Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44647
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor貝蘇章
dc.contributor.authorYi-Ching Wuen
dc.contributor.author吳怡璟zh_TW
dc.date.accessioned2021-06-15T03:52:15Z-
dc.date.available2011-07-22
dc.date.copyright2010-07-22
dc.date.issued2010
dc.date.submitted2010-07-08
dc.identifier.citation[1] Zhou Wang, Bovik, A.C, “Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures,” IEEE Signal Processing Magazine, vol.26, no.1, pp. 98-117, 2009.
[2] R. C. Gonzalez, R. E. Woods, Digital Image Processing second edition, Prentice Hall, 2002
[3] X. Zhang, W. S. Lin, and P. Xue, “Improved estimation for just-noticeable visual distortion,” IEEE trans. , Signal Processing, vol. 85, pp. 795–808, 2005.
[4] X. Zhang, W. S. Lin, and P. Xue, “Just-noticeable difference estimation with pixels in images,” Journal of Visual Communication and Image Representation, vol.19, no. 1, pp. 30-41, January 2008.
[5] Zhenyu Wei, Ngan, K.N., “Spatio-Temporal Just Noticeable Distortion Profile for Grey Scale Image/Video in DCT Domain,” IEEE trans , Circuits and Systems for Video Technology, vol. 19, pp337-346, 2009.
[6] Nick Kingsbury,” image processing with complex wavelet”, Phil. Trans. Royal Society London A, 357:2543--2560, September 1999
[7] Nick Kingsbury, “Complex Wavelets for Shift Invariant Analysis and Filtering of Signals”, Journal of Applied and Computational Harmonic Analysis, Vol. 10, no. 3, pp. 234-253,May 2001
[8] J. M. Francos, A. Zvi Meiri, and B. Porat, “A unified texture model based on a 2-D Wold-like decomposition,” IEEE Trans. Signal. Processing, vol. 41, pp. 2665-2678, August 1993.
[9] J. M. Francos, A. Narasimhan, and J. W. Woods, “Maximum likelihood parameter estimation of discrete homogeneous random fields with mixed spectral distributions,” IEEE trans. Signal Processing, vol. 44, no. 5, pp. 1242-1255, May 1996.
[10] Liu and R. W. Picard, “periodicity, directionality, and randomness: Wold features for image modeling and retrieval,” IEEE Trans. Pat. Analysis and Machine Intelligence, vol. 18, pp.722-733, July 1996.
[11] Fang Liu, Picard, R.W., “A spectral 2-D Wold decomposition algorithm for homogeneous random fields,” IEEE International Conference, ICASSP, vol. 6, pp. 3501-3504, 1999
[12] M. Miyahara, K. Kotani, and V. R. Algazi, “Objective Picture Quality Scale (PQS) for image coding,” IEEE Trans. Communications, vol. 46, no. 9, pp. 1215–1225, Sept. 1998.
[13] D. V. Weken, M. Nachtegael, and E. E. Kerre, “Using similarity measures and homogeneity for the comparison of images,” Image and Vision Computing, vol. 22, pp. 695–702, 2004.
[14] A. Shnayderman, A. Gusev, and A. M. Eskicioglu, “An SVD-based grayscale image quality measure for local and global assessment,” IEEE Trans. Image Processing, vol. 15, no. 2, pp. 422-429, Feb. 2006.
[15] Ho-Sung Han, Dong-O Kim, Rae-Hong Park, “Structural Information-Based Image Quality Assessment Using LU Factorization,” IEEE Trans. Consumer Electronics, vol.55, pp. 165-171, 2009
[16] H. R. Sheikh, A. C. Bovik, and G. de Veciana, “An information fidelity criterion for image quality assessment using natural scene statistics,” IEEE Trans. Image Processing, vol.14, pp. 2117-2128, Mar. 2004
[17] H. R. Sheikh and A. C. Bovik, “Image information and visual quality,” IEEE Trans. Image Processing, vol. 15, pp. 430-444, Dec. 2003
[18] David M. Rouse and Sheila S. Hemami, 'Natural Image Utility Assessment Using Image Contours,' IEEE International Conference of Image Processing (ICIP), November 2009.
[19] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Processing, vol. 13, no. 4, pp. 600–612, Apr. 2004
[20 ] Guan-Hao Chen, Chun-Ling Yang, Sheng-Li Xie, “Gradientbased Structural Similarity for Image Quality Assessment”, in Proc, IEEE Int. Conf. Image Proc, pp. 2929-2932, Oct2006
[21] C. Li and A. C. Bovik, 'Three-Component Weighted Structural Similarity Index', SPIE Conference on Image Quality and System Performance, January, 2009
[22] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multi-scale structural similarity for mage quality assessment,” in Proc. IEEE. Asilomar Conf. on Signals, Systems, and Computers, pp. 1398-1402, Nov. 2003.
[23] Chun-Ling Yang; Wen-Rui Gao; Lai-Man Po, “Discrete wavelet transform-based structural similarity for image quality assessment,” IEEE International Conference of Image Processing (ICIP), pp. 377-380, 2008
[24] Wang and E. P. Simonceclli, “Translation insensitive image similarity in complex wavelet domain,” IEEE International Conference on Acoustics, Speech and Signal Processing .vol. 2, pp. 573–576, Mar, 2005.
[25] J. Portilla and E. P. Simoncelli, “A parametric texture model based on joint statistics of complex wavelet coefficients,” Int’l J Computer Vision, vol. 40, pp. 49–71, 2000.
[26] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J.Heeger, “Shiftable multi-scale transforms,” IEEE Trans Information Theory, vol. 38, pp. 587–607, Mar 1992.
[27] L. Itti, C. Koch, E. Niebur, et al, “A Model of Saliency-Based Visual Attention for Rapid Scene Analysis.” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.1254-1259, 1998
[28] D. Walther and C. Koch, “Modeling attention to salient proto-objects,” Neural Networks, pp. 1395-1107, 2006
[29] X. Hou and L. Zhang, “Saliency Detection: A Spectral Residual Approach,” IEEE Conf. CVPR, pp. 1-8, 2007.
[30] Qi Ma and Liming Zhang, “Image quality assessment with visual attention,” International Conference on Pattern Recognition (ICPR), pp.1-4, 2008
[31] Yunyu Shi, Youdong Ding, Ranran Zhang, and Jun Li, “Structure and Hue Similarity for Color Image Quality Assessment,” International Conference Electronic Computer Technology (ICECT), pp. 329-333, 2009
[32] H.R. Sheikh, M.F. Sabir, and A.C. Bovik, “A statistical evaluation of recent full reference image quality assessment algorithms,” IEEE Trans. Image Processing, vol. 15, no. 11, pp. 3449–3451, Nov. 2006.
[33] S.S. Channappayya, A.C. Bovik, C. Caramanis and R.W. Heath Jr., 'SSIM-optimal linear image restoration,' IEEE International Conference on Acoustics, Speech, and Signal Processing, March 30-04, 2008
[34] S.S. Channappayya, A.C. Bovik, C. Caramanis, and R.W. Heath, “Design of linearequalizers optimized for the structural similarity index,” IEEE Trans. Image Process., vol. 17, no. 6, pp. 857–872, June 2008.
[35] Z. Wang, Q. Li, and X. Shang, “Perceptual image coding based on a maximum of minimal structural similarity criterion,” IEEE Int. Conf. Image Processing, vol. 2, pp. 121–124, Sept., 2007
[36] S. Gupta, M.P. Sampat, Z. Wang, M.K. Markey, and A.C. Bovik, “Facial range image matching using the complex wavelet structural similarity metric,” IEEE Workshop, Applications of Computer Vision, 2007.
[37] WEBVISION: The Organization of the Retina and Visual System:
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=webvision&part=ch22color&rendertype=figure&id=ch22color.F6
[38] Color Principles:
http://www.ncsu.edu/scivis/lessons/colormodels/color_models2.html
[39] SARNOFF Corporation: Video Clarity and Sarnoff Form Alliance to Enhance Video Quality Analysis
http://www.sarnoff.com/press-room/news/2007/09/20/video-clarity-and-sarnoff-form-alliance-to-enhance-video-quality-analysis
[40] VQEG: The Video Quality Experts Group, “Final report from the video quality experts group on the validation of objective models of video quality assessment,”
http://www.vqeg.org/
[41] Sheikh, H.R., Wang, Z., Cormack, L. and Bovik, A.C., “LIVE Image Quality Assessment Database Release 2”, 2005
http://live.ece.utexas.edu/research/quality
[42] The SSIM Index for Image Quality Assessment:
http://www.ece.uwaterloo.ca/~z70wang/research/ssim/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44647-
dc.description.abstract如何探討影像的品質是影像處理中很重要的一件事。最近許多研究如何客觀計算出影像品質的演算法一一的被提出。傳統的MSE或PSNR是以兩張圖片絕對的差異為基礎去計算品質,計算出來的結果常常和人眼主觀的評價不同。因此,以人類視覺系統(HVS)為基礎的影像品質評估法漸漸取代了它。
我們介紹了基於結構相似性為基礎的影像品質評估法-SSIM 。根據原本的圖片還有失真的圖片之間結構所提供的資訊對於人眼的相似度,我們計算出了失真圖片的品質。SSIM相對於PSNR或MSE明顯的比較接近人類主觀評價的結果。許多以SSIM為基礎的改進法也一一的被提出,這些改進的方法考慮了更多人眼的特徵或者把單解析度的SSIM發展到多解析度的SSIM,這些改進法提供了更精準且更彈性的結果。
我們生活在一個色彩繽紛的世界中,大部分看到的圖片或影片也都是彩色的。然而,大部分的影響品質評估法卻都是實施在黑白圖片上。彩色也是一個很重要的特徵,所以我們提出了一個影像品質評估法來處理彩色的圖片。加入了顏色的特徵後,我們可以看到我們提出的演算法表現的比原本的更接近人眼的主觀感覺。我相信發展出了一個接近人眼的影像品質評估法,對於應用在影像處理上,會非常有幫助。
zh_TW
dc.description.abstractImage quality assessment (IQA) plays an important role in various image processing applications. In recent years, the research of objective image quality metrics has been developed widely. Human Visual System (HVS) based image quality assessments take the place of simple methods based on absolute difference between pixels of two images (such as MSE and PSNR). In other words, we hope that result of objective evaluation is consistent with human subjective opinion.
We introduce Structural SIMilarity (SSIM) based full-reference image quality measurement. The score of SSIM depends on perceptual similarity of structural information between reference image and distorted image. SSIM has better performance than PSNR (or MSE). Many improved methods based on SSIM are proposed one by one. For example, those methods consider the human emphatic features. Multi-scale SSIM provides more flexibility than single-scale SSIM. Those improved algorithms provide better performance than original SSIM.
Most image quality assessments are applied in gray-level images. However, color image is widely used in recent years. Color is also an important feature of an image. It is necessary to develop image quality assessment to perform in color image. We propose an improved color image quality algorithm to deal with color images. In our simulation, we can see the better result of algorithm after considering color feature of image. The result after adding our proposed algorithm is more consistent with human subjective perception than original algorithm.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:52:15Z (GMT). No. of bitstreams: 1
ntu-99-R97942092-1.pdf: 4035339 bytes, checksum: 5d8fa3da0ac857c5bc666af5b27dae33 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT v
CONTENTS vii
LIST OF FIGURES xi
LIST OF TABLES xv
Chapter 1 Introduction 1
1.1 Image Quality Assessment Classification 1
1.1.1 Full-Reference (FR) 1
1.1.2 No-Reference (NR) 2
1.1.3 Reduced-Reference (RR) 2
1.2 Full-Reference Image Quality Assessment 2
Chapter 2 Image Similarity Analysis Based on Human Visual System (HVS) and Information of Image 7
2.1 Human Visual Perception 7
2.1.1 Introduction of Human Eye 7
2.1.2 Just Noticeable Difference (JND) 11
2.2 Image Information Analysis 14
2.2.1 Wavelet 14
2.2.2 Image Decomposition: SVD and WOLD Decomposition 17
2.2.3 Image Quality Assessment Algorithm 20
2.3 Image Quality Assessment Based on Structural Similarity 21
2.3.1 Structural SIMilarity (SSIM) Index 21
2.3.2 Example of SSIM 24
Chapter 3 Improved SSIM Algorithm 29
3.1 Gradient-based Structural Similarity (GSSIM) 29
3.1.1 Introduction 29
3.1.2 Gradient-based Structural Similarity Algorithm 30
3.2 Three-SSIM 33
3.2.1 Three-components of An Image 33
3.2.2 Three Component Structural Similarity Algorithm (3-SSIM) 35
3.3 Multi-scale SSIM 36
3.4 Wavelet SSIM 40
3.4.1 Discrete Wavelet SSIM 40
3.4.2 Complex Wavelet SSIM 42
3.5 Saliency-Map Based SSIM 47
3.5.1 Saliency-Map 47
3.5.2 Attention-SSIM 51
Chapter 4 Color Image Similarity Assessment 55
4.1 Introduction 55
4.2 HSV and HIS Color Model 55
4.3 Hue-SSIM 60
4.4 Improved Color-SSIM 62
Chapter 5 Simulation Comparisons and Applications 69
5.1 Introduction 69
5.2 Simulation Result Comparisons 72
5.3 Applications 78
Chapter 6 Conclusions and Future work 81
REFERENCE 83
APPENDIX 89
dc.language.isoen
dc.title基於結構相似度之改良式彩色影像品質評估法zh_TW
dc.titleImproved Color Image Quality Assessment Based on Structural Similarityen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鍾國亮,林康平,張豫虎
dc.subject.keyword影像品質評估法,人類視覺系統,感知品質,影像分析,架構相似度,彩色影像,zh_TW
dc.subject.keywordimage quality assessment (IQA),human visual system (HVS),perceptual quality,structural similarity (SSIM),image analysis,color image,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2010-07-09
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
3.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved