請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44660完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張宏鈞(Hung-Chun Chang) | |
| dc.contributor.author | Wan-Ju Tseng | en |
| dc.contributor.author | 曾莞如 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:52:28Z | - |
| dc.date.available | 2012-07-12 | |
| dc.date.copyright | 2010-07-12 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-08 | |
| dc.identifier.citation | [1] Almeida, V. R., Xu, Q., C. A. Barrios, and M. Lipson, 'Guiding and confining light in void nanostructure' Opt. Lett., vol. 29, pp. 1209-1211, 2004.
[2] Barnes, W. L., A. Dereux, and T. W. Ebbesen, 'Surface plasmon subwavelength optics,' Nature., vol. 424, pp. 824-830, 2003. [3] Berenger, J. P., 'A Perfectly Matched Layer for the Absorption of Electromag- netic Waves.' J. Comp. Phys., vol. 114, pp. 185-200, 1994. [4] Berini, P., 'Plasmon polariton modes guided by a metal film of finite width,' Opt. Lett., vol. 24, pp. 1011-1013, 1999. [5] Bodewig, E., Matrix Calculus. Amsterdam: North Holland Pub. Co., 1956. [6] Bierwirth, K., N. Schulz, and F. Arndt, 'Finite-difference analysis of rectan- gular dielectric waveguide structures,' IEEE. Trans. Microwave Theory Tech., vol. 34, pp. 1104-1113, 1986. [7] Boltasseva, A., V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, 'Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,' Opt. Express, vol. 16, pp. 5252-5260, 2008. [8] Bozhevolnyi, S. I., 'Effective-index modeling of channel plasmon polaritons,' Opt. Express, vol. 14, pp. 9467-9476, 2006. [9] Bozhevolnyi, S. I. V. S. Volkov, E. Devaux, and T. W. Ebbesen, 'Channel plasmon-polariton guiding by subwavelength metal grooves,' Phys. Rev. B, vol. 95, 046802, 2005. [10] Bozhevolnyi, S. I. V. S. Volkov, E. Devaux, and T. W. Ebbesen, 'Channel plasmon subwavelength waveguide components including interferometers and ring resonators,' Nature, vol. 440, pp. 508-511, 2006. [11] Cavendish, J. C., D. A. Field, and W. H. Frey, 'An approach to automatic three-dimensional finite element mesh generation,' Int. J. Number. Meth. Eng., vol. 21, pp. 329-347, 1985. [12] Cendes, Z. J., and P. Silvster, 'Numerical solution of dielectric loaded waveg- uides: Finite-element analysis,' IEEE Trans. Microwave Theory Tech., vol. MTT-18, pp. 1124-1131, 1970. [13] Chen, H. J., Hybrid-Elements FEM Based Complex Mode Solver for Optical Waveguides with Triangular-Mesh Generator. M. S. Thesis, Graduate Institute of Electro-optical Engineering, National Taiwan University, Taipei, Taiwan, June 2003. [14] Chiang, Y. C., Y. P. CHiou, and H. C. Chang, 'Improved full-vectorial finite- difference mode solver for optical waveguides with step-index profiles,' J. Light- wave Technol., vol. 20, pp. 1609-1618, 2002. [15] Chung, C. C., Analysis of Slot and Triangle-Shaped Surface Plasmonic Waveg- uides Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propa- gation Method. M. S. Thesis, Graduate Institute of Electro-optical Engineering, National Taiwan University, Taipei, Taiwan, June 2008. [16] Dai, D., and S. He., 'A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,' Opt. Express, vol. 17, pp. 16646-16653, 2009. [17] Dintinger, J., and Martin, O. J. F., 'Channel and wedge plasmon modes of metallic V-grooves with finite metal thickness,' Opt. Express, vol. 17, pp. 2364- 2374, 2009. [18] Feng, N. N., Brongersma, M. L., and Negro, L. D., 'Metal-dielectric slot- waveguide structures for the propagation of surface plasmon polaritons at 1.55 1m,' IEEE J. Quantum Electron. vol. 43, pp. 479-485, 2007. [19] Feng, N. N., Michel, J., and Kimerling, L. C., 'Optical field concentration in low index waveguides,' IEEE J. Quantum Electron. vol. 42, pp. 885-890, 2006. [20] Fujisawa, T., and Koshiba, M., 'Full-vector finite-element beam propagation method for three-dimensional nonlinear optical waveguides,' J. Lightwave Tech- nol., vol. 20, pp. 1876-1884, 2002. [21] Grillot, F., L. Vivien, and E. Cassan, 'Propagation loss in single-mode ultra- small square silicon-on-insulator optical waveguides,' J. Lightwave Technol., vol. 24, pp. 891-896, 2006 [22] Harley, G. R., and R. E. Smith, 'Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions,' J. Lightwave Technol., vol. 13, pp. 465-469, 1995 [23] He, S., Han, Z., Liu, L., and D. Dai, 'Highly integrated planar lightwave circuits based on plasmonic and Si nano-waveguides,' Proc. SPIE, vol. 6351, 635121, 2006 [24] Hsu, S. M., Full-Vectorial Finite Element Beam Propagation Method Based on Curvilinear Hybrid Edge/Nodal Elements for Optical Waveguide Problems. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2004. [25] Jin, J., The Finite Element Method in Electromagnetics., 2nd edition. Wiley- IEEE Press, 2002 [26] Kawata, S., Near-Field Optics and Surface Plasmon Polaritons. Berlin: Springer-Verlag Berlin Heidelberg, 2001. [27] Kekatpure, R. D., Hrylew, A. C., Barnard, E. S., and M. L. Brongesma , 'Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator,' Opt. Express, vol. 17, pp. 24112-24129, 2009. [28] Koshiba, M., and Y. Tsuji, 'Curvilinear hybrid edge/nodal elements with tri- angular shape for guided-wave problems,' J. Lightwave Technol., vol. 18, pp. 737-743, 2000 [29] Lee, J.-F., D.-K. Sun, and Z. J. Cendes, 'Full-wave analysis of dielectric waveg- uides using tangential vector finite elements,' IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1262-1271, 1991. [30] Lee, J. F., Finite element method with curvillinear hybrid edge/nodal triangular shape element for optical waveguide problems. M. S. Thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, June 2002. [31] Liu, L., Z. Han, and S. He, 'Novel surface plasmon waveguide for high integra- tion,' Opt. Express, vol. 13, pp. 6645-6650, 2005. [32] LAusse, P., P. Stuwe, and J. Schule, 'Analysis of vectorial mode fields in optical waveguides by a new finite difference method,' J. Lightwave Technol, vol. 12, pp. 487-493, 1994. [33] Maier, S. A., Surface Plasmons: Fundamental and Application. Berlin: Springer, 2007, pp. 59-62. [34] Maier, S. A., and H. A.Atwater, 'Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,' J. Appl. Phys., vol. 98, 011101, 2005. [35] Moreno, E., F. J. Garica-Vidal, S. G. Rodrigo, L. Martin-Moreno and S. I. Bozhevolnyi, 'Channel plasmon V-polaritons: Modal shape, dispersion, and losses,' Opt. Lett., vol. 31, pp. 3447-3449, 2006. [36] Palik, E. D., and G. Ghosh, Handbook of Optical Constants of Solids. New York: Academic, 1985. [37] Peng, C. H., Analysis of Photonic Crystal Fibers Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Method. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2007. [38] Pile, D. F. P., and D. K. Gramotnev, 'Channel plasmon-polariton in a trian- gular groove on a metal surface,' Opt. Lett., vol. 29, pp. 1069-1071, 2004. [39] Pile, T. Ogawa, and D. K. Gramotnev, 'Theoretical and experimental investi- gation of strongly localized plasmons on triangular metal wedges for subwave- length waveguiding,' Appl. Phys. Lett., vol. 87, pp. 061106-061106-3 2005. [40] Peterson, A. F., 'Vector finite element formulation for scattering from two- dimensional heterogeneous bodies,' IEEE Trans. Antennas Propagat., vol. AP- 43, pp. 357-365, 1994. [41] Raether, H., Surface Plasmons., Berlin: Springer-Verlag, 1988. [42] Rebay, S., 'Effcient unstructured mesh generation by means of Delaunay tri- angulation and Bowyer-Watson algorithm,' J. Comput. Phys., vol. 105, pp. 125-138, 1993. [43] Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, 'Perfectly matched anisotropic absorber for use as an absorbingboundary condition,' IEEE Trans. Antennas Propagat., vol. 43, pp. 1460-1463, 1995. [44] Saitoh, K., and M. Koshiba, 'Approximate scalar finite-element beam- propagation method with perfectly matched layers for anisotropic optical waveguides,' J. Lightwave Technol., vol. 19, pp. 786-792, 2001. [45] Saitoh, K., and M. Koshiba, 'Full-vectorial imaginary-distance beam propaga- tion method based on a finite element scheme: application to photonic crystal fibers,' IEEE J. Quantum Electron., vol. 38, pp. 927-933, 2002. [46] Satuby, Y., and M. Orenstein, 'Surface-plasmon-polariton modes in deep metal- lic trenches-measurement and analysis,' Opt. Exp., vol. 15, pp. 4247-4252, 2007. [47] Schulz, D., C. Gingener, M. Bludsuweit, and E. Voges, 'Finite element beam propagation method,' J. Lightwave Technol., vol. 16, pp. 1336-1341, 1998. [48] Tanaka, K., M. Tanaka, and T. Sugiyama, 'Simulation of nanometric optical circuits based on surface plasmon polariton gap waveguides,' Opt. Express, vol. 13, pp. 256-266, 2005. [49] Teixeira, F. L., and W. C. Chew, 'PML-FDTD in cylindrical and spherical grids,' IEEE Microwave Guided Wave Lett., vol. 7, pp. 285-287, 1997. [50] Thylen, L., and S. Anand, 'Photonic crystals-a step toward integrated circuits for photonics,' ChemPhysChem vol. 5, pp.1268-1283, 2004. [51] Tsuchizawa, T., K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Taka- hashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, 'Microphotonics De- vices Based on Silicon Microfabrication Technology,' IEEE J. Sel. Top. Quan- tum Electron., vol. 11, pp.232-240, 2005. [52] Vial. A., Grimault, A.-S., Macias, D., Barchiesi, D., and Chapelle, M. L. d. l., 'Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,' Phys. Rev., vol. 87, 131102, 2005. [53] Vernois, G., and S. Fan, 'Bends and splitters in metal V-dielectric V-metal subwavelength plasmonic waveguides,' Appl. Phys. Lett., vol. 71, 085416, 2005. [54] Vernois, G., and S. Fan, 'Modes of Subwavelength Plasmonic SlotWaveguides,' J. Lightwave Technol., vol. 25, pp. 2551-2521, 2007. [55] Wang, B., and G. P. Wang, 'Surface plasmon polariton propagation in nanoscale metal gap waveguides,' Opt. Lett., vol. 29, pp. 1992-1994, 2004. [56] Yan, M., and M. Qiu, 'Guided plasmon polariton at 2D metal corners,' J. Opt. Soc. Am. B, vol. 24, pp. 2333-2342, 2007. [57] Zia, R., A. Chandran, and M. L. Brongersma, 'Dielectric waveguide model for guided surface polaritons,' Opt. Lett., vol. 30, pp. 1473-1475, 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44660 | - |
| dc.description.abstract | 此篇論文利用全向量虛軸有限元素波束傳播法分析研究表面電漿子波導,討論的結構包括脊形波導、槽形波導及V形波導。針對不同的結構參數我們計算波導之有效折射率、傳播長度、模態場型以及色散關係。對於具有一薄層低介電質材料介於金屬和高介電質材料之間的脊形波導,討論不同薄層厚度對於傳播模態的影響。對於槽形波導中,討論在槽中間填充不同分佈的高介電質材質時,對於模場的侷限性和傳播長度的影響以及在不同寬度或厚度的高介電質材質對於減少損耗的可能性。對於具有有限高度和厚度的金屬之V形波導,討論不同金屬層厚度對於通道電漿子模態和楔形電漿子模態特性的改善。 | zh_TW |
| dc.description.abstract | This research studies the surface plasmon polariton (SPP) waveguides using the finite element imaginary-distance beam propagation method (FE-ID-BPM). The rib waveguide, slot waveguides, channel plasmon, and V-shaped waveguides are investigated. The effective indices, propagation lengths, modal field profiles, and dispersion relations are calculated for various structure papramters. In the rib waveguide with a layer of low-index material located between the metal cap and the high-index material layer, various layer thicknesses are examined to understand different guided- mode characteristics. In the slot waveguide, a high-index material is introduced in the slot and mode field confinement and propagation length analyzed for different widths and heights of the high-index material for possible loss reduction. In the V-shaped waveguide with a metal layer of finite thickness, the characteristics of the channel plasmon polariton (CPP) and wedge plasmon polariton (WPP) modes for different metal-layer thicknesses are studied. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:52:28Z (GMT). No. of bitstreams: 1 ntu-99-R97941001-1.pdf: 11261453 bytes, checksum: a131b97defcdab7da9c10c1c22bea34b (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Numerical Methods for Waveguide Analysis . . . . . . . . . . . . . . 2 1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Mathematical Formulations and Related Techniques 5 2.1 Perfectly Matched Layers . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 The Finite Element Mode Solver . . . . . . . . . . . . . . . . . . . . 8 2.3 The Finite Element Beam Propagation Method . . . . . . . . . . . . 12 2.4 The Finite-Element Imaginary-Distance Beam Propagation Method . 15 3 Analysis of Rib and Slot Plasmonic Waveguides 24 3.1 Overview: Surface Plasmon Waveguides . . . . . . . . . . . . . . . . 24 3.2 Dielectric Function of the Free Electron Gas . . . . . . . . . . . . . . 25 3.3 Introduction to Surface Plasmon Polaritons . . . . . . . . . . . . . . 26 3.3.1 Field Expressions for the Surface Plasmon Polaritons . . . . . 26 3.3.2 Dispersion Relation for Surface Plasmon Polaritons . . . . . . 29 3.4 Silicon-based Hybrid Plasmonic Waveguides with a Metal Cap . . . . 29 3.4.1 The Waveguide Model . . . . . . . . . . . . . . . . . . . . . . 29 3.4.2 Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5 Metal-Dielectric Slot Waveguides . . . . . . . . . . . . . . . . . . . . 33 3.5.1 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.5.2 Analysis of Slot Waveguide with Different Structures . . . . . 34 4 Channel and Wedge Plasmon Modes of Metallic V-Grooves 72 4.1 V-shaped Waveguides: An Overview . . . . . . . . . . . . . . . . . . 72 4.2 V-Groove Waveguides with Infinite-Height Groove and Infinite-Thickness Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3 V-Groove Waveguides with Finite-Height Groove and Infinite-Thickness Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.4 V-Groove Waveguides with Finite-Height Groove and Finite-Thickness Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5 Conclusion 96 Bibliography 98 | |
| dc.language.iso | en | |
| dc.subject | V型波導 | zh_TW |
| dc.subject | 表面電漿子波導 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | 脊形波導 | zh_TW |
| dc.subject | 槽形波導 | zh_TW |
| dc.subject | surface plasmon waveguide | en |
| dc.subject | V-shaped waveguide | en |
| dc.subject | slot waveguide | en |
| dc.subject | rib waveguide | en |
| dc.subject | finite element method | en |
| dc.title | 以全向量虛軸有限元素波束傳播法分析脊形、槽形
與V形表面電漿子波導 | zh_TW |
| dc.title | Analysis of Rib, Slot, and V-Shaped Surface Plasmonic Waveguides Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江衍偉(Yean-Woei Kiang),吳宗霖(Tzong-Lin Wu) | |
| dc.subject.keyword | 表面電漿子波導,有限元素法,脊形波導,槽形波導,V型波導, | zh_TW |
| dc.subject.keyword | surface plasmon waveguide,finite element method,rib waveguide,slot waveguide,V-shaped waveguide, | en |
| dc.relation.page | 104 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-08 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
