請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44641完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊曜宇(Eric Yao-Yu Chuang) | |
| dc.contributor.author | Hsin-Ying Lin | en |
| dc.contributor.author | 林欣穎 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:52:10Z | - |
| dc.date.available | 2015-07-15 | |
| dc.date.copyright | 2010-07-15 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-09 | |
| dc.identifier.citation | 1. Chistiakov, D.A., Voronova, N.V. and Chistiakov, P.A. (2008) Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients. Acta Oncol., 47, 809-824.
2. Iliakis, G., Wang, Y., Guan, J. and Wang, H. (2003) DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene, 22, 5834-5847. 3. Fei, P., Bernhard, E.J. and El-Deiry, W.S. (2002) Tissue-specific induction of p53 targets in vivo. Cancer Res., 62, 7316-7327. 4. American Cancer Society (2003). Chapter 85: neoplasms of the eye. Cancer Medicine, Hamilton, Ontario: BC Decker Inc. ISBN 1–55009–213–8. 5. Abramson, D. (1990) Retinoblastoma incidence in the United States. Arch Ophthalmol. , 108, 128-132. 6. Shields, C. and Shields, J. (2004) Diagnosis and management of retinoblastoma. Cancer Control, 11, 317-327. 7. Lin, P. and O'Brien, J. (2009) Frontiers in the management of retinoblastoma. Am. J. Ophthalmol., 148, 192-198. 8. Chuang, E.Y., Chen, X., Tsai, M.-H., Yan, H., Li, C.-Y., Mitchell, J.B., Nagasawa, H., Wilson, P.F., Peng, Y., Fitzek, M.M. et al. (2006) Abnormal gene expression profiles in unaffected parents of patients with hereditary-type retinoblastoma. Cancer Res., 66, 3428-3433. 9. Fitzek, M.M., Dahlberg, W.K., Nagasawa, H., Mukai, S., Munzenrider, J.E. and Little, J.B. (2002) Unexpected sensitivity to radiation of fibroblasts from unaffected parents of children with hereditary retinoblastoma. Int. J. Cancer, 99, 764-768. 10. Yeung, A.H., Sughrue, M.E., Kane, A.J., Tihan, T., Cheung, S.W. and Parsa, A.T. (2009) Radiobiology of vestibular schwannomas: mechanisms of radioresistance and potential targets for therapeutic sensitization. Neurosurg FOCUS, 27, E2. 11. Pawlik, T.M. and Keyomarsi, K. (2004) Role of cell cycle in mediating sensitivity to radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 59, 928-942. 12. Samuel, T., Weber, H. and Funk, J. (2002) Linking DNA damage to cell cycle checkpoints. Cell Cycle, 1, 162-168. 13. Valentinis, B. and Baserga, R. (2001) IGF-I receptor signalling in transformation and differentiation. Mol. Pathol., 54, 133 - 137. 14. Beattie, J., Allan, G., Lochrie, J. and Flint, D. (2006) Insulin-like growth factor-binding protein-5 (IGFBP-5): a critical member of the IGF axis. Biochem. J., 395, 1 - 19. 15. Allan, G., Flint, D. and Patel, K. (2001) Insulin-like growth factor axis during embryonic development. Reproduction, 122, 31-39. 16. Isgaard, J., Tivesten, Å., Friberg, P. and Bengtsson, B.Å. (1999) The role of the GH/IGF-I axis for cardiac function and structure. Horm. Metab. Res., 31, 50-54. 17. Gooch, J.L., Van Den Berg, C.L. and Yee, D. (1999) Insulin‐like growth factor (IGF)‐I rescues breast cancer cells from chemotherapy‐induced cell death – proliferative and anti‐apoptotic effects. Breast Cancer Res. Treat., 56, 1-10. 18. Nickerson, T., Chang, F., Lorimer, D., Smeekens, S.P., Sawyers, C.L. and Pollak, M. (2001) In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR). Cancer Res., 61, 6276-6280. 19. Hellawell, G.O., Turner, G.D.H., Davies, D.R., Poulsom, R., Brewster, S.F. and Macaulay, V.M. (2002) Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Res., 62, 2942-2950. 20. Quinn, K.A., Treston, A.M., Unsworth, E.J., Miller, M.-J., Vos, M., Grimley, C., Battey, J., Mulshine, J.L. and Cuttitta, F. (1996) Insulin-like growth factor expression in human cancer cell lines. J. Biol. Chem., 271, 11477-11483. 21. Hwa, V., Oh, Y. and Rosenfeld, R. (1999) The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr. Rev., 20, 761 - 787. 22. Jones, J. and Clemmons, D. (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr. Rev., 16, 3 - 34. 23. Booth, B., Boes, M., Andress, D., Dake, B., Kiefer, M., Maack, C., Linhardt, R., Bar, K., Caldwell, E. and Weiler, J. (1995) IGFBP-3 and IGFBP-5 association with endothelial cells: role of C-terminal heparin binding domain. Growth Regul., 5, 1-17. 24. Parker, A., Clarke, J.B., Busby, W.H. and Clemmons, D.R. (1996) Identification of the extracellular matrix binding sites for insulin-like growth factor-binding protein 5. J. Biol. Chem., 271, 13523-13529. 25. Arai, T., Parker, A., Busby, W. and Clemmons, D. (1994) Heparin, heparan sulfate, and dermatan sulfate regulate formation of the insulin-like growth factor-I and insulin-like growth factor-binding protein complexes. J. Biol. Chem., 269, 20388 - 20393. 26. Camacho-Hubner, C., Busby, W.H., McCusker, R.H., Wright, G. and Clemmons, D.R. (1992) Identification of the forms of insulin-like growth factor-binding proteins produced by human fibroblasts and the mechanisms that regulate their secretion. J. Biol. Chem., 267, 11949-11956. 27. Firth, S. and Baxter, R. (2002) Cellular actions of the insulin-like growth factor binding proteins. Endocr. Rev., 23, 824 - 854. 28. Akkiprik, M., Feng, Y., Wang, H., Chen, K., Hu, L., Sahin, A., Krishnamurthy, S., Ozer, A., Hao, X. and Zhang, W. (2008) Multifunctional roles of insulin-like growth factor binding protein 5 in breast cancer. Breast Cancer Res., 10, 212. 29. Cobb, L.J., Salih, D.A.M., Gonzalez, I., Tripathi, G., Carter, E.J., Lovett, F., Holding, C. and Pell, J.M. (2004) Partitioning of IGFBP-5 actions in myogenesis: IGF-independent anti-apoptotic function. J. Cell. Sci., 117, 1737-1746. 30. Pekonen, F., Nyman, T., Ilvesmaki, V. and Partanen, S. (1992) Insulin-like growth factor binding proteins in human breast cancer tissue. Cancer Res., 52, 5204 - 5207. 31. Conover, C., Perry, J. and Tindall, D. (1995) Endogenous cathepsin D-mediated hydrolysis of insulin-like growth factor-binding proteins in cultured human prostatic carcinoma cells. J. Clin. Endocrinol. Metab., 80, 987 - 993. 32. Kimura, G., Kasuya, J., Giannini, S., Honda, Y., Mohan, S., Kawachi, M., Akimoto, M. and Fujita-Yamaguchi, Y. (1996) Insulin-like growth factor (IGF) system components in human prostatic cancer cell-lines: LNCaP, DU145, and PC-3 cells. Int. J. Urol., 39–46. 33. Stolf, B., Carvalho, A., Martins, W., Runza, F., Brun, M., Hirata, R., Jordao Neves, E., Soares, F., Postigo-Dias, J., Kowalski, L. et al. (2003) Differential expression of IGFBP-5 and two human ESTs in thyroid glands with goiter, adenoma and papillary or follicular carcinomas. Cancer Lett., 191, 193-202. 34. Kim, K.S., Seu, Y.B., Baek, S.-H., Kim, M.J., Kim, K.J., Kim, J.H. and Kim, J.-R. (2007) Induction of cellular senescence by insulin-like growth factor binding protein-5 through a p53-dependent mechanism. Mol. Biol. Cell, 18, 4543-4552. 35. Butt, A., Dickson, K., McDougall, F. and Baxter, R. (2003) Insulin-like growth factor binding protein-5 inhibits the growth of human breast cancer cells in vitro and in vivo. J. Biol. Chem., 278, 29676 - 29685. 36. Schneider, M., Wolf, E., Hoeflich, A. and Lahm, H. (2002) IGF-binding protein-5: flexible player in the IGF system and effector on its own. J. Endocrinol., 172, 423-440. 37. Yoon, I.K., Kim, H.K., Kim, Y.K., Song, I.-H., Kim, W., Kim, S., Baek, S.-H., Kim, J.H. and Kim, J.-R. (2004) Exploration of replicative senescence-associated genes in human dermal fibroblasts by cDNA microarray technology. Exp. Gerontol., 39, 1369-1378. 38. Hampel, B., Fortschegger, K., Ressler, S., Chang, M.W., Unterluggauer, H., Breitwieser, A., Sommergruber, W., Fitzky, B., Lepperdinger, G., Jansen-Dürr, P. et al. (2006) Increased expression of extracellular proteins as a hallmark of human endothelial cell in vitro senescence. Exp. Gerontol., 41, 474-481. 39. Cristofalo, V.J. and Pignolo, R.J. (1993) Replicative senescence of human fibroblast-like cells in culture. Physiol. Rev., 73, 617-638. 40. Bérubé, N.G., Smith, J.R. and Pereira-Smith, O.M. (1998) The genetics of cellular senescence. Am. J. Hum. Genet., 62, 1015-1019. 41. Hayflick, L. and Moorhead, P. (1961) The serial cultivation of human diploid cell strains. Exp. Cell Res., 25, 585–621. 42. Hornsby, P. (2010) Senescence and life span. Pflugers Arch., 459, 291-299. 43. Shay, J.W. and Wright, W.E. (2005) Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis, 26, 867-874. 44. Drayton, S. and Peters, G. (2002) Immortalisation and transformation revisited. Curr. Opin. Genet. Dev., 12, 98-104. 45. Lundberg, A.S., Hahn, W.C., Gupta, P. and Weinberg, R.A. (2000) Genes involved in senescence and immortalization. Curr. Opin. Cell Biol., 12, 705-709. 46. Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I. and Pereira-Smith, O. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U.S.A., 92, 9363-9367. 47. Fridman, A.L. and Tainsky, M.A. (2008) Critical pathways in cellular senescence and immortalization revealed by gene expression profiling. Oncogene, 27, 5975-5987. 48. Hung, P.-S., Kao, S.-Y., Shih, Y.-H., Chiou, S.-H., Liu, C.-J., Chang, K.-W. and Lin, S.-C. (2008) Insulin-like growth factor binding protein-5 (IGFBP-5) suppresses the tumourigenesis of head and neck squamous cell carcinoma. J. Pathol., 214, 368-376. 49. Daly, J., Olayioye, M., Wong, A., Neve, R., Lane, H., Maurer, F. and Hynes, N. (1999) NDF/heregulin-induced cell cycle changes and apoptosis in breast tumour cells: role of PI3 kinase and p38 MAP kinase pathways. Oncogene, 18, 3440-3451. 50. Cichowski, K. and Hahn, W.C. (2008) Unexpected pieces to the senescence puzzle. Cell, 133, 958-961. 51. Schwarze, S., DePrimo, S., Grabert, L., Fu, V., Brooks, J. and Jarrard, D. (2002) Novel pathways associated with bypassing cellular senescence in human prostate epithelial cells. J. Biol. Chem., 277, 14877. 52. Wang, I.-C., Chen, Y.-J., Hughes, D., Petrovic, V., Major, M.L., Park, H.J., Tan, Y., Ackerson, T. and Costa, R.H. (2005) Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol. Cell. Biol., 25, 10875-10894. 53. Trombino, S., Cesario, A., Margaritora, S., Granone, P., Motta, G., Falugi, C. and Russo, P. (2004) alpha-7-nicotinic acetylcholine receptors affect growth regulation of human mesothelioma cells: role of mitogen-activated protein kinase pathway. Cancer Res., 64, 135-145. 54. Nakanishi, M., Adami, G.R., Robetorye, R.S., Noda, A., Venable, S.F., Dimitrov, D., Pereira-Smith, O.M. and Smith, J.R. (1995) Exit from G0 and entry into the cell cycle of cells expressing p21Sdi1 antisense RNA. Proc. Natl. Acad. Sci. U.S.A., 92, 4352-4356. 55. Rowley, M., Liu, P. and Van Ness, B. (2000) Heterogeneity in therapeutic response of genetically altered myeloma cell lines to interleukin 6, dexamethasone, doxorubicin, and melphalan. Blood, 96, 3175-3180. 56. Small, D., Kovalenko, D., Soldi, R., Mandinova, A., Kolev, V., Trifonova, R., Bagala, C., Kacer, D., Battelli, C., Liaw, L. et al. (2003) Notch activation suppresses fibroblast growth factor-dependent cellular transformation. J. Biol. Chem., 278, 16405-16413. 57. Yang, C., Trent, S., Ionescu-Tiba, V., Lan, L., Shioda, T., Sgroi, D. and Schmidt, E.V. (2006) Identification of cyclin D1- and estrogen-regulated genes contributing to breast carcinogenesis and progression. Cancer Res., 66, 11649-11658. 58. Tanaka, M., Kirito, K., Kashii, Y., Uchida, M., Watanabe, T., Endo, H., Endoh, T., Sawada, K.-i., Ozawa, K. and Komatsu, N. (2001) Forkhead family transcription factor FKHRL1 is expressed in human megakaryocytes. J. Biol. Chem., 276, 15082-15089. 59. Sprenger, C., Vail, M., Evans, K., Simurdak, J. and Plymate, S. (2002) Over-expression of insulin-like growth factor binding protein-related protein-1(IGFBP-rP1/mac25) in the M12 prostate cancer cell line alters tumor growth by a delay in G1 and cyclin A associated apoptosis. Oncogene, 21, 140-147. 60. Tront, J.S., Hoffman, B. and Liebermann, D.A. (2006) Gadd45a suppresses Ras-driven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence. Cancer Res., 66, 8448-8454. 61. Cerimele, D., Celleno, L. and Serri, F. (1990) Physiological changes in ageing skin. Br. J. Dermatol., 122(Suppl. 35), 13-20. 62. Kis, E., Szatmári, T., Keszei, M., Farkas, R., Ésik, O., Lumniczky, K., Falus, A. and Sáfrány, G. (2006) Microarray analysis of radiation response genes in primary human fibroblasts. Int. J. Radiat. Oncol. Biol. Phys., 66, 1506-1514. 63. Kitanaka, C., Namiki, T., Noguchi, K., Mochizuki, T., Kagaya, S., Chi, S., Hayashi, A., Asai, A., Tsujimoto, Y. and Kuchino, Y. (1997) Caspase-dependent apoptosis of COS-7 cells induced by Bax overexpression: differential effects of Bcl-2 and Bcl-xL on Bax-induced caspase activation and apoptosis. Oncogene 15, 1763-1772. 64. Bellosta, P., Zhang, Q., Goff, S. and Basilico, C. (1997) Signaling through the ARK tyrosine kinase receptor protects from apoptosis in the absence of growth stimulation. Oncogene, 15, 2387-2397. 65. Cohen, S., Waha, A., Gelman, I. and Vogt, P. (2001) Expression of a down-regulated target, SSeCKS, reverses v-Jun-induced transformation of 10T1/2 murine fibroblasts. Oncogene, 20, 141-146. 66. Bogdan, J.A., Adams-Burton, C., Pedicord, D.L., Sukovich, D.A., Benfield, P.A., Corjay, M.H., Stoltenborg, J.K. and Dicker, I.B. (1998) Human carbon catabolite repressor protein (CCR4)-associative factor 1: cloning, expression and characterization of its interaction with the B-cell translocation protein BTG1. Biochem. J., 336, 471-481. 67. Hansen, M.R., Clark, J.J., Gantz, B.J. and Goswami, P.C. (2008) Effects of ErbB2 signaling on the response of vestibular schwannoma cells to gamma-irradiation. Laryngoscope, 118, 1023-1030. 68. Datta, S.R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y. and Greenberg, M.E. (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241. 69. Edwards, E., Geng, L., Tan, J., Onishko, H., Donnelly, E. and Hallahan, D.E. (2002) Phosphatidylinositol 3-Kinase/Akt signaling in the response of vascular endothelium to ionizing radiation. Cancer Res., 62, 4671-4677. 70. Brognard, J., Clark, A.S., Ni, Y. and Dennis, P.A. (2001) Akt/Protein Kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res., 61, 3986-3997. 71. Tsai, K., Stuart, J., Chuang, Y., Little, J. and Yuan, Z. (2009) Low-dose radiation-induced senescent stromal fibroblasts render nearby breast cancer cells radioresistant. Radiat. Res., 172, 306-313. 72. Kosaki, R., Watanabe, K. and Yamaguchi, Y. (1999) Overproduction of hyaluronan by expression of the hyaluronan synthase Has2 enhances anchorage-independent growth and tumorigenicity. Cancer Research, 59, 1141-1145. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44641 | - |
| dc.description.abstract | 放射治療已被應用於治療多種癌症,視網膜母細胞瘤就是其中之一。然而,罹患遺傳性視網膜母細胞瘤的孩童其外表正常的雙親之皮膚纖維母細胞會對游離放射線產生預期外的高敏感性(hypersensitivity)現象。Dr. Chuang 等人於2006 年利用 DNA 微陣列晶片技術分析並挑選出42 個與游離輻射誘發細胞敏感度改變有關之基因。IGFBP5 (insulin-like growth factor binding protein 5)是42 個游離輻射敏感性相關的基因之一,此基因被選出並探討其在人類纖維母細胞中造成之細胞輻射敏感度效應。此外,IGFBP5 已被證實與內皮細胞之老化有關。因此,本論文之主題為研究IGFBP5 基因在人類纖維母細胞中造成的游離輻射敏感性及細胞老化之效應。
本篇研究顯示,IGFBP5 與人類纖維母細胞老化有關,此結果是經由老化相關特定酵素染色(SA-β-gal staining)、細胞增生分析、以及分析微陣列實驗數據得到與抗細胞增生、細胞週期中止以及細胞老化之相關基因得知。此外,IGFBP5 與人類纖維母細胞之游離輻射敏感度有關:經由細胞聚落形成分析(colony formation assay)得知,大量表現IGFBP5 之人類纖維母細胞 Hs68 其對於2 Gy 到4 Gy 的游離輻射有較高的耐受性。本篇實驗結果顯示,IGFBP5 造成人類纖維母細胞對輻射耐受性增加,是因為此基因使得細胞增生速率變慢,以及從微陣列實驗數據分析得知其間接活化PI3K-AKT 細胞訊息傳遞路徑有關。 | zh_TW |
| dc.description.abstract | Radiotherapy is commonly used for the treatment of many kinds of cancer such as retinoblastoma. However, an unexpected hypersensitivity to ionizing radiation in skin fibroblasts derived from unaffected parents of children with hereditary retinoblastoma was observed. The results from Dr. Chuang et al. used DNA microarray technology to select the 42 significantly differential expressed genes and identified as radiosensitive genes were observed in 2006. IGFBP5 (insulin-like growth factor binding protein 5), one of these 42 genes, was chosen to further investigate the role in radiosensitivity in fibroblast cells. In addition, IGFBP5 was reported that it was involved in the cellular senescence in endothelial cells. As the result, the topic of this thesis was to evaluate the role of IGFBP5 in radiosensitivity and cellular senescence in human fibroblast cells.
The results of this study showed IGFBP5 was involved in senescence by the method of SA-β-gal staining, cell proliferation assays, and the identification of genes related to anti-proliferation, cell-cycle arrest and senescence by the analysis of array data. Also, IGFBP5 played a role in radiosensitivity: Hs68 IGFBP5-overexpressed cells were more resistant to radiation at 2-4 Gy verified by colony formation assays. The radioresistace of IGFBP5 might be the lower proliferation rate of Hs68 IGFBP5-overexpressed cells and the up-regulation of PI3K-AKT pathway found from the analysis of array data. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:52:10Z (GMT). No. of bitstreams: 1 ntu-99-R97945013-1.pdf: 2820190 bytes, checksum: 0fd4bec0a031e5c0e54e79d4bfc40bce (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 中文摘要 ----- i
Abstract ----- ii List of Figures -----vi List of Tables ----- vii Chapter 1 Introduction-----1 1.1 Radiation-induced effects-----1 1.2 Retinoblastoma, radiation therapy and radiosensitivity -----2 1.3 Genes related to radiosensitivity ----- 3 1.4 IGF signaling and IGFBP5 -----5 1.5 Senescence ----- 7 1.6 Motivation and specific aims-----9 Chapter 2 Materials and Methods -----11 2.1 Cell culture-----11 2.2 RNA extraction and cDNA preparation ----- 11 2.3 IGFBP5 gene cloning ----- 12 2.4 shIGFBP-5i lentivirus and infection-----13 2.5 Real-time PCR ----- 14 2.6 Secreted protein collection and western blot analysis ----- 15 2.7 Radiation treatment ----- 16 2.8 Colony formation assays ----- 16 2.9 Flow cytometric analyses for cell cycle ----- 16 2.10 Cell proliferation assay -----17 2.11 SA-β- gal staining and quantification-----17 2.12 Microarray experiment and data analysis ----- 18 Chapter 3 Results ----- 20 3.1 Generation of Hs68 IGFBP5-overexpressed cells ----- 20 3.2 Colony formation assay: Hs68 IGFBP5-overexpressed cells ----- 21 3.3 Colony formation assay: Hs68 IGFBP5i cells ----- 22 3.4 Flow cytometric analyses for cell cycle ----- 23 3.5 SA-β-gal staining: to investigate the phenomenon of senescence in Hs68 ----- 23 3.6 Cell proliferation assays: Hs68 IGFBP5-overexpressed cells and rhIGFBP5 protein treated Hs68 cells ----- 24 3.7 Microarray experiment and identification of differentially expressed genes: comparing Hs68 IGFBP5-overexpressed cells and GFP cells ----- 26 3.8 Microarray experiment and identification of differentially expressed genes: comparing the difference of radiation effect between Hs68 IGFBP5-overexpressed cells and GFP cells ----- 28 Chapter 4 Discussion ----- 32 4.1 Cell culture for Hs68 and IGFBP5-overexpressed or IGFBP5i vector transfection ----- 32 4.2 Elucidation of the role of IGFBP5 in senescence of Hs68 fibroblast cells ----- 32 4.3 Elucidation of the role of IGFBP5 in radioresistance of Hs68 fibroblast cells ----- 34 4.4 The connection of senescence and radioresistance and future work ----- 37 Chapter 5 Conclusion -----39 Figures -----40 Tables----- 57 References----- 60 | |
| dc.language.iso | en | |
| dc.subject | IGFBP5 | zh_TW |
| dc.subject | 人類纖維母細胞 | zh_TW |
| dc.subject | 輻射 | zh_TW |
| dc.subject | 輻射敏感度 | zh_TW |
| dc.subject | 微陣列晶片 | zh_TW |
| dc.subject | 細胞老化 | zh_TW |
| dc.subject | cellular senescence | en |
| dc.subject | radiosensitivity | en |
| dc.subject | radiation | en |
| dc.subject | human fibroblast cells | en |
| dc.subject | IGFBP5 | en |
| dc.subject | microarray | en |
| dc.title | 探討IGFBP5 基因在人類纖維母細胞造成之效應 | zh_TW |
| dc.title | Study the Effect of IGFBP5 in Human Fibroblast Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 蔡孟勳(Mong-Hsun Tsai) | |
| dc.contributor.oralexamcommittee | 黃正仲,賴亮全 | |
| dc.subject.keyword | 人類纖維母細胞,輻射,輻射敏感度,細胞老化,IGFBP5,微陣列晶片, | zh_TW |
| dc.subject.keyword | human fibroblast cells,radiation,radiosensitivity,cellular senescence,IGFBP5,microarray, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-09 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
