2-terminal fragment of glypican-3 as a serological marker for early-stage hepatocellular carcinoma. Cancer Res, 64, 2418-23. 8. Toretsky, J.A., Zitomersky, N.L., Eskenazi, A.E., Voigt, R.W., Strauch, E.D., Sun, C.C., Huber, R., Meltzer, S.J. and Schlessinger, D. (2001) Glypican-3 expression in Wilms tumor and hepatoblastoma. J Pediatr Hematol Oncol, 23, 496-9. 9. Hishinuma, M., Ohashi, K.I., Yamauchi, N., Kashima, T., Uozaki, H., Ota, S., Kodama, T., Aburatani, H. and Fukayama, M. (2006) Hepatocellular oncofetal protein, glypican 3 is a sensitive marker for alpha-fetoprotein-producing gastric carcinoma. Histopathology, 49, 479-86. 10. Stadlmann, S., Gueth, U., Baumhoer, D., Moch, H., Terracciano, L. and Singer, G. (2007) Glypican-3 expression in primary and recurrent ovarian carcinomas. Int J Gynecol Pathol, 26, 341-4. 11. Zynger, D.L., Dimov, N.D., Luan, C., Tean Teh, B. and Yang, X.J. (2006) Glypican 3: A Novel Marker in Testicular Germ Cell Tumors. Am J Surg Pathol, 30, 1570-1575. 12. Filmus, J., Shi, W., Wong, Z.M. and Wong, M.J. (1995) Identification of a new membrane-bound heparan sulphate proteoglycan. Biochem J, 311 ( Pt 2), 561-5. 13. Filmus, J. and Selleck, S.B. (2001) Glypicans: proteoglycans with a surprise. J Clin Invest, 108, 497-501. 14. Filmus, J., Capurro, M. and Rast, J. (2008) Glypicans. Genome Biol, 9, 224. 15. Nakato, H., Futch, T.A. and Selleck, S.B. (1995) The division abnormally delayed (dally) gene: a putative integral membrane proteoglycan required for cell division patterning during postembryonic development of the nervous system in Drosophila. Development, 121, 3687-702. 16. Baeg, G.H., Lin, X., Khare, N., Baumgartner, S. and Perrimon, N. (2001) Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development, 128, 87-94. 17. Filmus, J., Church, J.G. and Buick, R.N. (1988) Isolation of a cDNA corresponding to a developmentally regulated transcript in rat intestine. Mol Cell Biol, 8, 4243-9. 18. Watanabe, K., Yamada, H. and Yamaguchi, Y. (1995) K-glypican: a novel GPI-anchored heparan sulfate proteoglycan that is highly expressed in developing brain and kidney. J Cell Biol, 130, 1207-18. 19. Veugelers, M., Vermeesch, J., Reekmans, G., Steinfeld, R., Marynen, P. and David, G. (1997) Characterization of glypican-5 and chromosomal localization of human GPC5, a new member of the glypican gene family. Genomics, 40, 24-30. 20. Paine-Saunders, S., Viviano, B.L. and Saunders, S. (1999) GPC6, a novel member of the glypican gene family, encodes a product structurally related to GPC4 and is colocalized with GPC5 on human chromosome 13. Genomics, 57, 455-8. 21. Veugelers, M., De Cat, B., Ceulemans, H., Bruystens, A.M., Coomans, C., Durr, J., Vermeesch, J., Marynen, P. and David, G. (1999) Glypican-6, a new member of the glypican family of cell surface heparan sulfate proteoglycans. J Biol Chem, 274, 26968-77. 22. Eugster, C., Panakova, D., Mahmoud, A. and Eaton, S. (2007) Lipoprotein-heparan sulfate interactions in the Hh pathway. Dev Cell, 13, 57-71. 23. De Cat, B., Muyldermans, S.Y., Coomans, C., Degeest, G., Vanderschueren, B., Creemers, J., Biemar, F., Peers, B. and David, G. (2003) Processing by proprotein convertases is required for glypican-3 modulation of cell survival, Wnt signaling, and gastrulation movements. J Cell Biol, 163, 625-35. 24. Hagihara, K., Watanabe, K., Chun, J. and Yamaguchi, Y. (2000) Glypican-4 is an FGF2-binding heparan sulfate proteoglycan expressed in neural precursor cells. Dev Dyn, 219, 353-67. 25. Seidah, N.G., Mowla, S.J., Hamelin, J., Mamarbachi, A.M., Benjannet, S., Toure, B.B., Basak, A., Munzer, J.S., Marcinkiewicz, J., Zhong, M., Barale, J.C., Lazure, C., Murphy, R.A., Chretien, M. and Marcinkiewicz, M. (1999) Mammalian subtilisin/kexin isozyme SKI-1: A widely expressed proprotein convertase with a unique cleavage specificity and cellular localization. Proc Natl Acad Sci U S A, 96, 1321-6. 26. Khatib, A.M., Siegfried, G., Prat, A., Luis, J., Chretien, M., Metrakos, P. and Seidah, N.G. (2001) Inhibition of proprotein convertases is associated with loss of growth and tumorigenicity of HT-29 human colon carcinoma cells: importance of insulin-like growth factor-1 (IGF-1) receptor processing in IGF-1-mediated functions. J Biol Chem, 276, 30686-93. 27. Duguay, S.J., Lai-Zhang, J. and Steiner, D.F. (1995) Mutational analysis of the insulin-like growth factor I prohormone processing site. J Biol Chem, 270, 17566-74. 28. Denault, J.B., Claing, A., D'Orleans-Juste, P., Sawamura, T., Kido, T., Masaki, T. and Leduc, R. (1995) Processing of proendothelin-1 by human furin convertase. FEBS Lett, 362, 276-80. 29. Seidah, N.G., Benjannet, S., Pareek, S., Savaria, D., Hamelin, J., Goulet, B., Laliberte, J., Lazure, C., Chretien, M. and Murphy, R.A. (1996) Cellular processing of the nerve growth factor precursor by the mammalian pro-protein convertases. Biochem J, 314 ( Pt 3), 951-60. 30. Hendy, G.N., Bennett, H.P., Gibbs, B.F., Lazure, C., Day, R. and Seidah, N.G. (1995) Proparathyroid hormone is preferentially cleaved to parathyroid hormone by the prohormone convertase furin. A mass spectrometric study. J Biol Chem, 270, 9517-25. 31. Lenz, O., ter Meulen, J., Klenk, H.D., Seidah, N.G. and Garten, W. (2001) The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc Natl Acad Sci U S A, 98, 12701-5. 32. Creemers, J.W., Ines Dominguez, D., Plets, E., Serneels, L., Taylor, N.A., Multhaup, G., Craessaerts, K., Annaert, W. and De Strooper, B. (2001) Processing of beta-secretase by furin and other members of the proprotein convertase family. J Biol Chem, 276, 4211-7. 33. Khatib, A.M., Siegfried, G., Chretien, M., Metrakos, P. and Seidah, N.G. (2002) Proprotein convertases in tumor progression and malignancy: novel targets in cancer therapy. Am J Pathol, 160, 1921-35. 34. Ohkawara, B., Yamamoto, T.S., Tada, M. and Ueno, N. (2003) Role of glypican 4 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development, 130, 2129-38. 35. Mayor, S. and Riezman, H. (2004) Sorting GPI-anchored proteins. Nat Rev Mol Cell Biol, 5, 110-20. 36. Brown, D.A. and London, E. (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol, 14, 111-36. 37. Galbiati, F., Razani, B. and Lisanti, M.P. (2001) Emerging themes in lipid rafts and caveolae. Cell, 106, 403-11. 38. Simons, K. and Toomre, D. (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol, 1, 31-9. 39. Hancock, J.F. (2006) Lipid rafts: contentious only from simplistic standpoints. Nat Rev Mol Cell Biol, 7, 456-62. 40. Mertens, G., Van der Schueren, B., van den Berghe, H. and David, G. (1996) Heparan sulfate expression in polarized epithelial cells: the apical sorting of glypican (GPI-anchored proteoglycan) is inversely related to its heparan sulfate content. J Cell Biol, 132, 487-97. 41. Jackson, R.L., Busch, S.J. and Cardin, A.D. (1991) Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev, 71, 481-539. 42. Lander, A.D. (1994) Targeting the glycosaminoglycan-binding sites on proteins. Chem Biol, 1, 73-8. 43. Lin, X., Buff, E.M., Perrimon, N. and Michelson, A.M. (1999) Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development, 126, 3715-23. 44. LaRochelle, W.J., Sakaguchi, K., Atabey, N., Cheon, H.G., Takagi, Y., Kinaia, T., Day, R.M., Miki, T., Burgess, W.H. and Bottaro, D.P. (1999) Heparan sulfate proteoglycan modulates keratinocyte growth factor signaling through interaction with both ligand and receptor. Biochemistry, 38, 1765-71. 45. Topczewski, J., Sepich, D.S., Myers, D.C., Walker, C., Amores, A., Lele, Z., Hammerschmidt, M., Postlethwait, J. and Solnica-Krezel, L. (2001) The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev Cell, 1, 251-64. 46. Lin, X. and Perrimon, N. (1999) Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature, 400, 281-4. 47. Yan, D. and Lin, X. (2007) Drosophila glypican Dally-like acts in FGF-receiving cells to modulate FGF signaling during tracheal morphogenesis. Dev Biol, 312, 203-16. 48. Johnson, K.G., Tenney, A.P., Ghose, A., Duckworth, A.M., Higashi, M.E., Parfitt, K., Marcu, O., Heslip, T.R., Marsh, J.L., Schwarz, T.L., Flanagan, J.G. and Van Vactor, D. (2006) The HSPGs Syndecan and Dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development. Neuron, 49, 517-31. 49. Kreuger, J., Perez, L., Giraldez, A.J. and Cohen, S.M. (2004) Opposing activities of Dally-like glypican at high and low levels of Wingless morphogen activity. Dev Cell, 7, 503-12. 50. Traister, A., Shi, W. and Filmus, J. (2007) Mammalian Notum induces the release of glypicans and other GPI-anchored proteins from the cell surface. Biochem J, 410, 503-511. 51. Willnow, T.E., Hammes, A. and Eaton, S. (2007) Lipoproteins and their receptors in embryonic development: more than cholesterol clearance. Development, 134, 3239-49. 52. Pilia, G., Hughes-Benzie, R.M., MacKenzie, A., Baybayan, P., Chen, E.Y., Huber, R., Neri, G., Cao, A., Forabosco, A. and Schlessinger, D. (1996) Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet, 12, 241-7. 53. Neri, G., Gurrieri, F., Zanni, G. and Lin, A. (1998) Clinical and molecular aspects of the Simpson-Golabi-Behmel syndrome. Am J Med Genet, 79, 279-83. 54. Neri, G., Marini, R., Cappa, M., Borrelli, P. and Opitz, J.M. (1988) Simpson-Golabi-Behmel syndrome: an X-linked encephalo-tropho-schisis syndrome. Am J Med Genet, 30, 287-99. 55. DeBaun, M.R., Ess, J. and Saunders, S. (2001) Simpson Golabi Behmel syndrome: progress toward understanding the molecular basis for overgrowth, malformation, and cancer predisposition. Mol Genet Metab, 72, 279-86. 56. Pellegrini, M., Pilia, G., Pantano, S., Lucchini, F., Uda, M., Fumi, M., Cao, A., Schlessinger, D. and Forabosco, A. (1998) Gpc3 expression correlates with the phenotype of the Simpson-Golabi-Behmel syndrome. Dev Dyn, 213, 431-9. 57. Chiao, E., Fisher, P., Crisponi, L., Deiana, M., Dragatsis, I., Schlessinger, D., Pilia, G. and Efstratiadis, A. (2002) Overgrowth of a mouse model of the Simpson-Golabi-Behmel syndrome is independent of IGF signaling. Dev Biol, 243, 185-206. 58. Oliver, F., Christianis, J.K., Liu, X., Rhind, S., Verma, V., Davison, C., Brown, and S.D.M., D., P., and Keightley, P.D. (2005) Regulatory variation at glypican-3 underlies a major growth QLT in mice. PLoS Biol. , 3, e135. 59. Hughes-Benzie, R.M., Pilia, G., Xuan, J.Y., Hunter, A.G., Chen, E., Golabi, M., Hurst, J.A., Kobori, J., Marymee, K., Pagon, R.A., Punnett, H.H., Schelley, S., Tolmie, J.L., Wohlferd, M.M., Grossman, T., Schlessinger, D. and MacKenzie, A.E. (1996) Simpson-Golabi-Behmel syndrome: genotype/phenotype analysis of 18 affected males from 7 unrelated families. Am J Med Genet, 66, 227-34. 60. Song, H.H., Shi, W., Xiang, Y.Y. and Filmus, J. (2005) The loss of glypican-3 induces alterations in Wnt signaling. J Biol Chem, 280, 2116-25. 61. Paine-Saunders, S., Viviano, B.L., Zupicich, J., Skarnes, W.C. and Saunders, S. (2000) glypican-3 controls cellular responses to Bmp4 in limb patterning and skeletal development. Dev Biol, 225, 179-87. 62. Capurro, M.I., Xu, P., Shi, W., Li, F., Jia, A. and Filmus, J. (2008) Glypican-3 inhibits Hedgehog signaling during development by competing with patched for Hedgehog binding. Dev Cell, 14, 700-11. 63. Hughes-Benzie, R., Allanson, J., Hunter, A. and Cole, T. (1992) The importance of differentiating Simpson-Golabi-Behmel and Beckwith-Wiedemann syndromes. J Med Genet, 29, 928. 64. Verloes, A., Massart, B., Dehalleux, I., Langhendries, J.P. and Koulischer, L. (1995) Clinical overlap of Beckwith-Wiedemann, Perlman and Simpson-Golabi-Behmel syndromes: a diagnostic pitfall. Clin Genet, 47, 257-62. 65. Weksberg, R., Glaves, M., Teshima, I., Waziri, M., Patil, S. and Williams, B.R. (1990) Molecular characterization of Beckwith-Wiedemann syndrome (BWS) patients with partial duplication of chromosome 11p excludes the gene MYOD1 from the BWS region. Genomics, 8, 693-8. 66. Li, M., Squire, J.A. and Weksberg, R. (1998) Molecular genetics of Wiedemann-Beckwith syndrome. Am J Med Genet, 79, 253-9. 67. Mannens, M., Hoovers, J.M., Redeker, E., Verjaal, M., Feinberg, A.P., Little, P., Boavida, M., Coad, N., Steenman, M., Bliek, J. and et al. (1994) Parental imprinting of human chromosome region 11p15.3-pter involved in the Beckwith-Wiedemann syndrome and various human neoplasia. Eur J Hum Genet, 2, 3-23. 68. Beck, F., Samani, N.J., Penschow, J.D., Thorley, B., Tregear, G.W. and Coghlan, J.P. (1987) Histochemical localization of IGF-I and -II mRNA in the developing rat embryo. Development, 101, 175-84. 69. Stylianopoulou, F., Efstratiadis, A., Herbert, J. and Pintar, J. (1988) Pattern of the insulin-like growth factor II gene expression during rat embryogenesis. Development, 103, 497-506. 70. Lee, J.E., Pintar, J. and Efstratiadis, A. (1990) Pattern of the insulin-like growth factor II gene expression during early mouse embryogenesis. Development, 110, 151-9. 71. Ayer-le Lievre, C., Stahlbom, P.A. and Sara, V.R. (1991) Expression of IGF-I and -II mRNA in the brain and craniofacial region of the rat fetus. Development, 111, 105-15. 72. Ripoche, M.A., Kress, C., Poirier, F. and Dandolo, L. (1997) Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev, 11, 1596-604. 73. Cano-Gauci, D.F., Song, H.H., Yang, H., McKerlie, C., Choo, B., Shi, W., Pullano, R., Piscione, T.D., Grisaru, S., Soon, S., Sedlackova, L., Tanswell, A.K., Mak, T.W., Yeger, H., Lockwood, G.A., Rosenblum, N.D. and Filmus, J. (1999) Glypican-3-deficient mice exhibit developmental overgrowth and some of the abnormalities typical of Simpson-Golabi-Behmel syndrome. J Cell Biol, 146, 255-64. 74. Eggenschwiler, J., Ludwig, T., Fisher, P., Leighton, P.A., Tilghman, S.M. and Efstratiadis, A. (1997) Mouse mutant embryos overexpressing IGF-II exhibit phenotypic features of the Beckwith-Wiedemann and Simpson-Golabi-Behmel syndromes. Genes Dev, 11, 3128-42. 75. Song, H.H., Shi, W. and Filmus, J. (1997) OCI-5/rat glypican-3 binds to fibroblast growth factor-2 but not to insulin-like growth factor-2. J Biol Chem, 272, 7574-7. 76. Stigliano, I., Puricelli, L., Filmus, J., Sogayar, M.C., Bal de Kier Joffe, E. and Peters, M.G. (2009) Glypican-3 regulates migration, adhesion and actin cytoskeleton organization in mammary tumor cells through Wnt signaling modulation. Breast Cancer Res Treat, 114, 251-62. 77. Yamanaka, H., Moriguchi, T., Masuyama, N., Kusakabe, M., Hanafusa, H., Takada, R., Takada, S. and Nishida, E. (2002) JNK functions in the non-canonical Wnt pathway to regulate convergent extension movements in vertebrates. EMBO Rep, 3, 69-75. 78. Buchanan, C., Stigliano, I., Garay-Malpartida, H.M., Rodrigues Gomes, L., Puricelli, L., Sogayar, M.C., Bal de Kier Joffe, E. and Peters, M.G. (2010) Glypican-3 reexpression regulates apoptosis in murine adenocarcinoma mammary cells modulating PI3K/Akt and p38MAPK signaling pathways. Breast Cancer Res Treat, 119, 559-74. 79. Capurro, M.I., Xiang, Y.Y., Lobe, C. and Filmus, J. (2005) Glypican-3 promotes the growth of hepatocellular carcinoma by stimulating canonical Wnt signaling. Cancer Res, 65, 6245-54. 80. Wei, W., Chua, M.S., Grepper, S. and So, S.K. (2009) Blockade of Wnt-1 signaling leads to anti-tumor effects in hepatocellular carcinoma cells. Mol Cancer, 8, 76. 81. Kuhl, M., Sheldahl, L.C., Park, M., Miller, J.R. and Moon, R.T. (2000) The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet, 16, 279-83. 82. Peifer, M. and Polakis, P. (2000) Wnt signaling in oncogenesis and embryogenesis--a look outside the nucleus. Science, 287, 1606-9. 83. Veeman, M.T., Axelrod, J.D. and Moon, R.T. (2003) A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell, 5, 367-77. 84. Kuhl, M., Geis, K., Sheldahl, L.C., Pukrop, T., Moon, R.T. and Wedlich, D. (2001) Antagonistic regulation of convergent extension movements in Xenopus by Wnt/beta-catenin and Wnt/Ca2+ signaling. Mech Dev, 106, 61-76. 85. Yan, D., Wallingford, J.B., Sun, T.Q., Nelson, A.M., Sakanaka, C., Reinhard, C., Harland, R.M., Fantl, W.J. and Williams, L.T. (2001) Cell autonomous regulation of multiple Dishevelled-dependent pathways by mammalian Nkd. Proc Natl Acad Sci U S A, 98, 3802-7. 86. Ishitani, T., Kishida, S., Hyodo-Miura, J., Ueno, N., Yasuda, J., Waterman, M., Shibuya, H., Moon, R.T., Ninomiya-Tsuji, J. and Matsumoto, K. (2003) The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol Cell Biol, 23, 131-9. 87. Urist, M.R., Mikulski, A. and Lietze, A. (1979) Solubilized and insolubilized bone morphogenetic protein. Proc Natl Acad Sci U S A, 76, 1828-32. 88. Wozney, J.M., Rosen, V., Celeste, A.J., Mitsock, L.M., Whitters, M.J., Kriz, R.W., Hewick, R.M. and Wang, E.A. (1988) Novel regulators of bone formation: molecular clones and activities. Science, 242, 1528-34. 89. Grisaru, S., Cano-Gauci, D., Tee, J., Filmus, J. and Rosenblum, N.D. (2001) Glypican-3 modulates BMP- and FGF-mediated effects during renal branching morphogenesis. Dev Biol, 231, 31-46. 90. Nakatsura, T., Komori, H., Kubo, T., Yoshitake, Y., Senju, S., Katagiri, T., Furukawa, Y., Ogawa, M., Nakamura, Y. and Nishimura, Y. (2004) Mouse homologue of a novel human oncofetal antigen, glypican-3, evokes T-cell-mediated tumor rejection without autoimmune reactions in mice. Clin Cancer Res, 10, 8630-40. 91. Ishiguro, T., Sugimoto, M., Kinoshita, Y., Miyazaki, Y., Nakano, K., Tsunoda, H., Sugo, I., Ohizumi, I., Aburatani, H., Hamakubo, T., Kodama, T., Tsuchiya, M. and Yamada-Okabe, H. (2008) Anti-glypican 3 antibody as a potential antitumor agent for human liver cancer. Cancer Res, 68, 9832-8. 92. David, G., Lories, V., Decock, B., Marynen, P., Cassiman, J.J. and Van den Berghe, H. (1990) Molecular cloning of a phosphatidylinositol-anchored membrane heparan sulfate proteoglycan from human lung fibroblasts. J Cell Biol, 111, 3165-76. 93. Stipp, C.S., Litwack, E.D. and Lander, A.D. (1994) Cerebroglycan: an integral membrane heparan sulfate proteoglycan that is unique to the developing nervous system and expressed specifically during neuronal differentiation. J Cell Biol, 124, 149-60. 94. Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol, 24, 1596-9. 95. Veugelers, M., Vermeesch, J., Watanabe, K., Yamaguchi, Y., Marynen, P. and David, G. (1998) GPC4, the gene for human K-glypican, flanks GPC3 on xq26: deletion of the GPC3-GPC4 gene cluster in one family with Simpson-Golabi-Behmel syndrome. Genomics, 53, 1-11. 96. Sachdev, D. and Yee, D. (2007) Disrupting insulin-like growth factor signaling as a potential cancer therapy. Mol Cancer Ther, 6, 1-12. 97. Irie, A., Habuchi, H., Kimata, K. and Sanai, Y. (2003) Heparan sulfate is required for bone morphogenetic protein-7 signaling. Biochem Biophys Res Commun, 308, 858-65. 98. Lin, Y.M., Hu, C.P., Chou, C.K., TW, O.L., Wuu, K.T., Chen, T.Y., Peng, F.K., Liu, T.J., Ko, J.L. and Chang, C.M. (1982) [A new human hepatoma cell line: establishment and characterization]. Chinese Journal of Microbiology and Immunology, 15, 193-201. 99. Nakabayashi, H., Taketa, K., Miyano, K., Yamane, T. and Sato, J. (1982) Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res, 42, 3858-63. 100. Cheng, W., Tseng, C.J., Lin, T.T., Cheng, I., Pan, H.W., Hsu, H.C. and Lee, Y.M. (2008) Glypican-3-mediated oncogenesis involves the Insulin-like growth factor-signaling pathway. Carcinogenesis, 29, 1319-26. 101. Vecchione, A., Marchese, A., Henry, P., Rotin, D. and Morrione, A. (2003) The Grb10/Nedd4 complex regulates ligand-induced ubiquitination and stability of the insulin-like growth factor I receptor. Mol Cell Biol, 23, 3363-72. 102. Lage, H. and Dietel, M. (1997) Cloning and characterization of human cDNAs encoding a protein with high homology to rat intestinal development protein OCI-5. Gene, 188, 151-6. 103. RW, R. (1995) Phenotypic characteristics of cancer cells. Oxford University Press, Inc,. 104. Liu, H.S., Jan, M.S., Chou, C.K., Chen, P.H. and Ke, N.J. (1999) Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun, 260, 712-7. 105. Nakatsura, T., Yoshitake, Y., Senju, S., Monji, M., Komori, H., Motomura, Y., Hosaka, S., Beppu, T., Ishiko, T., Kamohara, H., Ashihara, H., Katagiri, T., Furukawa, Y., Fujiyama, S., Ogawa, M., Nakamura, Y. and Nishimura, Y. (2003) Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem Biophys Res Commun, 306, 16-25. 106. Xu, Y., Papageorgiou, A. and Polychronakos, C. (1998) Developmental regulation of the soluble form of insulin-like growth factor-II/mannose 6-phosphate receptor in human serum and amniotic fluid. J Clin Endocrinol Metab, 83, 437-42. 107. Alexia, C., Fallot, G., Lasfer, M., Schweizer-Groyer, G. and Groyer, A. (2004) An evaluation of the role of insulin-like growth factors (IGF) and of type-I IGF receptor signalling in hepatocarcinogenesis and in the resistance of hepatocarcinoma cells against drug-induced apoptosis. Biochem Pharmacol, 68, 1003-15. 108. Breuhahn, K. and Schirmacher, P. (2008) Reactivation of the insulin-like growth factor-II signaling pathway in human hepatocellular carcinoma. World J Gastroenterol, 14, 1690-8. 109. Schlessinger, J., Lax, I. and Lemmon, M. (1995) Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell, 83, 357-60. 110. Jiang, M., Axe, T., Holgate, R., Rubbi, C.P., Okorokov, A.L., Mee, T. and Milner, J. (2001) p53 binds the nuclear matrix in normal cells: binding involves the proline-rich domain of p53 and increases following genotoxic stress. Oncogene, 20, 5449-58. 111. Kay, B.K., Williamson, M.P. and Sudol, M. (2000) The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. Faseb J, 14, 231-41. 112. LeRoith, D., Werner, H., Beitner-Johnson, D. and Roberts, C.T., Jr. (1995) Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev, 16, 143-63. 113. Hwang, Y.H., Choi, J.Y., Kim, S., Chung, E.S., Kim, T., Koh, S.S., Lee, B., Bae, S.H., Kim, J. and Park, Y.M. (2004) Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma. Hepatol Res, 29, 113-121. 114. Sciacca, L., Mineo, R., Pandini, G., Murabito, A., Vigneri, R. and Belfiore, A. (2002) In IGF-I receptor-deficient leiomyosarcoma cells autocrine IGF-II induces cell invasion and protection from apoptosis via the insulin receptor isoform A. Oncogene, 21, 8240-50. 115. Suzuki, K., Kodama, S. and Watanabe, M. (2001) Extremely low-dose ionizing radiation causes activation of mitogen-activated protein kinase pathway and enhances proliferation of normal human diploid cells. Cancer Res, 61, 5396-401. 116. Agazie, Y., Ischenko, I. and Hayman, M. (2002) Concomitant activation of the PI3K-Akt and the Ras-ERK signaling pathways is essential for transformation by the V-SEA tyrosine kinase oncogene. Oncogene, 21, 697-707. 117. El-Shemerly, M.Y., Besser, D., Nagasawa, M. and Nagamine, Y. (1997) 12-O-Tetradecanoylphorbol-13-acetate activates the Ras/extracellular signal-regulated kinase (ERK) signaling pathway upstream of SOS involving serine phosphorylation of Shc in NIH3T3 cells. J Biol Chem, 272, 30599-602. 118. Huang, C., Ma, W.Y., Young, M.R., Colburn, N. and Dong, Z. (1998) Shortage of mitogen-activated protein kinase is responsible for resistance to AP-1 transactivation and transformation in mouse JB6 cells. Proc Natl Acad Sci U S A, 95, 156-61. 119. Marshall, C.J. (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell, 80, 179-85. 120. Cobb, M.H. and Goldsmith, E.J. (1995) How MAP kinases are regulated. J Biol Chem, 270, 14843-6. 121. Karin, M. (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem, 270, 16483-6. 122. Shaulian, E. and Karin, M. (2001) AP-1 in cell proliferation and survival. Oncogene, 20, 2390-400. 123. Ashida, R., Tominaga, K., Sasaki, E., Watanabe, T., Fujiwara, Y., Oshitani, N., Higuchi, K., Mitsuyama, S., Iwao, H. and Arakawa, T. (2005) AP-1 and colorectal cancer. Inflammopharmacology, 13, 113-25. 124. Liu, Y., Ludes-Meyers, J., Zhang, Y., Munoz-Medellin, D., Kim, H.T., Lu, C., Ge, G., Schiff, R., Hilsenbeck, S.G., Osborne, C.K. and Brown, P.H. (2002) Inhibition of AP-1 transcription factor causes blockade of multiple signal transduction pathways and inhibits breast cancer growth. Oncogene, 21, 7680-9. 125. Karamouzis, M.V. and Papavassiliou, A.G. (2006) The IGF-1 network in lung carcinoma therapeutics. Trends Mol Med, 12, 595-602. 126. Rogler, C.E. and Chisari, F.V. (1992) Cellular and molecular mechanisms of hepatocarcinogenesis. Semin Liver Dis, 12, 265-78. 127. Gonzalez, A.D., Kaya, M., Shi, W., Song, H., Testa, J.R., Penn, L.Z. and Filmus, J. (1998) OCI-5/GPC3, a glypican encoded by a gene that is mutated in the Simpson-Golabi-Behmel overgrowth syndrome, induces apoptosis in a cell line-specific manner. J Cell Biol, 141, 1407-14. 128. Powers, S., Fisher, P.B. and Pollack, R. (1984) Analysis of the reduced growth factor dependency of simian virus 40-transformed 3T3 cells. Mol Cell Biol, 4, 1572-6. 129. Xiang, Y.Y., Ladeda, V. and Filmus, J. (2001) Glypican-3 expression is silenced in human breast cancer. Oncogene, 20, 7408-12. 130. Murthy, S.S., Shen, T., De Rienzo, A., Lee, W.C., Ferriola, P.C., Jhanwar, S.C., Mossman, B.T., Filmus, J. and Testa, J.R. (2000) Expression of GPC3, an X-linked recessive overgrowth gene, is silenced in malignant mesothelioma. Oncogene, 19, 410-6. 131. Matsuda, K., Maruyama, H., Guo, F., Kleeff, J., Itakura, J., Matsumoto, Y., Lander, A.D. and Korc, M. (2001) Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer Res, 61, 5562-9. 132. Kaleko, M., Rutter, W.J. and Miller, A.D. (1990) Overexpression of the human insulinlike growth factor I receptor promotes ligand-dependent neoplastic transformation. Mol Cell Biol, 10, 464-73. 133. Prager, D., Li, H.L., Asa, S. and Melmed, S. (1994) Dominant negative inhibition of tumorigenesis in vivo by human insulin-like growth factor I receptor mutant. Proc Natl Acad Sci U S A, 91, 2181-5. 134. Blakesley, V.A., Kalebic, T., Helman, L.J., Stannard, B., Faria, T.N., Roberts, C.T., Jr. and LeRoith, D. (1996) Tumorigenic and mitogenic capacities are reduced in transfected fibroblasts expressing mutant insulin-like growth factor (IGF)-I receptors. The role of tyrosine residues 1250, 1251, and 1316 in the carboxy-terminus of the IGF-I receptor. Endocrinology, 137, 410-7. 135. Brodt, P., Fallavollita, L., Khatib, A.M., Samani, A.A. and Zhang, D. (2001) Cooperative regulation of the invasive and metastatic phenotypes by different domains of the type I insulin-like growth factor receptor beta subunit. J Biol Chem, 276, 33608-15. 136. DeAngelis, T., Chen, J., Wu, A., Prisco, M. and Baserga, R. (2006) Transformation by the simian virus 40 T antigen is regulated by IGF-I receptor and IRS-1 signaling. Oncogene, 25, 32-42. 137. Ito, Y., Sasaki, Y., Horimoto, M., Wada, S., Tanaka, Y., Kasahara, A., Ueki, T., Hirano, T., Yamamoto, H., Fujimoto, J., Okamoto, E., Hayashi, N. and Hori, M. (1998) Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology, 27, 951-8. 138. Giles, R.H., van Es, J.H. and Clevers, H. (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta, 1653, 1-24. 139. Ball, L.J., Kuhne, R., Schneider-Mergener, J. and Oschkinat, H. (2005) Recognition of proline-rich motifs by protein-protein-interaction domains. Angew Chem Int Ed Engl, 44, 2852-69. 140. Jiang, T. and Qiu, Y. (2003) Interaction between Src and a C-terminal proline-rich motif of Akt is required for Akt activation. J Biol Chem, 278, 15789-93. 141. Einbond, A. and Sudol, M. (1996) Towards prediction of cognate complexes between the WW domain and proline-rich ligands. FEBS Lett, 384, 1-8. 142. Taylor, N.A., Van De Ven, W.J. and Creemers, J.W. (2003) Curbing activation: proprotein convertases in homeostasis and pathology. Faseb J, 17, 1215-27. 143. Matsuzaki, K., Date, M., Furukawa, F., Tahashi, Y., Matsushita, M., Sakitani, K., Yamashiki, N., Seki, T., Saito, H., Nishizawa, M., Fujisawa, J. and Inoue, K. (2000) Autocrine stimulatory mechanism by transforming growth factor beta in human hepatocellular carcinoma. Cancer Res, 60, 1394-402. 144. Horiguchi, N., Takayama, H., Toyoda, M., Otsuka, T., Fukusato, T., Merlino, G., Takagi, H. and Mori, M. (2002) Hepatocyte growth factor promotes hepatocarcinogenesis through c-Met autocrine activation and enhanced angiogenesis in transgenic mice treated with diethylnitrosamine. Oncogene, 21, 1791-9. 145. Ogasawara, S., Yano, H., Iemura, A., Hisaka, T. and Kojiro, M. (1996) Expressions of basic fibroblast growth factor and its receptors and their relationship to proliferation of human hepatocellular carcinoma cell lines. Hepatology, 24, 198-205. 146. Mast, A.E., Higuchi, D.A., Huang, Z.F., Warshawsky, I., Schwartz, A.L. and Broze, G.J., Jr. (1997) Glypican-3 is a binding protein on the HepG2 cell surface for tissue factor pathway inhibitor. Biochem J, 327 ( Pt 2), 577-83. 147. Powell, C.A., Xu, G., Filmus, J., Busch, S., Brody, J.S. and Rothman, P.B. (2002) Oligonucleotide microarray an | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44700 | - |
| dc.description.abstract | Glypican-3 (GPC3) 磷脂肌醇聚糖3是一種可經由糖基磷脂酰肌醇glycosyl-phosphatidylinositol (GPI) 鍵連結在細胞膜上的糖蛋白。且是導致Simpson- Golabi - Behmel增生綜合症的突變基因。之前我們經由北方墨點試驗發現在超過70% 肝細胞癌中會大量表現GPC3。Glypican - 3(GPC3)GPC3在肝細胞癌,威姆氏瘤 (Wilms’ tumor),肝母細胞癌,及絨毛膜癌中呈現過度表現,且可促進癌細胞的生長。GPC3曾被報導過與Wnt,Hedgehog,BMPs及類胰島素生長激素(IGF)的路徑有關,但真正的機轉仍不清楚。在本研究中,我們進一步闡明了GPC3引發腫瘤的可能機轉。
我們發現GPC3的表現可促成NIH3T3細胞株細胞的生長快速,細胞的核質比增加,細胞可在洋菜膠中長成細胞團塊,且可在祼鼠體內會長成腫瘤,而無GPC3表現的載體NIH3T3細胞則無此等現象。在表現GPC3之PLC-PRF-5細胞中亦會有細胞生長快速的現象。反之,在GPC3 調降(knockdown)的HuH – 7肝細胞癌細胞株會減少其致癌性。 我們發現GPC3可經由IGF2刺激IGF-1R及其下游ERK造成這些分子的磷酸化。在GPC3 調降的肝癌細胞其IGF-1R和ERK會減少磷酸化。因此顯示GPC3是經由IGF2及其受體,以及隨後激活的胰島素樣生長因子信號通路而具有致癌性。我們亦發現GPC3可經由其N端富含脯氨酸的區域(proline-rich domain)與第2型類胰島素生長激素(IGF2)及類胰島素生長激素一型受器(IGF-1 receptor (IGF-1R))接合並共同促進肝癌細胞的生長,而此區域亦會影下游胞外信號調節激酶(ERK)的活化及AP-1的活性。 GPC3是一可分泌的分子,我們發現GPC3轉染的乳癌細胞株MCF7細胞的conditioned media可促進MCF7及HA22T/VGH細胞的細胞團塊生長。這個新的發現對GPC3在未來肝癌的癌症治療發展可能是很重要的。 | zh_TW |
| dc.description.abstract | Glypican-3 (gpc3) belongs to the glycosylphosphatidylinositol (GPI)-anchored glypican family and responsible for Simpson-Golabi-Behmel overgrowth syndrome, an X-linked condition characterized by pre-and postnatal overgrowth with visceral and skeletal anomalies. Previously, we have shown that GPC3 is overexpressed in more than 70% hepatocellular carcinoma (HCC) by Northern Blot analysis. In addition to HCC, GPC3 overexpression was also reported in certain types of human cancers, including Wilms' tumor, hepatoblastoma, melanoma, and choriocarcinoma. GPC3 can promote the growth of cancer cells. GPC3 has been linked to Wnt, Hedgehog, BMPs and insulin-like growth factor (IGF) pathway, but the molecular mechanism remains unclear. In this study, we attempted to elucidate the mechanisms for GPC3-mediated oncogenesis.
We demonstrated that ectopic overexpression of GPC3 in NIH3T3 cells led to cancer cell phenotypes including growth in serum-free medium, forming colonies in soft agar, and formation of in vivo malignant tumors in nude mice. GPC3-expressing PLC-PRF-5 cells enhanced cell growth in low serum. On the other hand, GPC3 knockdown decreased the oncogenic capability of HuH-7 cells. GPC3 stimulated the phosphorylation of IGF-1R and the downstream signaling molecule ERK in an IGF2-dependent fashion. Also, GPC3 knockdown in HCC HuH-7 cells decreased the phosphorylation of IGF-1R, IRS-1 and ERK. Therefore, we conclude that GPC3 confers oncogenecity through the interaction between IGF2 and its receptor, and the subsequent activation of the IGF-signaling pathway. We further demonstrated that GPC3 bound specifically through its N-terminal proline-rich region to both insulin-like growth factor (IGF)-II and IGF-1R. This proline-rich region was also important for the downstream ERK activation and AP-1 activity. GPC3 is a secretory protein. We demonstrated that the conditioned medium of MCF7 cells after transient transfection with GPC3 promoted colony growth of MCF7 and HA22T/VGH cells in soft agar. These findings are novel in the current understanding of the role of GPC3 in HCC and can be important in future developments of cancer therapy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:53:09Z (GMT). No. of bitstreams: 1 ntu-99-D97444002-1.pdf: 3094171 bytes, checksum: 981400efda318f13c265172b2f4a99a0 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 1. 中文摘要- 1
2. ABSTRACT- 3 3. INTRODUCTION- 5 3.1 Glypican-3 (GPC3) and human cancers and hepatocellular carcinoma (HCC)-----5 3.2 Glypican family-6 3.3 Structure of GPCs-7 3.4 Subcellular localization and function of GPCs-8 3.5 Processing of GPC3-9 3.6 GPC3 in Development-10 3.7 Signal Pathways associated with GPC3-11 3.7.1 GPC3 and Insulin-like growth factor (IGF) -11 3.7.2 GPC3 and Wnt signaling pathway-13 3.7.3 GPC3 and Hedgehog pathway-15 3.7.4 GPC3 and BMPs -15 3.8 GPC3 in Immunotherapy -16 Text-Table 1 -18 Text-Figure 1 Schematic representation of GPCs -19 Text-Figure 2 Alignment of the predicted amino acid sequences of the members of the glypican family. -21 Text-Figure 3 GPC3 in IGFs signaling in development -23 Text-Figure 4 GPC3 activates non-canonical pathway and leads to the inhibition of canonical Wnt signaling in II14, MCF7 and LM3 cells -24 Text- Figure 5 GPC3 stimulates Wnt signaling by facilitating/stabilizing Wnt-Frizzled interaction in HCC -25 Text-Figure 6 The role of glypican3 in Hh signaling -26 Text-Figure 7 GPC3 in BMPs signaling in development -27 4. MATERIALS AND METHODS -28 4.1 Cell lines used -28 4.2 Plasmids -28 4.3 Transfection and selection for stable lines -29 4.4 Reverse transcription-polymerase chain reaction (RT-PCR) -29 4.5 Antibodies used respectively -29 4.6 Generation and purification of anti-GPC3 (anti-CC3) antibody -30 4.7 Western blot analysis-30 4.8 Immunoprecipitation -31 4.9 Intact cell IGF-1R phosphorylation and IRS-1 phosphorylation - 31 4.10 Heparitinase digestion -31 4.11 RNA interference -32 4.12 Determination of cell growth and colony formation -32 4.13 Soft agar assay -33 4.14 Soft agar assay with conditioned medium of GPC3 transfected MCF7 -33 4.15 GST pull-down assay -34 4.16 Coimmunoprecipitation detection of the GPC3/IGF-1R complex -34 4.17 Tumorigenicity in nude mice -34 4.18 Luciferase assays for AP-1 reporter activities -35 II 5. RESULTS -36 5.1 Localization and Identification of GPC3 -36 5.2 Establishment of GPC3 expressing cells -38 5.3 Oncogenic property of stable GPC3 cell lines derived from NIH3T3 cells -38 5.4 Role of GPC3 in HCC cells-39 5.5 GPC3 associates with IGF2 and IGF-1R through its proline-rich region, and requires the convertase cleavage for the interaction with IGF2 -40 5.6 GPC3 induces and activates IGF-1R and IRS-1 -41 5.7 Phosphorylation of ERK by GPC3 -42 5.8 GPC3 modulates AP-1 activity -44 5.9 Promotion of MCF7 and HA22T growth by conditioned medium (CM) of GPC3 positive cells -44 5.10 The Internal-tagged HA-GPC3 expressing NIH3T3 cells exhibit no significant phenotypic changes -45 6. DISCUSSION -47 6.1 GPC3 increases oncogenicity in NIH3T3 cells, promotes PLC/PRF/5 cell growth, and GPC3 knockdown decreases oncogenicity inHuH-7 cells -47 6.2 Glypican-3 is involved in the activation of insulin-like growth factors axis-48 6.3 Proline-rich region of GPC3 is important for protein-protein interaction, ERK activation and AP-1 activity -50 6.4 Processing by convertase is required for the function of GPC3 -52 6.5 GPC3 may possess paracrine activity -53 6.6 GPC3 exerts dual function in cell growth and cell death at least in part pending upon cell context, growth factors, or construct difference -54 7. REFERENCES -58 8. TABLES -78 Table 1 Anchorage independent growth of GPC3-expressing NIH3T3 cells -78 Table 2 Tumorigenicity of NIH3T3 and GPC3-EGFP expressing NIH3T3 cells in nude mice -79 Table 3A Growth of MCF7 cells in soft agar supplemented with conditioned medium of transfected MCF7 cells -80 Table 3B Growth of HA22T/VGH cells in soft agar supplemented with conditioned medium of transfected MCF7 cells -80 Table 4 Summary of GPC3 constructs used in this study and HA-GPC3 with internal HA tag and their effects on cells -81 9. FIGURES -82 Figure 1 Schematic representation of expression vectors WT-GPC3, GPC3-myc, GPC3-EGFP, pHA-GPC3, P26-30A, and RRAA -82 Figure 2 Schematic diagram of the primary structure of GPC3 -83 Figure 3 Expression of GPC3 in HEK293T cells -84 Figure 4 Confocal microscopy images for the expression of GPC3 mutants in HeLa Cells-85 Figure 5 Secretory GPC3 in the conditioned media -86 Figure 6 GPC3 expression in NIH3T3 cells -87 Figure 7 Morphology of the GPC3 expressing NIH3T3 cells -88 Figure 8 Growth of the GPC3-expressing NIH3T3 cells in serum-free medium -89 Figure 9 Colony formation of GPC3 expressing NIH3T3 cells -90 Figure 10 Tumorigenicity of GPC3 expressing NIH3T3 cells -91 Figure 11 Microscopic appearance of tumors stained with hematoxylin and eosin –92 Figure 12 GPC3 expression in PLC/PRF/5 cells -93 Figure 13 Knockdown of GPC3 in HuH-7 cells-94 Figure 14 Reverse transcription–polymerase chain reaction analysis of IGF1 and IGF2gene expressions in different cell lines-95 Figure 15 Interaction of overexpressed GPC3 proteins with IGF2 -96 Figure 16 Interaction between GPC3 and IGF-1R -97 Figure 17 IGF-1R phosphorylation in GPC3-expressing lines -98 Figure 18 IGF2-triggered IGF-1R phosphorylation in HEK293 cells -99 Figure 19 IRS-1 phosphorylation in GPC3-expressing cell lines -100 Figure 20 GPC3 activates ERK phosphorylation -101 Figure 21 ERK phosphorylation in HA22T/VGH cells -102 Figure 22 IGF2 knockdown by siRNA (siIGF2) -103 Figure 23 GPC3 modulates AP-1 activity -104 Figure 24 GPC3 containing conditioned media promotes MCF7 and HA22T growth in soft agar -105 Figure 25 Phenotypes of HA-GPC3 expressing cells -106 Figure 26 Comparison of different constructs and their properties -108 Figure 27 Schematic diagram of the possible ways that GPC3 activates ERK -109 10. PUBLICATION-110 | |
| dc.language.iso | en | |
| dc.subject | 類胰島素生長激素一型受器 | zh_TW |
| dc.subject | 磷脂肌醇聚糖3 | zh_TW |
| dc.subject | 第二型類胰島素生長激素 | zh_TW |
| dc.subject | 肝細胞癌 | zh_TW |
| dc.subject | glypican-3 (GPC3) | en |
| dc.subject | hepatocellular carcinoma (HCC) | en |
| dc.subject | insulin-like growth factor I receptor (IGF-1R) | en |
| dc.subject | insulin-like growth factor II (IGF2) | en |
| dc.title | 肝細胞癌過度表現磷脂肌醇聚糖3之致癌性與類胰島素生長激素訊息傳導路徑研究 | zh_TW |
| dc.title | Hepatocellular carcinoma overexpressed Glypican-3-Mediated Oncogenesis Involves the Insulin-like Growth Factor Signaling Pathway | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 李玉梅 | |
| dc.contributor.oralexamcommittee | 周成功,陳培哲,陳瑞華,鐘邦柱 | |
| dc.subject.keyword | 磷脂肌醇聚糖3,第二型類胰島素生長激素,類胰島素生長激素一型受器,肝細胞癌, | zh_TW |
| dc.subject.keyword | glypican-3 (GPC3),insulin-like growth factor II (IGF2),insulin-like growth factor I receptor (IGF-1R),hepatocellular carcinoma (HCC), | en |
| dc.relation.page | 109 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-05 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 病理學研究所 | zh_TW |
| 顯示於系所單位: | 病理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
