請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44659完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐陽明(Ming Ouhyoung) | |
| dc.contributor.author | Yuan-Chen Ho | en |
| dc.contributor.author | 何元臣 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:52:27Z | - |
| dc.date.available | 2010-07-13 | |
| dc.date.copyright | 2010-07-13 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-08 | |
| dc.identifier.citation | [1] W. H. Kruskal, Ordinal measures of association. Journal of the American Statistical Association, 53(284): 814-861, 1958.
[2] R. O. Duda, , P. E. Hart, Use of the hough transformation to detect lines and curves in pictures. Communications of the ACM 15, 1 (1972), 11–15. [3] R. Chellappa, “Two-dimensional discrete Gaussian Markov random field models for image processing,” Pattern Recognition, Vol. 2, 1985, pp.79-112. [4] J. Canny, A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 6 (1986), 679–698. [5] B. S. Manjunath and W. Y. Ma, “Texture Features for Browsing and Retrieval of Image Data,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, No. 8, August 1996. [6] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell., 20(11):1254–1259, 1998. [7] R. Herbrich, T. Graepel, and K. Obermayer, Support vector learning for ordinal regression. In IEE Conference Publication, volume 1, pages 97–102. Citeseer, 1999. [8] A. E. Savakis, S. P. ETZ, A. C. Loui. Evaluation of image appeal in consumer photography. In Proceedings of SPIE, Human Vision and Electronic Imaging V (2000), vol. 3959, pp. 111–120. [9] C. C. Chang, C. J. Lin. LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm. [10] Y. Ro, M. Kim, H. Kang, B. Manjunath, and J. Kim. MPEG-7 homogeneous texture descriptor. ETRI journal, 23(2):41-51, 2001. [11] B. Suh, H. Ling, B. B. Bederson, and D. W. Jacobs. Automatic thumbnails cropping and its effectiveness. In Proceedings of the 2003 ACM Symposium on User Interface Software and Technology (2003), pp. 95-104. [12] H. Tong, M. Li, H. Zhang, J. He, and C. Zhang. Classification of digital photos taken by photographers or home users. Lecture Notes in Computer Science, pages 198{205, 2004. [13] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based image segmentation. International Journal of Computer Vision, 59(2):167-181, 2004. [14] C. G. M. Snoek, M. Worring, and A. W. M. Smeulders. Early versus late fusion in semantic video analysis. In MULTIMEDIA ’05: Proceedings of the 13th annual ACM International conference on Multimedia, pages 399-402, New York, NY, USA, 2005. ACM. [15] G. Sharma, W. Wu, and E. Dalal. The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations. Color research and application, 30(1):21-30, 2005. [16] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain. Content-based multimedia information retrieval: State of the art and challenges. In ACM TOMCCAP. 2(1):1-19, 2006 [17] D. Cohen-Or, O. Sorkine, R. Gal, T. Leyvand, and Y.-Q. Xu. Color harmonization. ACM Trans. Graph., 25(3):624-630, 2006. [18] A. Santella, M. Agrawala, D. DeCarlo, D. Salesin, and M. Cohen. Gazed-based interaction for semi-automatic photo cropping. In ACM CHI 2006 Conference Proceedings (2006), pp. 771-780. [19] R. Datta, D. Joshi, J. Li, and J. Z. Wang. Studying aesthetics in photographic images using a computational approach. In Proc. ECCV, pages 7-13, 2006. [20] Y. Ke, X. Tang, and F. Jing. The design of high-level features for photo quality assessment. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 1, pages 419- 426, June 2006. [21] S. Banerjee, and B. Evans. In-camera automation of photographic composition rules. IEEE Transactions on Image Processing 16, 7 (2007), 1807-1820 [22] J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. In B. Sch‥olkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 545–552. MIT Press, Cambridge, MA, 2007. [23] T. Liu, J. Sun, N. Zheng, X. Tang and H. Shum. Learning to Detect A Salient Object. CVPR 2007. [24] C. J. Hu, A Real-Time Skin-Color-Enhanced Face Detection Algorithm. Master’s thesis, National Taiwan University, 2007. [25] Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li. Learning to rank: from pairwise approach to listwise approach. In Proceedings of the 24th international conference on Machine learning, page 136. ACM, 2007. [26] J. Harel, C. Koch, and P. Perona, “Graph-based visual saliency,” in Advances in Neural Information Processing Systems 19, B. Sch‥olkopf, J. Platt, and T. Hoffman, Eds. Cambridge, MA: MIT Press, 2007. [27] Freeman, M., the Photographer’s eye: Composition and Design for Better Digital Photos. Ilex Press 2007 [28] R. Datta, J. Li, and J. Z. Wang . Algorithmic Inferencing of Aesthetics and Emotion in Natural Images: An Exposition, Proc. of IEEE International Conference on Image Processing, Special Session on Image Aesthetics, Mood and Emotion, 105-108, 2008. [29] Y. Yang and W. Hsu. Video search reranking via online ordinal reranking. In Proceedings of ICME, pages 285–288, 2008. [30] Y. Luo and X. Tang. Photo and video quality evaluation: Focusing on the subject. In ECCV '08: Proceedings of the 10th European Conference on Computer Vision, pages 386{399, Berlin, Heidelberg, 2008. Springer-Verlag. [31] J. San Pedro and S. Siersdorfer. Ranking and classifying attractiveness of photos in folksonomies. In WWW '09: Proceedings of the 18th international conference on World wide web, pages 771-780, New York, NY, USA, 2009. ACM. [32] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequency-tuned salient region detection. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1597-1604, june 2009. [33] M. Nishiyama, T. Okabe, Y. Sato, and I. Sato. Sensation-based photo cropping. In Multimedia ’09: Proceeding of 17th annual ACM international conference on Multimedia, pages 669-672, New York, NY, USA, 2009. ACM. [34] Y. Y. Chang, and H. T. Chen. Finding Good Composition in Panoramic Scenes. ICCV, 2009 [35] X. Sun, H. Yao, R. Ji, and S. Liu. Photo assessment based on computational visual attention model. In MM '09: Proceedings of the seventeen ACM international conference on Multimedia, pages 541-544, New York, NY, USA, 2009. ACM. [36] S. Wang, Q. Huang, S. Jiang, L. Qin and Q. Tin, Visual ContextRank for Web Image Re-ranking, ACM Multimedia 2009: 657-660. [37] L. Liu, R. Chen, L. Wolf, D. Cohen-Or, Optimizing photo composition. Computer Graphic Forum (Proceedings of Eurographics), 29(2), 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44659 | - |
| dc.description.abstract | 由於數位相機的普及造成個人持有的照片張數大幅上升。因此,過去逐張瀏覽挑選喜愛照片的方式已不符合需求。 除此之外並非所有使用者均熟悉如何評斷照片好壞的構圖規則,故依需要產生了一連串以照片好壞程度自動做出分類的研究。早期的研究主要多從影像處理的角度出發,以清晰度、亮度、飽和度等低階特徵爲主,但亦能得出令人滿意的結果 (Ke 2006, 72% accuracy, Datta 2006, 86% accuracy)。近來的研究加入了攝影師在拍照時使用的規則(三分法、明暗對比、淺景深)更進一步地提昇了預測的準確率 (Luo 2008, 95% accuracy)。然而過去的研究均使用同樣的研究流程:利用部分資料以機器學習的方式得出一具有預測能力的模型後再用剩下的資料驗證。這樣得出的模型雖然能夠有效的反映出大部分使用者的意見但也許未必能夠適用於單一的使用者。此外先前的研究的正確率大多著重於將照片分爲好與壞兩類而較少著墨於將照片依評分結果做出完整排列之先後順序。在加入使用者意見和探討排序結果之正確率的兩大前提下,我們建立了一套系統可供使用者結合專業的美學分析和個人風格的偏好即時得到重新排序後的結果。本系統可達到(1) 93% 好壞分類準確率 (2) 0.4054的 Kendall Tau 排序相關程度 (3) 92% 的使用者認爲系統重新排序後的結果優於原始排序結果 | zh_TW |
| dc.description.abstract | Due to the growing popularity and availability of digital camera, the number of photos owned by each user has increased dramatically. Consequently, manually selecting favorite photos becomes nearly impractical. Moreover, since most digital camera users may not be familiar with the photography rules used by professional photographers, a number of studies on automatic photo selection have been conducted. Most early researches use low-level features (clarity, brightness and saturation) and achieve reasonably good results in binary classification (Ke 2006, 72% accuracy, Datta 2006, 86% accuracy). Recent researches have combined high-level features formulated from photographers’ rules of photo composition with low-level features to produce a better result (Luo 2008, 95% accuracy). However, most of previous researches follow the same framework: training a predication model with some of the data and testing the model with the rest. The problem of this framework is that the prediction model may reflect the preference of a certain group of people but it may not agree with each individual user’s taste. Besides, previous works concentrate on the predication accuracy of binary classification, but we also want to examine the accuracy of ordering of the entire ranked list. Therefore, we create a system for users to combine a ranked photo list based on photography rules with their personal preferences to create more personalized results. Our system has been able to achieve (1) 93 % binary classification accuracy (2) 0.4054 Kendall Tau correlation rank (3) 92% satisfaction rate of personalized re-ranked list over original list. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:52:27Z (GMT). No. of bitstreams: 1 ntu-99-R97944025-1.pdf: 4157786 bytes, checksum: 38bc0e73a92694131c335a85e73e7c9d (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Chapter 1 1 Chapter 2 3 2.1 Binary Photo Classification 3 2.2 Automatic image cropping 4 2.3 Re-ranking 5 Chapter 3 7 3.1 Overview 7 3.2 Saliency Map Detector 9 3.3 Line Pattern Detector 12 3.4 Personalization 13 3.5 User Interface 14 Chapter 4 17 4.1 Photo Composition 18 4.1.1 Rule of Thirds 18 4.1.2 Size of ROI 20 4.1.3 Line patterns 21 4.1.4 Aspect ratio 22 4.1.5 ROI mass center 23 4.1.6 Simplicity 23 4.2 Color and Intensity Distribution 24 4.2.1 Clarity 24 4.2.2 Color harmony 25 4.2.3 Intensity balance 26 4.2.4 Contrast 27 4.3 Texture 28 4.4 Personalized features 31 4.4.1 Intensity and Saturation 31 4.4.2 Average RGB 32 4.4.3 Black-and-white photo detection 33 Chapter 5 36 5.1 Prediction Accuracy 36 5.2 Ranking 39 5.3 Other experiments 40 5.4 User Study 40 5.5 More Results 42 Chapter 6 47 Bibliography 49 Appendix 55 A. Color Difference Equation (CIE 2000) 55 | |
| dc.language.iso | en | |
| dc.subject | 照片構圖 | zh_TW |
| dc.subject | 照片排序 | zh_TW |
| dc.subject | 個人化 | zh_TW |
| dc.subject | 美學規則 | zh_TW |
| dc.subject | Photo composition | en |
| dc.subject | Personalized ranking | en |
| dc.subject | Photo ranking | en |
| dc.subject | Aesthetic Rules. | en |
| dc.title | 一套個人化之照片排序系統 | zh_TW |
| dc.title | A Novel Personalized Ranking System for Amateur Photos | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐宏民(Hung-Ming Hsu),梁容輝(Rung-Huei Liang) | |
| dc.subject.keyword | 照片排序,個人化,照片構圖,美學規則, | zh_TW |
| dc.subject.keyword | Photo ranking,Personalized ranking,Photo composition,Aesthetic Rules., | en |
| dc.relation.page | 56 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-08 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
