請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44661完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂紹俊(Shao-Chun Lu) | |
| dc.contributor.author | Wen-Ju Tsai | en |
| dc.contributor.author | 蔡雯茹 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:52:29Z | - |
| dc.date.available | 2010-09-09 | |
| dc.date.copyright | 2010-09-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-08 | |
| dc.identifier.citation | 高振壹 (2007) PI3K/AKT/mTOR 訊息傳遞路徑在脂多醣誘導巨噬細胞表現G-CSF中所扮演的角色。國立台灣大學醫學院生物化學暨分子生物學研究所碩士論文
李曜宏 (2008) NF-κB及Oct-2在脂多醣透過MEK/ERK訊息傳遞路徑活化巨噬細胞表現G-CSF之過程中所扮演的角色 Ambrosino, C., Mace, G., Galban, S., Fritsch, C., Vintersten, K., Black, E., Gorospe, M. and Nebreda, A.R. (2003). Negative feedback regulation of MKK6 mRNA stability by p38alpha mitogen-activated protein kinase. Molecular and cellular biology 23, 370-381. Arnosti, D.N., Merino, A., Reinberg, D. and Schaffner, W. (1993). Oct-2 facilitates functional preinitiation complex assembly and is continuously required at the promoter for multiple rounds of transcription. The EMBO journal 12, 157-166. Atchison, M.L. and Perry, R.P. (1987). The role of the kappa enhancer and its binding factor NF-kappa B in the developmental regulation of kappa gene transcription. Cell 48, 121-128. Badger, A.M., Bradbeer, J.N., Votta, B., Lee, J.C., Adams, J.L. and Griswold, D.E. (1996). Pharmacological profile of SB 203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function. J Pharmacol Exp Ther 279, 1453-1461. Baldassare, J.J., Bi, Y. and Bellone, C.J. (1999). The role of p38 mitogen-activated protein kinase in IL-1 beta transcription. J Immunol 162, 5367-5373. Barger, P.M., Browning, A.C., Garner, A.N. and Kelly, D.P. (2001). p38 mitogen-activated protein kinase activates peroxisome proliferator-activated receptor alpha: a potential role in the cardiac metabolic stress response. J Biol Chem 276, 44495-44501. Boneberg, E.M., Hareng, L., Gantner, F., Wendel, A. and Hartung, T. (2000). Human monocytes express functional receptors for granulocyte colony-stimulating factor that mediate suppression of monokines and interferon-gamma. Blood 95, 270-276. Boneberg, E.M. and Hartung, T. (2002). Molecular aspects of anti-inflammatory action of G-CSF. Inflamm Res 51, 119-128. Brancho, D., Tanaka, N., Jaeschke, A., Ventura, J.J., Kelkar, N., Tanaka, Y., Kyuuma, M., Takeshita, T., Flavell, R.A. and Davis, R.J. (2003). Mechanism of p38 MAP kinase activation in vivo. Genes Dev 17, 1969-1978. Brook, M., Sully, G., Clark, A.R. and Saklatvala, J. (2000). Regulation of tumour necrosis factor alpha mRNA stability by the mitogen-activated protein kinase p38 signalling cascade. FEBS Lett 483, 57-61. Brown, C.Y., Lagnado, C.A. and Goodall, G.J. (1996). A cytokine mRNA-destabilizing element that is structurally and functionally distinct from A+U-rich elements. Proceedings of the National Academy of Sciences of the United States of America 93, 13721-13725. Burgess, A.W. and Metcalf, D. (1980). The nature and action of granulocyte-macrophage colony stimulating factors. Blood 56, 947-958. Caput, D., Beutler, B., Hartog, K., Thayer, R., Brown-Shimer, S. and Cerami, A. (1986). Identification of a common nucleotide sequence in the 3'-untranslated region of mRNA molecules specifying inflammatory mediators. Proceedings of the National Academy of Sciences of the United States of America 83, 1670-1674. Carballo, E., Lai, W.S. and Blackshear, P.J. (1998). Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281, 1001-1005. Chen, C.Y., Chen, T.M. and Shyu, A.B. (1994). Interplay of two functionally and structurally distinct domains of the c-fos AU-rich element specifies its mRNA-destabilizing function. Molecular and cellular biology 14, 416-426. Chen, C.Y., Gherzi, R., Ong, S.E., Chan, E.L., Raijmakers, R., Pruijn, G.J., Stoecklin, G., Moroni, C., Mann, M. and Karin, M. (2001). AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107, 451-464. Chen, C.Y. and Shyu, A.B. (1994). Selective degradation of early-response-gene mRNAs: functional analyses of sequence features of the AU-rich elements. Molecular and cellular biology 14, 8471-8482. Chen, C.Y., Xu, N. and Shyu, A.B. (1995). mRNA decay mediated by two distinct AU-rich elements from c-fos and granulocyte-macrophage colony-stimulating factor transcripts: different deadenylation kinetics and uncoupling from translation. Molecular and cellular biology 15, 5777-5788. Chen, Y.L., Huang, Y.L., Lin, N.Y., Chen, H.C., Chiu, W.C. and Chang, C.J. (2006). Differential regulation of ARE-mediated TNFalpha and IL-1beta mRNA stability by lipopolysaccharide in RAW264.7 cells. Biochem Biophys Res Commun 346, 160-168. Cheung, P.C., Campbell, D.G., Nebreda, A.R. and Cohen, P. (2003). Feedback control of the protein kinase TAK1 by SAPK2a/p38alpha. The EMBO journal 22, 5793-5805. Chung, Y.J., Zhou, H.R. and Pestka, J.J. (2003). Transcriptional and posttranscriptional roles for p38 mitogen-activated protein kinase in upregulation of TNF-alpha expression by deoxynivalenol (vomitoxin). Toxicol Appl Pharmacol 193, 188-201. Clark, A.R., Dean, J.L. and Saklatvala, J. (2003). Post-transcriptional regulation of gene expression by mitogen-activated protein kinase p38. FEBS Lett 546, 37-44. Coles, L.S., Diamond, P., Occhiodoro, F., Vadas, M.A. and Shannon, M.F. (2000). An ordered array of cold shock domain repressor elements across tumor necrosis factor-responsive elements of the granulocyte-macrophage colony-stimulating factor promoter. The Journal of biological chemistry 275, 14482-14493. Cuenda, A., Cohen, P., Buee-Scherrer, V. and Goedert, M. (1997). Activation of stress-activated protein kinase-3 (SAPK3) by cytokines and cellular stresses is mediated via SAPKK3 (MKK6); comparison of the specificities of SAPK3 and SAPK2 (RK/p38). The EMBO journal 16, 295-305. Davies, S.P., Reddy, H., Caivano, M. and Cohen, P. (2000). Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351, 95-105. Dean, J.L., Brook, M., Clark, A.R. and Saklatvala, J. (1999). p38 mitogen-activated protein kinase regulates cyclooxygenase-2 mRNA stability and transcription in lipopolysaccharide-treated human monocytes. The Journal of biological chemistry 274, 264-269. Dean, J.L., Sully, G., Clark, A.R. and Saklatvala, J. (2004). The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilisation. Cell Signal 16, 1113-1121. Du, Y., Bock, B.C., Schachter, K.A., Chao, M. and Gallo, K.A. (2005). Cdc42 induces activation loop phosphorylation and membrane targeting of mixed lineage kinase 3. The Journal of biological chemistry 280, 42984-42993. Dunn, S.M., Coles, L.S., Lang, R.K., Gerondakis, S., Vadas, M.A. and Shannon, M.F. (1994). Requirement for nuclear factor (NF)-kappa B p65 and NF-interleukin-6 binding elements in the tumor necrosis factor response region of the granulocyte colony-stimulating factor promoter. Blood 83, 2469-2479. Dunne, J.R., Dunkin, B.J., Nelson, S. and White, J.C. (1996). Effects of granulocyte colony stimulating factor in a nonneutropenic rodent model of Escherichia coli peritonitis. J Surg Res 61, 348-354. Elcheva, I., Goswami, S., Noubissi, F.K. and Spiegelman, V.S. (2009). CRD-BP protects the coding region of betaTrCP1 mRNA from miR-183-mediated degradation. Mol Cell 35, 240-246. Eyles, J.L., Hickey, M.J., Norman, M.U., Croker, B.A., Roberts, A.W., Drake, S.F., James, W.G., Metcalf, D., Campbell, I.K. and Wicks, I.P. (2008). A key role for G-CSF-induced neutrophil production and trafficking during inflammatory arthritis. Blood 112, 5193-5201. Eyles, J.L., Roberts, A.W., Metcalf, D. and Wicks, I.P. (2006). Granulocyte colony-stimulating factor and neutrophils--forgotten mediators of inflammatory disease. Nat Clin Pract Rheumatol 2, 500-510. Fibbe, W.E., van Damme, J., Billiau, A., Goselink, H.M., Voogt, P.J., van Eeden, G., Ralph, P., Altrock, B.W. and Falkenburg, J.H. (1988). Interleukin 1 induces human marrow stromal cells in long-term culture to produce granulocyte colony-stimulating factor and macrophage colony-stimulating factor. Blood 71, 430-435. Freshney, N.W., Rawlinson, L., Guesdon, F., Jones, E., Cowley, S., Hsuan, J. and Saklatvala, J. (1994). Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 78, 1039-1049. Gallo, K.A. and Johnson, G.L. (2002). Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol 3, 663-672. Gao, M., Wilusz, C.J., Peltz, S.W. and Wilusz, J. (2001). A novel mRNA-decapping activity in HeLa cytoplasmic extracts is regulated by AU-rich elements. The EMBO journal 20, 1134-1143. Godambe, S.A., Chaplin, D.D. and Bellone, C.J. (1993). Regulation of IL-1 gene expression: differential responsiveness of murine macrophage lines. Cytokine 5, 327-335. Godl, K., Wissing, J., Kurtenbach, A., Habenberger, P., Blencke, S., Gutbrod, H., Salassidis, K., Stein-Gerlach, M., Missio, A., Cotten, M., et al. (2003). An efficient proteomics method to identify the cellular targets of protein kinase inhibitors. Proc Natl Acad Sci U S A 100, 15434-15439. Han, J., Jiang, Y., Li, Z., Kravchenko, V.V. and Ulevitch, R.J. (1997). Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386, 296-299. Hareng, L. and Hartung, T. (2002). Induction and regulation of endogenous granulocyte colony-stimulating factor formation. Biological chemistry 383, 1501-1517. Hareng, L., Meergans, T., von Aulock, S., Volk, H.D. and Hartung, T. (2003). Cyclic AMP increases endogenous granulocyte colony-stimulating factor formation in monocytes and THP-1 macrophages despite attenuated TNF-alpha formation. Eur J Immunol 33, 2287-2296. Hartung, T. (1999). Granulocyte colony-stimulating factor: its potential role in infectious disease. AIDS 13 Suppl 2, S3-9. Hauge, C. and Frodin, M. (2006). RSK and MSK in MAP kinase signalling. J Cell Sci 119, 3021-3023. Hill, C.P., Osslund, T.D. and Eisenberg, D. (1993). The structure of granulocyte-colony-stimulating factor and its relationship to other growth factors. Proceedings of the National Academy of Sciences of the United States of America 90, 5167-5171. Hitti, E., Iakovleva, T., Brook, M., Deppenmeier, S., Gruber, A.D., Radzioch, D., Clark, A.R., Blackshear, P.J., Kotlyarov, A. and Gaestel, M. (2006). Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Molecular and cellular biology 26, 2399-2407. Johnson, G.L. and Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-1912. Kamio, N., Akifusa, S., Yamaguchi, N. and Yamashita, Y. (2008). Induction of granulocyte colony-stimulating factor by globular adiponectin via the MEK-ERK pathway. Molecular and cellular endocrinology 292, 20-25. Kang, Y.J., Chen, J., Otsuka, M., Mols, J., Ren, S., Wang, Y. and Han, J. (2008). Macrophage deletion of p38alpha partially impairs lipopolysaccharide-induced cellular activation. J Immunol 180, 5075-5082. Karzai, W., von Specht, B.U., Parent, C., Haberstroh, J., Wollersen, K., Natanson, C., Banks, S.M. and Eichacker, P.Q. (1999). G-CSF during Escherichia coli versus Staphylococcus aureus pneumonia in rats has fundamentally different and opposite effects. Am J Respir Crit Care Med 159, 1377-1382. Kawakami, M., Tsutsumi, H., Kumakawa, T., Abe, H., Hirai, M., Kurosawa, S., Mori, M. and Fukushima, M. (1990). Levels of serum granulocyte colony-stimulating factor in patients with infections. Blood 76, 1962-1964. Khabar, K.S. (2005). The AU-rich transcriptome: more than interferons and cytokines, and its role in disease. J Interferon Cytokine Res 25, 1-10. Khabar, K.S. (2007). Rapid transit in the immune cells: the role of mRNA turnover regulation. J Leukoc Biol 81, 1335-1344. Kiehntopf, M., Herrmann, F. and Brach, M.A. (1995). Functional NF-IL6/CCAAT enhancer-binding protein is required for tumor necrosis factor alpha-inducible expression of the granulocyte colony-stimulating factor (CSF), but not the granulocyte/macrophage CSF or interleukin 6 gene in human fibroblasts. The Journal of experimental medicine 181, 793-798. Kobayashi, K., Inohara, N., Hernandez, L.D., Galan, J.E., Nunez, G., Janeway, C.A., Medzhitov, R. and Flavell, R.A. (2002). RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416, 194-199. Koeffler, H.P., Gasson, J., Ranyard, J., Souza, L., Shepard, M. and Munker, R. (1987). Recombinant human TNF alpha stimulates production of granulocyte colony-stimulating factor. Blood 70, 55-59. Kumar, S., Boehm, J. and Lee, J.C. (2003). p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2, 717-726. Kumar, S., McDonnell, P.C., Gum, R.J., Hand, A.T., Lee, J.C. and Young, P.R. (1997). Novel homologues of CSBP/p38 MAP kinase: activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochem Biophys Res Commun 235, 533-538. Kyriakis, J.M. and Avruch, J. (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81, 807-869. Lahti, A., Kankaanranta, H. and Moilanen, E. (2002). P38 mitogen-activated protein kinase inhibitor SB203580 has a bi-directional effect on iNOS expression and NO production. Eur J Pharmacol 454, 115-123. Lahti, A., Sareila, O., Kankaanranta, H. and Moilanen, E. (2006). Inhibition of p38 mitogen-activated protein kinase enhances c-Jun N-terminal kinase activity: implication in inducible nitric oxide synthase expression. BMC Pharmacol 6, 5. Lai, W.S. and Blackshear, P.J. (2001). Interactions of CCCH zinc finger proteins with mRNA: tristetraprolin-mediated AU-rich element-dependent mRNA degradation can occur in the absence of a poly(A) tail. The Journal of biological chemistry 276, 23144-23154. Le Beau, M.M., Lemons, R.S., Carrino, J.J., Pettenati, M.J., Souza, L.M., Diaz, M.O. and Rowley, J.D. (1987). Chromosomal localization of the human G-CSF gene to 17q11 proximal to the breakpoint of the t(15;17) in acute promyelocytic leukemia. Leukemia 1, 795-799. Lee, J.C., Laydon, J.T., McDonnell, P.C., Gallagher, T.F., Kumar, S., Green, D., McNulty, D., Blumenthal, M.J., Heys, J.R., Landvatter, S.W., et al. (1994). A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372, 739-746. Lyman, G.H., Kuderer, N.M. and Djulbegovic, B. (2002). Prophylactic granulocyte colony-stimulating factor in patients receiving dose-intensive cancer chemotherapy: a meta-analysis. Am J Med 112, 406-411. Ma, W.J., Cheng, S., Campbell, C., Wright, A. and Furneaux, H. (1996). Cloning and characterization of HuR, a ubiquitously expressed Elav-like protein. The Journal of biological chemistry 271, 8144-8151. Mahtani, K.R., Brook, M., Dean, J.L., Sully, G., Saklatvala, J. and Clark, A.R. (2001). Mitogen-activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor alpha mRNA stability. Molecular and cellular biology 21, 6461-6469. Matsuzawa, A., Saegusa, K., Noguchi, T., Sadamitsu, C., Nishitoh, H., Nagai, S., Koyasu, S., Matsumoto, K., Takeda, K. and Ichijo, H. (2005). ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat Immunol 6, 587-592. Mukherjee, D., Gao, M., O'Connor, J.P., Raijmakers, R., Pruijn, G., Lutz, C.S. and Wilusz, J. (2002). The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. The EMBO journal 21, 165-174. Muller, M.M., Ruppert, S., Schaffner, W. and Matthias, P. (1988). A cloned octamer transcription factor stimulates transcription from lymphoid-specific promoters in non-B cells. Nature 336, 544-551. Nelson, S. (1994). Role of granulocyte colony-stimulating factor in the immune response to acute bacterial infection in the nonneutropenic host: an overview. Clin Infect Dis 18 Suppl 2, S197-204. Nicola, N.A., Metcalf, D., Matsumoto, M. and Johnson, G.R. (1983). Purification of a factor inducing differentiation in murine myelomonocytic leukemia cells. Identification as granulocyte colony-stimulating factor. The Journal of biological chemistry 258, 9017-9023. Nishizawa, M. and Nagata, S. (1990). Regulatory elements responsible for inducible expression of the granulocyte colony-stimulating factor gene in macrophages. Molecular and cellular biology 10, 2002-2011. Patel, R., Attur, M.G., Dave, M.N., Kumar, S., Lee, J.C., Abramson, S.B. and Amin, A.R. (1999). Regulation of nitric oxide and prostaglandin E2 production by CSAIDS (SB203580) in murine macrophages and bovine chondrocytes stimulated with LPS. Inflamm Res 48, 337-343. Patil, C., Zhu, X., Rossa, C., Jr., Kim, Y.J. and Kirkwood, K.L. (2004). p38 MAPK regulates IL-1beta induced IL-6 expression through mRNA stability in osteoblasts. Immunol Invest 33, 213-233. Peck, K.R., Son, D.W., Song, J.H., Kim, S., Oh, M.D. and Choe, K.W. (2001). Enhanced neutrophil functions by recombinant human granulocyte colony-stimulating factor in diabetic patients with foot infections in vitro. J Korean Med Sci 16, 39-44. Platzbecker, U., Prange-Krex, G., Bornhauser, M., Koch, R., Soucek, S., Aikele, P., Haack, A., Haag, C., Schuler, U., Berndt, A., et al. (2001). Spleen enlargement in healthy donors during G-CSF mobilization of PBPCs. Transfusion 41, 184-189. Pradervand, S., Maurya, M.R. and Subramaniam, S. (2006). Identification of signaling components required for the prediction of cytokine release in RAW 264.7 macrophages. Genome Biol 7, R11. Putland, R.A., Sassinis, T.A., Harvey, J.S., Diamond, P., Coles, L.S., Brown, C.Y. and Goodall, G.J. (2002). RNA destabilization by the granulocyte colony-stimulating factor stem-loop destabilizing element involves a single stem-loop that promotes deadenylation. Molecular and cellular biology 22, 1664-1673. Raingeaud, J., Whitmarsh, A.J., Barrett, T., Derijard, B. and Davis, R.J. (1996). MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol 16, 1247-1255. Ridley, S.H., Dean, J.L., Sarsfield, S.J., Brook, M., Clark, A.R. and Saklatvala, J. (1998). A p38 MAP kinase inhibitor regulates stability of interleukin-1-induced cyclooxygenase-2 mRNA. FEBS Lett 439, 75-80. Rutault, K., Hazzalin, C.A. and Mahadevan, L.C. (2001). Combinations of ERK and p38 MAPK inhibitors ablate tumor necrosis factor-alpha (TNF-alpha ) mRNA induction. Evidence for selective destabilization of TNF-alpha transcripts. The Journal of biological chemistry 276, 6666-6674. Rutella, S., Zavala, F., Danese, S., Kared, H. and Leone, G. (2005). Granulocyte colony-stimulating factor: a novel mediator of T cell tolerance. J Immunol 175, 7085-7091. Saklatvala, J. (2004). The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr Opin Pharmacol 4, 372-377. Sallerfors, B. and Olofsson, T. (1992). Granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) secretion by adherent monocytes measured by quantitative immunoassays. European journal of haematology 49, 199-207. Schieven, G.L. (2005). The biology of p38 kinase: a central role in inflammation. Curr Top Med Chem 5, 921-928. Schindler, J.F., Monahan, J.B. and Smith, W.G. (2007). p38 pathway kinases as anti-inflammatory drug targets. J Dent Res 86, 800-811. Shannon, M.F., Pell, L.M., Lenardo, M.J., Kuczek, E.S., Occhiodoro, F.S., Dunn, S.M. and Vadas, M.A. (1990). A novel tumor necrosis factor-responsive transcription factor which recognizes a regulatory element in hemopoietic growth factor genes. Molecular and cellular biology 10, 2950-2959. Shaw, G. and Kamen, R. (1986). A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46, 659-667. Soloaga, A., Thomson, S., Wiggin, G.R., Rampersaud, N., Dyson, M.H., Hazzalin, C.A., Mahadevan, L.C. and Arthur, J.S. (2003). MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. The EMBO journal 22, 2788-2797. Stephens, D.P., Fisher, D.A. and Currie, B.J. (2002). An audit of the use of granulocyte colony-stimulating factor in septic shock. Intern Med J 32, 143-148. Stoeckle, M.Y. (1991). Post-transcriptional regulation of gro alpha, beta, gamma, and IL-8 mRNAs by IL-1 beta. Nucleic Acids Res 19, 917-920. Su, S.C., Hua, K.F., Lee, H., Chao, L.K., Tan, S.K., Yang, S.F. and Hsu, H.Y. (2006). LTA and LPS mediated activation of protein kinases in the regulation of inflammatory cytokines expression in macrophages. Clin Chim Acta 374, 106-115. Takatsuka, H., Takemoto, Y., Mori, A., Okamoto, T., Kanamaru, A. and Kakishita, E. (2002). Common features in the onset of ARDS after administration of granulocyte colony-stimulating factor. Chest 121, 1716-1720. Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu Rev Immunol 21, 335-376. Tebo, J., Der, S., Frevel, M., Khabar, K.S., Williams, B.R. and Hamilton, T.A. (2003). Heterogeneity in control of mRNA stability by AU-rich elements. The Journal of biological chemistry 278, 12085-12093. Tsuchiya, M., Asano, S., Kaziro, Y. and Nagata, S. (1986). Isolation and characterization of the cDNA for murine granulocyte colony-stimulating factor. Proceedings of the National Academy of Sciences of the United States of America 83, 7633-7637. Wang, S.W., Pawlowski, J., Wathen, S.T., Kinney, S.D., Lichenstein, H.S. and Manthey, C.L. (1999). Cytokine mRNA decay is accelerated by an inhibitor of p38-mitogen-activated protein kinase. Inflamm Res 48, 533-538. Wang, X.Z. and Ron, D. (1996). Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science 272, 1347-1349. Watari, K., Asano, S., Shirafuji, N., Kodo, H., Ozawa, K., Takaku, F. and Kamachi, S. (1989). Serum granulocyte colony-stimulating factor levels in healthy volunteers and patients with various disorders as estimated by enzyme immunoassay. Blood 73, 117-122. Weiss, M., Fischer, G., Barth, E., Boneberg, E., Schneider, E.M., Georgieff, M. and Hartung, T. (2001). Dissociation of LPS-induced monocytic ex vivo production of granulocyte colony-stimulating factor (G-CSF) and TNF-alpha in patients with septic shock. Cytokine 13, 51-54. Wilson, K.P., Fitzgibbon, M.J., Caron, P.R., Griffith, J.P., Chen, W., McCaffrey, P.G., Chambers, S.P. and Su, M.S. (1996). Crystal structure of p38 mitogen-activated protein kinase. The Journal of biological chemistry 271, 27696-27700. Xu, N., Loflin, P., Chen, C.Y. and Shyu, A.B. (1998). A broader role for AU-rich element-mediated mRNA turnover revealed by a new transcriptional pulse strategy. Nucleic Acids Res 26, 558-565. Young, P., McDonnell, P., Dunnington, D., Hand, A., Laydon, J. and Lee, J. (1993). Pyridinyl imidazoles inhibit IL-1 and TNF production at the protein level. Agents Actions 39 Spec No, C67-69. Zhang, W., Wagner, B.J., Ehrenman, K., Schaefer, A.W., DeMaria, C.T., Crater, D., DeHaven, K., Long, L. and Brewer, G. (1993). Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Molecular and cellular biology 13, 7652-7665. Zsebo, K.M., Yuschenkoff, V.N., Schiffer, S., Chang, D., McCall, E., Dinarello, C.A., Brown, M.A., Altrock, B. and Bagby, G.C., Jr. (1988). Vascular endothelial cells and granulopoiesis: interleukin-1 stimulates release of G-CSF and GM-CSF. Blood 71, 99-103 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44661 | - |
| dc.description.abstract | 顆粒性白血球群落刺激性因子 (Granulocyte colony-stimulating factor, G-CSF)是造血醣蛋白生長因子的成員之一,具有調控嗜中性白血球分化增生的能力。G-CSF可以經過LPS、IL-1β及TNF-α的刺激透過轉錄及後轉錄調控機制由內皮細胞、巨噬細胞及其他許多免疫細胞分泌。G-CSF mRNA三端未轉譯區 (3’ untranslated region, 3’UTR) 含有數個AUUUA序列 (adenosine uridine-rich elements, ARE) 及莖環不穩定元素 (stem loop destabilizing element, SLDE) 與mRNA的不穩定有關。有多個發炎細胞激素的3’UTR可以發現都有ARE,多篇文獻報導在p38 MAPK 訊息傳遞路徑活化下,這些含有ARE的發炎細胞激素mRNA可以由不穩定狀態變成穩定的狀態。p38α被發現與調控轉譯及後轉錄進而影響細胞激素的合成較具關聯性,p38 MAPK抑制劑SB203580可以抑制p38α與β藉由降低mRNA的半生期進而降低發炎細胞激素的產生。然而,SB203580在巨噬細胞中G-CSF的表現影響仍然是未知的。
在我們的研究當中發現,在事先經SB203580處理三十分鐘後,再以LPS刺激的RAW264.7巨噬細胞及小鼠骨髓分化的巨噬細胞(BMDM)都導致G-CSF mRNA及蛋白質的表現增加,但是會抑制LPS所誘導IL-1β mRNA的表現,可以看到G-CSF與IL-1β有不一樣的反應。因此,想了解在SB203580/LPS處理的細胞G-CSF mRNA表現增加的調控機制,利用luciferase reporter assay分析G-CSF啟動子活性以及以nuclear run on assay測mRNA轉錄合成的速率,結果得知LPS可以使G-CSF啟動子活性及轉錄上升,然而加入SB203580並沒有促進G-CSF轉錄的作用。接著,我們探討SB203580是否會影響G-CSF mRNA的穩定度,對已經以LPS或SB203580/LPS處理的細胞以actinomycin D抑制轉錄後,以Northern blot看mRNA的變化,發現SB203580/LPS處理的細胞G-CSF mRNA的穩定性比起只有LPS刺激的來的穩定。為了研究細胞在SB203580/LPS處理之下G-CSF mRNA穩定度高是哪一段序列所媒介的,於是將G-CSF 5’UTR、3’UTR及coding region接至pGL3-control質體的luciferase基因前面或後面,分別為pGL3-G-CSF 5’UTR-Luc、pGL3-Luc-G-CSF 3’UTR、 pGL3-Luc-G-CSF(+35/+372) 及 pGL3-Luc-G-CSF(+340/+720)。將這些質體轉染入RAW264.7後,事先以SB203580處理或不處理,再以LPS刺激後測luciferase活性,發現轉染pGL3-G-CSF 5’UTR-Luc及pGL3-Luc-G-CSF 3’UTR兩種質體luciferase活性很低(與pGL3-control相比),在SB203580/LPS處理之下luciferase活性並沒有比LPS處理的增強;當細胞轉染pGL3-Luc-G-CSF(+35/+372) 及 pGL3-Luc-G-CSF(+340/+720) luciferase活性與pGL3-control差不多,但在SB203580/LPS處理之下與pGL3-control相比 luciferase活性些微上升。這些結果顯示,G-CSF 5’UTR及3’UTR對mRNA具不穩定的影響,而G-CSF coding region對mRNA則有穩定的功能。最後,利用p38 siRNA致弱p38的表現,以LPS刺激後發現G-CSF的表現與negative control siRNA對照組相比較下是降低的。綜合以上結果,我們推論p38 MAPK抑制劑SB203580會提高G-CSF mRNA及蛋白質的量,可能是因為SB203580提高G-CSF mRNA穩定性的結果,但這些作用似乎不是因為SB203580抑制p38所造成的。 | zh_TW |
| dc.description.abstract | The granulocyte colony-stimulating factor (G-CSF) is a member of the glycoprotein growth factor family that controls the proliferation and differentiation of the neutrophilic granulocyte lineage. G-CSF is produced by endothelium, macrophages, and a number of other immune cells. Expression of G-CSF is induced by several inflammatory stimuli such as lipopolysaccharide (LPS), interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) through transcriptional and post-transcriptional mechanisms. The G-CSF mRNA contains adenosine uridine-rich elements (AREs) and stem loop destabilizing element (SLDE) in the 3’ untranslated region (3’UTR) which have been associated with mRNA instability. AREs are found in the 3’UTRs of many inflammatory cytokines. Numerous reports demonstrated that AREs act as mRNA destabilization determinants but also confer LPS-induced stabilization of the mRNA through p38 MAPK dependent pathway. The p38α has been found to regulate cytokine biosynthesis in both translation and mRNA stability. Pyridinyl imidazole compounds, such as SB203580, inhibit p38α and β and block production of several major inflammatory cytokines, such as TNF-α, IL-1β, IL-6 and granulocyte macrophage-colony stimulating factor (GM-CSF), by decreasing their mRNA half-life. However, the effects of SB203580 on G-CSF expression in macrophages are unclear.
In this study, we investigated the effects of SB203580 on G-CSF expression in LPSstimulated macrophages. Surprisingly, we found that SB203580 increases both G-CSF mRNA and protein levels in LPS-stimulated RAW264.7 macrophages and mouse bone marrow derived macrophages (BMDM). In contrast, levels of IL-1β mRNA were lower in SB203580/LPS treated cells compared to that in LPS treated cells. To test if increase of G-CSF mRNA in the SB203580/LPS treated cells is resulted from the increase of transcription, we investigated the effect of SB203580 and LPS on G-CSF promoter activity by luciferase reporter assay and evaluated transcription rate by nuclear run on assay. The results showed that luciferase activity and transcription rate are both upregulated by LPS, while SB203580 decreased luciferase activity without affecting transcription rate. We then tested if G-CSF mRNA stability is enhanced by SB203580, LPS or SB203580/LPS treated cells were further treated with actinomycin D, mRNA were isolated at 0, 30, 60, 90 and 120 min after actinomycin D treatment, and the levels of G-CSF mRNA were determined by Northern blotting. The results show that G-CSF mRNA is more stable in SB203580/LPS treated cells than that in cells treated with LPS only. To investigate the mechanisms that mediate the increase of G-CSF mRNA stability in response to SB203580/LPS treatment, the G-CSF 5’UTR, 3’UTR and the G-CSF coding regions were cloned into the 5’or 3’ end of luciferase gene in the pGL3-control vector to produce pGL3-G-CSF 5’UTR-Luc, pGL3-Luc-G-CSF 3’UTR, pGL3-Luc-G-CSF(+35/+372) and pGL3-Luc-G-CSF(+340/+720) plasmids. These plasmids were then transfected into RAW264.7 cells and the luciferase activities were determined after treating with SB203580 and/or LPS. We found that the cells transfected with pGL3-Luc-G-CSF 3’UTR and pGL3-G-CSF 5’UTR-Luc plasmid expressed very low luciferase activity, and the treatment with SB203580 did not increase the luciferase activity in LPS-stimulated cells. However, cells transfected with pGL3-Luc-G-CSF(+35/+372) or pGL3-Luc-G-CSF(+340/+720) express luciferase activities similar to that of cells transfected with pGL3-control, and the treatment of SB203580/LPS resulted in slightly higher luciferase activities. The data suggest that 3’UTR and 5’UTR mediated mRNA de-stabilization while the coding region may contain sequences that increase mRNA stability. However, in siRNA mediated p38α knockdown cells, LPS-stimulation did not result in the increase of G-CSF mRNA compared with control siRNA transfected cells. Taken together, our data show that p38 inhibitor SB203580 induced expression of both G-CSF mRNA and protein, which is resulted from the increase, at least in part, of G-CSF mRNA stability; however, the effect may not due to the inhibition of p38 in macrophages. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:52:29Z (GMT). No. of bitstreams: 1 ntu-99-R97442001-1.pdf: 3363027 bytes, checksum: 4bf7ed1e3713ac43287a5879e6823339 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書-------------------------------------------------------------------------i
謝誌-------------------------------------------------------------------------------------------ii 中文摘要------------------------------------------------------------------------------------- viii 英文摘要------------------------------------------------------------------------------------- x 第一章 緒論 第一節 文獻回顧--------------------------------------------------------------------- 2 第二節 研究動機及目的------------------------------------------------------------ 11 第二章 材料與方法 第一節 實驗材料--------------------------------------------------------------------- 13 第二節 常用藥品/緩衝液----------------------------------------------------------- 14 第三節 細胞的培養------------------------------------------------------------------ 17 第四節 MTT assay------------------------------------------------------------------- 17 第五節 西方點墨法------------------------------------------------------------------ 18 第六節 分泌性G-CSF蛋白質表現量之分析------------------------------------ 20 第七節 分析細胞內mRNA表現量------------------------------------------------ 20 第八節 Nuclear run on assay-------------------------------------------------------- 23 第九節 北方點墨法------------------------------------------------------------------ 26 第十節 抽取細胞內的Genomic DNA-------------------------------------------- 31 第十一節 質體的建構--------------------------------------------------------------- 32 第十二節 Reporter gene 活性表現分析------------------------------------------ 38 第十三節 siRNA knockdown------------------------------------------------------- 39 第十四節 資料統計分析------------------------------------------------------------ 39 第三章 實驗結果 第一節 p38抑制劑SB203580使LPS誘發之G-CSF表現上升更增加----- 41 第二節 探討SB203580使LPS引發之G-CSF表現上升增加是否是透 過增加基因的轉錄--------------------------------------------------------- 42 第三節 探討SB203580及LPS對G-CSF mRNA turn-over的影響---------- 43 第四節 藉由luciferase assay間接評估G-CSF mRNA片段對luciferase 表現量的影響--------------------------------------------------------------- 43 第五節 以siRNA致弱p38α評估抑制劑SB203580增加G-CSF mRNA的作用是否藉由抑制p38α----------------------------------------------- 44 第六節 以不同的p38抑制劑於LPS刺激巨噬細胞下對G-CSF mRNA 的影響------------------------------------------------------------------------ 45 第四章 討論 第一節 在LPS刺激之下p38抑制劑SB203580使G-CSF表現更增加 而IL-1β表現被抑制------------------------------------------------------- 47 第二節 G-CSF表現上升是透過post-transcriptional level---------------------48 第三節 G-CSF mRNA穩定度上升間接推測是G-CSF coding region所導 致------------------------------------------------------------------------------ 49 第四節 SB203580使得巨噬細胞在LPS刺激之下G-CSF表現更增加可 能不是因為抑制p38α的作用-------------------------------------------- 50 第五節 總結--------------------------------------------------------------------------- 51 第五章 圖表--------------------------------------------------------------------------------- 53 補充-------------------------------------------------------------------------------------------72 附錄-------------------------------------------------------------------------------------------76 參考文獻------------------------------------------------------------------------------------- 91 圖表目錄 Figure 1. Cytotoxicity of SB203580 on RAW264.7 cells.-------------------------- 54 Figure 2. LPS-induced phosphorylation of p38 MAPK and SB203580 inhibited phosphorylation of p38 MAPK.--------------------------------- 55 Figure 3. Pretreatment with SB203580 enhanced G-CSF production in LPS-stimulated RAW264.7 cells.------------------------------------------ 56 Figure 4. Effects of various concentrations of SB203580 on LPS-induced mRNA expression of G-CSF in RAW264.7 cells.----------------------- 57 Figure 5. Pretreatment with SB203580 also increased levels of G-CSF mRNA in LPS-stimulated BMDM cells.------------------------------------------- 58 Figure 6. SB203580 increases G-CSF mRNA expression in LPS-treated RAW264.7 cells.-------------------------------------------------------------- 59 Figure 7. Nuclear run on assays.------------------------------------------------------- 60 Figure 8. Effect of SB203580 on LPS-induced G-CSF promoter activity.------- 61 Figure 9. Effect of SB203580 on G-CSF mRNA turn-over in RAW264.7 cells.---------------------------------------------------------------------------- 62 Figure 10. Effect of SB203580 on G-CSF RNA turn-over in BMDM cells.---------------------------------------------------------------------------- 63 Figure 11. Effect of SB203580 on G-CSF promoter (-289/+33)-Luciferase -G-CSF 3’UTR activity.----------------------------------------------------- 64 Figure 12. Effect of SB203580 on LPS-induced luciferase-G-CSF 3’UTR activity.------------------------------------------------------------------------- 66 Figure 13. Effect of SB203580 on LPS-induced luciferase-G-CSF 5’UTR activity.------------------------------------------------------------------------- 67 Figure 14. Effect of SB203580 on LPS-induced luciferase-G-CSF coding region activity.---------------------------------------------------------------- 68 Figure 15. Knockdown of p38α by RNAi inhibited G-CSF expression in LPS-treated RAW264.7 cells.----------------------------------------------- 69 Figure 16. Effects of various p38 inhibitors on LPS-induced mRNA expression of hG-CSF in THP-1 cells.-------------------------------------------------- 70 Figure 17. Effects of various p38 inhibitors on LPS-induced mRNA expression of G-CSF in RAW264.7 cells.---------------------------------------------- 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 脂多醣 | zh_TW |
| dc.subject | mRNA穩定度 | zh_TW |
| dc.subject | 顆粒性白血球群落刺激性因子 | zh_TW |
| dc.subject | p38 MAPK | zh_TW |
| dc.subject | SB203580 | zh_TW |
| dc.subject | G-CSF | en |
| dc.subject | mRNA stability | en |
| dc.subject | p38 MAPK | en |
| dc.subject | LPS | en |
| dc.subject | SB203580 | en |
| dc.title | SB203580增加G-CSF mRNA的穩定度進而增強巨噬細胞中LPS誘發G-CSF的產生 | zh_TW |
| dc.title | SB203580 Enhances LPS-Induced G-CSF Production in Macrophages by Increasing G-CSF mRNA Stability | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李明學,張淑芬,盧志峰 | |
| dc.subject.keyword | 顆粒性白血球群落刺激性因子,SB203580,脂多醣,p38 MAPK,mRNA穩定度, | zh_TW |
| dc.subject.keyword | G-CSF,SB203580,LPS,p38 MAPK,mRNA stability, | en |
| dc.relation.page | 108 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-08 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
