Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4466
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡名霞(Ming-Hsia Hu)
dc.contributor.authorNing-Ya Jangen
dc.contributor.author張甯雅zh_TW
dc.date.accessioned2021-05-14T17:42:27Z-
dc.date.available2020-09-24
dc.date.available2021-05-14T17:42:27Z-
dc.date.copyright2015-09-24
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citation1. McGuine TA, Greene JJ, Best T, Leverson G. Balance as a predictor of ankle injuries in high school basketball players. Clinical journal of sport medicine : official journal of the Canadian Academy of Sport Medicine. Oct 2000;10(4):239-244.
2. Lin MR, Hwang HF, Hu MH, Wu HD, Wang YW, Huang FC. Psychometric comparisons of the timed up and go, one-leg stand, functional reach, and Tinetti balance measures in community-dwelling older people. Journal of the American Geriatrics Society. Aug 2004;52(8):1343-1348.
3. Zech A, Hubscher M, Vogt L, Banzer W, Hansel F, Pfeifer K. Balance training for neuromuscular control and performance enhancement: a systematic review. Journal of athletic training. Jul-Aug 2010;45(4):392-403.
4. Olsen OE, Myklebust G, Engebretsen L, Holme I, Bahr R. Exercises to prevent lower limb injuries in youth sports: cluster randomised controlled trial. BMJ (Clinical research ed.). Feb 26 2005;330(7489):449.
5. Sanchez-Vives MV, Slater M. From presence to consciousness through virtual reality. Nature reviews. Neuroscience. Apr 2005;6(4):332-339.
6. Schmidt RA. Motor schema theory after 27 years: reflections and implications for a new theory. Research quarterly for exercise and sport. Dec 2003;74(4):366-375.
7. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. May 11 1985;1(8437):1106-1107.
8. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. Jul 19 2007;55(2):187-199.
9. Rothwell JC, Thompson PD, Day BL, Boyd S, Marsden CD. Stimulation of the human motor cortex through the scalp. Experimental physiology. Mar 1991;76(2):159-200.
10. Taube W, Gruber M, Beck S, Faist M, Gollhofer A, Schubert M. Cortical and spinal adaptations induced by balance training: correlation between stance stability and corticospinal activation. Acta physiologica (Oxford, England). Apr 2007;189(4):347-358.
11. Gioftsidou A, Vernadakis N, Malliou P, et al. Typical balance exercises or exergames for balance improvement? Journal of back and musculoskeletal rehabilitation. 2013;26(3):299-305.
12. Bieryla KA, Dold NM. Feasibility of Wii Fit training to improve clinical measures of balance in older adults. Clinical interventions in aging. 2013;8:775-781.
13. Mhatre PV, Vilares I, Stibb SM, et al. Wii Fit balance board playing improves balance and gait in Parkinson disease. PM & R : the journal of injury, function, and rehabilitation. Sep 2013;5(9):769-777.
14. Wall T, Feinn R, Chui K, Cheng MS. The effects of the Nintendo Wii Fit on gait, balance, and quality of life in individuals with incomplete spinal cord injury. The journal of spinal cord medicine. Jan 23 2015.
15. Cho KH, Lee KJ, Song CH. Virtual-reality balance training with a video-game system improves dynamic balance in chronic stroke patients. The Tohoku journal of experimental medicine. 2012;228(1):69-74.
16. You SH, Jang SH, Kim YH, et al. Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke; a journal of cerebral circulation. Jun 2005;36(6):1166-1171.
17. Esculier JF, Vaudrin J, Tremblay LE. Corticomotor excitability in Parkinson's disease during observation, imagery and imitation of action: effects of rehabilitation using wii fit and comparison to healthy controls. Journal of Parkinson's disease. 2014;4(1):67-75.
18. Omiyale O, Crowell CR, Madhavan S. Effect of Wii-Based Balance Training on Corticomotor Excitability Post Stroke. Journal of motor behavior. Nov 25 2014:1-11.
19. Choi JH, Han EY, Kim BR, et al. Effectiveness of commercial gaming-based virtual reality movement therapy on functional recovery of upper extremity in subacute stroke patients. Annals of rehabilitation medicine. Aug 2014;38(4):485-493.
20. Yang YR, Tsai MP, Chuang TY, Sung WH, Wang RY. Virtual reality-based training improves community ambulation in individuals with stroke: a randomized controlled trial. Gait & posture. Aug 2008;28(2):201-206.
21. Greenough WT, Larson JR, Withers GS. Effects of unilateral and bilateral training in a reaching task on dendritic branching of neurons in the rat motor-sensory forelimb cortex. Behavioral and neural biology. Sep 1985;44(2):301-314.
22. Deutsch JE, Brettler A, Smith C, et al. Nintendo wii sports and wii fit game analysis, validation, and application to stroke rehabilitation. Topics in stroke rehabilitation. Nov-Dec 2011;18(6):701-719.
23. Cone BL, Levy SS, Goble DJ. Wii Fit exer-game training improves sensory weighting and dynamic balance in healthy young adults. Gait & posture. Feb 2015;41(2):711-715.
24. Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. Dec 2009;120(12):2008-2039.
25. Pascual-Leone A, Nguyet D, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. Journal of neurophysiology. Sep 1995;74(3):1037-1045.
26. Turton A, Wroe S, Trepte N, Fraser C, Lemon RN. Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. Electroencephalography and clinical neurophysiology. Aug 1996;101(4):316-328.
27. Cacchio A, Paoloni M, Cimini N, et al. Reliability of TMS-related measures of tibialis anterior muscle in patients with chronic stroke and healthy subjects. Journal of the neurological sciences. Apr 15 2011;303(1-2):90-94.
28. Dobkin BH. Training and exercise to drive poststroke recovery. Nature clinical practice. Neurology. Feb 2008;4(2):76-85.
29. Perez MA, Lungholt BK, Nyborg K, Nielsen JB. Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Experimental brain research. Nov 2004;159(2):197-205.
30. Jensen JL, Marstrand PC, Nielsen JB. Motor skill training and strength training are associated with different plastic changes in the central nervous system. Journal of applied physiology (Bethesda, Md. : 1985). Oct 2005;99(4):1558-1568.
31. Cacchio A, Cimini N, Alosi P, Santilli V, Marrelli A. Reliability of transcranial magnetic stimulation-related measurements of tibialis anterior muscle in healthy subjects. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. Feb 2009;120(2):414-419.
32. Yen CL, Wang RY, Liao KK, Huang CC, Yang YR. Gait training induced change in corticomotor excitability in patients with chronic stroke. Neurorehabilitation and neural repair. Jan-Feb 2008;22(1):22-30.
33. Brouwer B, Culham EG, Liston RA, Grant T. Normal variability of postural measures: implications for the reliability of relative balance performance outcomes. Scandinavian journal of rehabilitation medicine. Sep 1998;30(3):131-137.
34. Badke MB, Shea TA, Miedaner JA, Grove CR. Outcomes after rehabilitation for adults with balance dysfunction. Archives of physical medicine and rehabilitation. Feb 2004;85(2):227-233.
35. Pickerill ML, Harter RA. Validity and reliability of limits-of-stability testing: a comparison of 2 postural stability evaluation devices. Journal of athletic training. Nov-Dec 2011;46(6):600-606.
36. Chien CW, Hu MH, Tang PF, Sheu CF, Hsieh CL. A comparison of psychometric properties of the smart balance master system and the postural assessment scale for stroke in people who have had mild stroke. Archives of physical medicine and rehabilitation. Mar 2007;88(3):374-380.
37. Liston RA, Brouwer BJ. Reliability and validity of measures obtained from stroke patients using the Balance Master. Archives of physical medicine and rehabilitation. May 1996;77(5):425-430.
38. Downs S, Marquez J, Chiarelli P. The Berg Balance Scale has high intra- and inter-rater reliability but absolute reliability varies across the scale: a systematic review. Journal of physiotherapy. Jun 2013;59(2):93-99.
39. Godi M, Franchignoni F, Caligari M, Giordano A, Turcato AM, Nardone A. Comparison of reliability, validity, and responsiveness of the mini-BESTest and Berg Balance Scale in patients with balance disorders. Physical therapy. Feb 2013;93(2):158-167.
40. Spagnuolo DL, Jurgensen SP, Iwama AM, Dourado VZ. Walking for the assessment of balance in healthy subjects older than 40 years. Gerontology. 2010;56(5):467-473.
41. Mao HF, Hsueh IP, Tang PF, Sheu CF, Hsieh CL. Analysis and comparison of the psychometric properties of three balance measures for stroke patients. Stroke; a journal of cerebral circulation. Apr 2002;33(4):1022-1027.
42. Mathias S, Nayak US, Isaacs B. Balance in elderly patients: the 'get-up and go' test. Archives of physical medicine and rehabilitation. Jun 1986;67(6):387-389.
43. Podsiadlo D, Richardson S. The timed 'Up & Go': a test of basic functional mobility for frail elderly persons. Journal of the American Geriatrics Society. Feb 1991;39(2):142-148.
44. Alsalaheen BA, Whitney SL, Marchetti GF, et al. Performance of high school adolescents on functional gait and balance measures. Pediatric physical therapy : the official publication of the Section on Pediatrics of the American Physical Therapy Association. Summer 2014;26(2):191-199.
45. Rockwood K, Awalt E, Carver D, MacKnight C. Feasibility and measurement properties of the functional reach and the timed up and go tests in the Canadian study of health and aging. The journals of gerontology. Series A, Biological sciences and medical sciences. Feb 2000;55(2):M70-73.
46. Shumway-Cook A, Brauer S, Woollacott M. Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Physical therapy. Sep 2000;80(9):896-903.
47. Chantanachai T, Pichaiyongwongdee S, Jalayondeja C. Fall prediction in thai elderly with timed up and go and tandem walk test: a cross-sectional study. Journal of the Medical Association of Thailand = Chotmaihet thangphaet. Jul 2014;97 Suppl 7:S21-25.
48. Naumann T, Kindermann S, Joch M, Munzert J, Reiser M. No transfer between conditions in balance training regimes relying on tasks with different postural demands: Specificity effects of two different serious games. Gait & posture. Mar 2015;41(3):774-779.
49. Akbari M, Karimi H, Farahini H, Faghihzadeh S. Balance problems after unilateral lateral ankle sprains. Journal of rehabilitation research and development. Nov-Dec 2006;43(7):819-824.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4466-
dc.description.abstract近年來以具備虛擬實境功能之遊樂器進行復健治療越來越受社會大眾以及治療人員之歡迎,例如市售的體感遊樂器Wii Fit則具有特別針對平衡功能所設計的活動。研究指出利用Wii Fit 平衡活動介入,可增進正常年輕族群、社區老人、帕金森氏症、脊髓損傷以及中風後患者的平衡能力,而近代神經科學研究顯示,動作訓練後可誘發大腦重組(brain reorganization)和神經再塑(neuroplasticity)的現象。經顱磁刺激為一種非侵入性的方式,可用來探討運動訓練前後其大腦皮質脊髓路徑的興奮性與神經再塑等相關議題。目前僅有文獻探討Wii Fit 平衡活動介入於中風患者會造成平衡功能的進步以及大腦運動皮質區興奮性的改變,至於正常年輕族群是否產生與中風患者類似的效應目前仍未知。因此,本研究將利用Wii Fit平衡活動介入於正常年輕族群,探討運動皮質興奮性與姿勢控制的改變之立即、短期與長期訓練效果,並了解運動皮質興奮性與姿勢控制的改變兩者之間的相關性。
本研究設計為評估者單盲之隨機分組控制(assessor-blind, randomized controlled study),20位正常年輕人隨機分配至訓練組與參考組。訓練組接受每週三次,每次30分鐘,為期兩週的Wii Fit站姿平衡活動;參考組接受每週三次,每次30分鐘,為期兩週的Wii坐姿上肢活動。兩組受試者於介入前、第一次30分鐘的介入後、介入後及介入後兩週進行評估。評估內容包含經顱磁刺激之脛前肌動作閾值與動作誘發電位、動態電腦姿勢平衡儀之感覺整合測驗、穩定限度測試、伯格氏平衡量表及計時起走測試等,並且使用Wii 遊戲分數紀錄受試者每次接受活動後的表現,繪製表現曲線(performance curve)。
研究結果發現經過每週三次,每次30分鐘,為期兩週共六次,總劑量為3小時的Wii Fit活動後,其Wii Fit遊戲練習過程中的表現曲線顯示明確的訓練效應(訓練組: Chi-Square=18.125, p =0.03;參考組: Chi-Square=36.353, p =0.011)。訓練前後脛前肌的大腦皮質興奮性僅在訓練組有顯著改變(Chi-Square=8.04, p =0.045),參考組則無顯著差異(Chi-Square=2.04, p =0.564)。然而動態姿勢控制能力、功能性平衡以及行走能力方面,兩組間沒有顯著差異。
本研究結果發現正常年輕人在Wii活動訓練過程中會出現任務特定(task-specific)顯著的表現改善情形,也就是若練習平衡活動、則平衡活動的遊戲分數顯著上升,但坐姿的桌球活動分數則沒有顯著改變。反之若練習坐姿桌球活動者,則桌球活動分數顯著改善、但站姿平衡活動的分數不會顯著增加。顯示Wii 遊戲的動作表現進步是有任務特定現象,而非僅因為熟悉遊戲器材與規則所帶來的通則性的得分增加。在動作表現所伴隨的神經塑性改變方面,過去文獻顯示單一肌肉動作技巧訓練會使運動皮質興奮性增加,而平衡訓練會使運動皮質興奮性下降。本研究觀察到訓練組在第一次三十分鐘訓練後脛前肌的動作誘發電位上升,而兩週訓練後脛前肌的動作閾值上升,因此判斷第一次三十分鐘的Wii Fit平衡活動後與單一肌肉動作技巧訓練所產生運動皮質興奮性的增加相似,而兩週Wii Fit平衡活動後則與平衡訓練所產生運動皮質興奮性的下降相似。本研究並未觀察到Wii Fit訓練後的受試者在遊戲機以外的動態平衡控制能力、功能性平衡能力或行走能力有顯著訓練效應。顯示Wii Fit 動作技巧練習效應可能無法轉移到其他日常生活的功能性活動,抑或本研究的劑量選擇過輕、任務難度不適當等等。總之,本研究發現Wii Fit訓練後運動皮質興奮性的改變,而未來可以朝向提高Wii Fit平衡活動劑量或改變任務難度以及應用於不同類型的受試者等方向進行研究。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-05-14T17:42:27Z (GMT). No. of bitstreams: 1
ntu-104-R02428005-1.pdf: 909985 bytes, checksum: ee6995f2efc022d19d839c59e661da36 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
中文摘要 III
英文摘要 V
第一章 前言 1
第一節 研究背景 1
第二節 研究目的 3
第三節 研究問題與假設 3
第四節 研究重要性 4
第二章 文獻回顧 6
第一節 Wii Fit平衡活動 6
第二節 經顱磁刺激控制機制 8
第三節 評估工具介紹 11
第三章 研究方法 16
第一節 研究設計 16
第二節 研究對象 16
第三節 樣本估計 17
第四節 評估方式 17
第五節 訓練方式 20
第六節 資料處理與統計分析 22
第四章 結果 23
第一節 受試者基本資料 23
第二節 Wii遊戲表現曲線 23
第三節 動態平衡 24
第四節 功能性平衡與步行能力 26
第五節 脛前肌之運動皮質興奮性 26
第六節 姿勢控制改變與運動皮質興奮性改變之相關性 27
第五章 討論 28
第一節 Wii活動中的學習效應 28
第二節 Wii活動後平衡功能的改變情形 29
第三節 Wii活動前後運動皮質興奮性的改變情形 30
第四節 研究限制 31
第五節 臨床應用及未來研究方向 32
第六章 結論 33
參考文獻 34
附表 43
附圖 49
附錄 58
dc.language.isozh-TW
dc.subject姿勢控制zh_TW
dc.subjectWii Fitzh_TW
dc.subject平衡活動zh_TW
dc.subject經顱磁刺激zh_TW
dc.subjectpostural controlen
dc.subjectWii Fiten
dc.subjectbalance activityen
dc.subjecttranscranial magnetic stimulationen
dc.titleWii Fit平衡活動前後運動皮質興奮性及姿勢控制改變之研究zh_TW
dc.titleCorticomotor Excitability and Posturographical Changes After Balance Activity Using Wii Fiten
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃正雅(Cheng-Ya Huang),陸哲駒(Jer-Junn Luh)
dc.subject.keywordWii Fit,平衡活動,經顱磁刺激,姿勢控制,zh_TW
dc.subject.keywordWii Fit,balance activity,transcranial magnetic stimulation,postural control,en
dc.relation.page71
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept物理治療學研究所zh_TW
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf888.66 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved