請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44654完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李枝宏 | |
| dc.contributor.author | Yi-Lin Shieh | en |
| dc.contributor.author | 謝易霖 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:52:22Z | - |
| dc.date.available | 2010-07-16 | |
| dc.date.copyright | 2010-07-16 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-08 | |
| dc.identifier.citation | [1] J.S. Lim, Two-dimensional signal and image processing, Englewood Cliffs, NJ: Prentice-Hall, 1990
[2] J.R. Boddie, ”Digital Signal Processor Overview: the device, support facilities and applications,” Bell system Tech. J., pp. 1431-1439, 1981. [3] J. G. Proakis, Digital Communications. McGraw-Hill International Editions, Fourth Edition, 2001. [4] M.D. Carte and O. Cerofolini, ”Application of a digital filters to biomedical signals,” Med. Biol. Eng., pp. 374-377, 1974 [5] J. W. Woods and S. D. O'Neil, 'Subband coding of images,' IEEE. Trans. Acoust. Speech Signal Processing, vol. ASSP-34, pp. 1278-1288, Oct. 1986. [6] M.G. Bellanger and J.L. Daguet, “TDM-FDM transmultiplexer: digital polyphase and FFT,” IEEE Trans. Commun., Vol. COM-22, pp. 1199-1205, Sept. 1974 [7] P. Vary and U. Heute, “A short-time spectrum analyzer with polyphase network and DFT,” Signal Processing, vol. 2, pp. 55-65, 1980. [8] Y. C. Lim, J.-H. Lee, Charng-Kann Chen, and R. H. Yang, “A weighted least squares algorithm for quasi-equiripple FIR and IIR digital filter design,” IEEE Trans. Signal Processing, vol. ASSP-40, pp. 551-558, Mar. 1992. [9] J.A. Nelder and R. Mead, “Combined LP and Quasi-Newton methods for minimax optimization”, Math. Programming, pp. 49-62, 1981 [10] Osborne, M.R., and Watson, G.A. “An algorithm for minimax approximation in the nonlinear case,” Comput. J., vol. 12, pp. 63-68, 1969 [11] P.P. Vaidyanathan, Multirate Systems and Filter Banks, Englewood Cliffs, NJ: Prentice-Hall, 1993. [12] M. Ikehara, M. Funaishi, and H. Kuroda, “Design of complex all-pass networks using Remez algorithm,” IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 39, no. 8, pp. 549-556, Aug. 1992. [13] S.-C. Pei and J.-J. Shyu, “Eigenfilter design of 1-D and 2-D IIR digital all-pass filters,” IEEE Trans. Signal Processing, vol. 42, no. 4, pp. 966-968, Apr. 1994. [14] D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal Processing, Englewood Cliffs, NJ: Prentice Hall, 1984. [15] Y.-H. Yang and J.-H. Lee, “Design of 2-D Recursive Digital Filters Using Nonsymmetric Half-Plane Allpass Filters,” IEEE Transactions on Signal Processing, vol. 55, no. 12, Dec. 2007 [16] J.-H. Lee and Y.-H. Yang, “Design of two-channel linear-phase QMF banks based on real IIR allpass filters,” IEE Proc. - Vision, Image and Signal Processing, vol. 150, no. 5, pp. 331-338, Oct. 2003. [17] X. Zhang, T. Muguruma and T. Yoshikawa, “Design of Orthonormal Symmetric Wavelet Filters using Real Allpass Filters,” Signal Processing, vol. 80, no. 8, pp. 1551-1559 , Aug. 2000 [18] X. Zhang, T. Yoshikawa, ” Design of orthonormal IIR wavelet filter banks using allpass filters,” Signal Processing, vol. 78, no. 2, pp. 91-100, Oct. 1999. [19] J. Kovacevic and M. Vetterli, 'Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for Rn,' IEEE Transactions on Information Theory, vol. 38, no. 2, pp. 533-555, 1992 [20] Ju-Hong Lee and Y.-H. Yang, “Two-Channel Parallelogram QMF Banks Using 2-D NSHP Digital Allpass Filters,” IEEE Transactions on Circuits and Systems I, pp. 1-11, 2010 [21] Y.-H. Yang and J.-H. Lee, “Design of 2-D Recursive Digital Filters Using Nonsymmetric Half-Plane Allpass Filters,” IEEE Transactions on Signal Processing, vol. 55, no. 12, pp. 5604-5618, Dec. 2007 [22] H. Yasuoka and M. Ikehara, “A recursive orthogonal wavelet device,” Electron. Commun. Jpn., Part 3, vol. 77, no. 11, pp. 91-101, Sept. 1994 [23] Ju-Hong Lee and Y.-H. Yang, “Two-Channel Quincunx QMF Banks Using Two-Dimensional Digital Allpass Filters,” IEEE Transactions on Circuits and Systems I, pp. 2644-2654, Dec. 2009 [24] T. Chen and P. P. Vaidyanathan, 'Multidimensional multirate filters and filter banks derived from one-dimensional filters,' IEEE Transactions on Signal Processing, vol. 41, no. 5, pp. 1749-1765, May. 1993. [25] H. Toyoshima, M. Ikehara, and S. Takahashi, “A new class of 2-D digital filters composed of allpass subfilters,” European Conference on Circuit Theory and Design, Brighton, UK, pp. 420-424, 5-8 Sept. 1989. [26] T. T. Nguyen and S. Oraintara, 'A class of multiresolution directional filter bank,' IEEE Trans. Signal Process., vol. 55, no. 3, pp. 949-961, Mar. 2007. [27] LAWSON, C., ”Contribution, to the theory of linear least maximum approximation.“ Ph.D. Thesis, University California, Los Angeles, 1961 [28] Richardson, E. and Jayant, N., “Subband coding with adaptive prediction for 56 kbits/s audio,” IEEE Trans. Acous., Speech and Signal Processing, vol. 34, pp. 691-696, 1986 [29] Smith, M.J.T. and Eddins, S.L., “Analysis/synthesis techniques for subband image coding,” IEEE Trans. Acous., Speech and Signal Processing, vol. 38, pp. 1446-1456, 1990. [30] Koilpillai, R.D. and Vaidyanathan, P.P., 'A new approach to the design of FIR perfect reconstruction QMF banks,' IEEE Circuits and Systems, pp. 125-128, 1990. [31] Ouvrard, V. and Siohan, P.,”Design of two-dimensional non-separable QMF banks, ' IEEE Acous., Speech, and Signal Processing, pp. 645-648, 1992. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44654 | - |
| dc.description.abstract | 傳統設計正交鏡像濾波器組(Quadrature Mirror Filter bank,簡稱QMF)時,不論是一維或二維濾波器組,採用的皆是線性相位有限脈衝響應(linear-phase Finite Impulse Response,簡稱LP-FIR),這種結構雖然可以完全消除相位失真,但卻有兩大缺點:振幅失真的部分無法完全消除、很難設計陡峭的頻帶邊緣。有鑑於此,文獻上出現了使用IIR全通濾波器(Allpass Filter)作為設計QMF的架構,在論文中我們將介紹這種結構的優點。
在這種結構下,濾波器的設計問題變成了高度非線性最佳化問題,在以往提出的設計方法中,最常見的方式是個別對全通濾波器的相位做最佳化近似,然而這種設計方法卻造成了濾波器組之相位響應在轉態區上有極大的誤差,一般使用相位補償器來解決相位響應之誤差,卻增加了整個系統的延遲。 本篇論文最主要是要探討轉態區上相位響應之誤差的形成原因,提出其解決方法,並在實例設計中,將會指出新的設計方式較以往提出的方式之優點。此外,我們會提出以基於一維全通濾波器建構二維QMF之設計方式,研究成果在於能以更少的濾波器係數設計出較已有之結構更佳的設計結果。 | zh_TW |
| dc.description.abstract | Traditionally, we use linear-phase FIR filter to design the one-dimensional or two-dimensional Quadrature Mirror filter banks(QMF). Although the phase distortion is completely eliminated; this structure has at least two disadvantages: first, it can’t eliminate the amplitude distortion completely, and second, it is hard to obtain a design with sharp band edges. To solve this problem, several papers propose to use the IIR allpass filters to construct an QMF. In this thesis, we will discuss the advantages of QMF constructed by the IIR allpass filters.
Filter design problems become a highly non-linear optimization problem in such a structure with IIR filters. Recently, several methods were proposed to design an QMF, and they consider the phase approximation for each allpass filter. However, this design scheme causes larger phase response error in the transition band. As a result, phase compensation is usually used to reduce the phase error with the price of the system delay increased. In this paper, we mainly : I. investigate the cause of phase error in transition band II. solve it by proposing a new design method III. show the advantage of using the method in simulation examples. Besides, we propose a method to design two-dimensional QMF by using one-dimensional allpass filter. This method provides better results with less filter coefficients. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:52:22Z (GMT). No. of bitstreams: 1 ntu-99-R97942105-1.pdf: 7632969 bytes, checksum: cf8068e35682356b45c08a12dccbf4f2 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii 英文摘要 iii 第一章 序論 1 1.1 研究動機 1 1.2 論文組織架構 2 第二章 最佳化問題與演算法 3 2.1 簡介數位濾波器設計與最佳化問題 3 2.2 線性最佳化問題與基於L∞準則的WLS演算法 4 2.3 非線性最佳化問題與線搜尋法 6 2.4 特別的目標函數型態求解方式 8 第三章 正交鏡像濾波器組以及全通濾波器的基本概念 11 3.1 簡介一維複速率系統 11 3.2 一維正交鏡像濾波器組的架構與分析 14 3.3 簡介二維複速率系統 15 3.4 二維正交鏡像濾波器組的架構與分析 18 3.5 實係數IIR一維全通濾波器 20 3.6 實係數IIR二維全通濾波器 21 第四章 一維正交鏡像濾波器組之設計 23 4.1 基於實係數IIR全通濾波器構成之正交鏡像濾波器組的架構與分析 23 4.2 基於實係數IIR全通濾波器構成之正交鏡像濾波器組的設計 26 4.3 設計實例與結果討論 32 第五章 二維正交鏡像濾波器組之設計 - 平行四邊形 53 5.1 簡介 53 5.2 具平行四邊形之二維正交鏡像濾波器組的架構 53 5.3 具平行四邊形之二維正交鏡像濾波器組的分析 56 5.4 具平行四邊形之二維正交鏡像濾波器組的設計 58 5.5 實例設計與結果討論 66 第六章 二維正交鏡像濾波器組之設計 - 鑽石形 99 6.1 簡介 99 6.2 具鑽石形之二維正交鏡像濾波器組的架構與分析 99 6.3 具鑽石形之二維正交鏡像濾波器組的設計 103 6.4 實例設計與結果討論 112 第七章二維正交鏡像濾波器組之設計 - 使用一維全通濾波器 139 7.1 簡介 139 7.2 使用一維全通濾波器建構二維正交鏡像濾波器組 140 7.3 實例設計與結果討論 144 第八章 結論 161 附錄 162 附錄A1 一維全通濾波器(第四章)穩定情況之推導過程 162 附錄A2 二維全通濾波器(第五章)穩定情況之推導過程 165 附錄A3 二維全通濾波器(第六章)穩定情況之推導過程 169 參考文獻 175 | |
| dc.language.iso | zh-TW | |
| dc.subject | 非線性最佳化問題 | zh_TW |
| dc.subject | 多速率系統 | zh_TW |
| dc.subject | 全通濾波器 | zh_TW |
| dc.subject | 正交鏡像濾波器 | zh_TW |
| dc.subject | 正交小波轉換 | zh_TW |
| dc.subject | orthonormal wavelet transform | en |
| dc.subject | multirate system | en |
| dc.subject | non-linear optimization problem | en |
| dc.subject | allpass filter | en |
| dc.subject | Quadrature Mirror Filter bank | en |
| dc.title | 一維及二維小波濾波器組之設計 | zh_TW |
| dc.title | Design of One-dimensional and Two-dimensional Wavelet Filter Banks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 貝蘇章,馮世邁,曾建誠 | |
| dc.subject.keyword | 多速率系統,非線性最佳化問題,全通濾波器,正交鏡像濾波器,正交小波轉換, | zh_TW |
| dc.subject.keyword | multirate system,non-linear optimization problem,allpass filter,Quadrature Mirror Filter bank,orthonormal wavelet transform, | en |
| dc.relation.page | 177 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-08 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 7.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
