Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44639
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor呂宗昕
dc.contributor.authorChia-Hao Hsuen
dc.contributor.author許家豪zh_TW
dc.date.accessioned2021-06-15T03:52:08Z-
dc.date.available2020-12-31
dc.date.copyright2010-07-13
dc.date.issued2010
dc.date.submitted2010-07-09
dc.identifier.citation[1] G. Blasse, A. Bril, Philips Tech. Rev. 32 (1970) 304.
[2] K. Nassau, The Physics and Chemistry of Color, John Wiley & Sons, New
York (1983).
[3] S. Shionoya, W.M. Yen, Phosphor Handbook, CRC Press, Washington DC
(1999).
[4] N.D. Abazovic, M.I. Comor, Opt. Mater. 30 (2008) 1139.
[5] Y. Du, M.S. Zhang, J. Hong, Appl. Phys. A-Mater. 76 (2003) 171.
[6] T. Gao, T.H. Wang, Mater. Res. Bull. 43 (2008) 836.
[7] B.G. Yacobi, Cathodoluminescence Microscopy of Inorganic Solids, ed.
D.B. Holt. Spiringer, New York (1990).
[8] R.C. Ropp, Luminescence and the Solid State, Elesevier (1991).
[9] G. Blasse, B.C. Grabmaier, Luminescent materials, Springer-Verlag (1994).
[10] G. Blasse, Philips Res. Repts. 24 (1969) 131.
[11] B. Hederson, G.F. Imbusch, Optical Spectroscopy of Inorganic Solids,
Clarendon, Oxford (1989).
[12] B. Di Bartolo (ed.), Energy Transfer Processes in Condensed Matter,
Plenum, New York (1984).
[13] R.C. Ropp, Luminescence: From theory to application, WILEY-VCH
Verlag GmbH & Co. KGaA (2007).
[14] K. Nassau, The physics and chemistry of color, Wiley, New York (1983).
[15] M. Sekita, J. Lumin. 22 (1981) 335.
[16] E. Nakazawa, S. Shionoya, J. Phys. Soc. Jpn. 28 (1970) 1260.
[17] C. de Mello Donega, A.M. Simas, G.F. de Sa, J. Alloys Compd. 250 (1997)
422.
[18] G.F. de Sa, O.L. Maltam, C. de Mello Donega, A.M. Simas, R.L. Longo,
P.A. Santa-Cruz, E.F. Da Silva Jr., Coord. Chem. Rev. 196 (2000) 165.
[19] W.T. Carnall, G.L. Goodman, K. Rajnak, R.S. Rana, J. Chem. Phys. 90
(1989) 343.
[20] P. Dorenbos, J. Lumin. 104 (2003) 239.
[21] M. Yang, S. Zhang, J. Phys. Chem. Solids 64 (2003) 213.
[22] M.A. Aegerter, M. Jafelicci Jr., D.F. de Souza, E.D. Zanotto, Sol-gel
science and technology, World Scientific (1989).
[23] C.J. Brinker, G.W. Scherer, Sol-gel science, Academic Press (1990).
[24] A.C. Pierre, Introduction to sol-gel processing, Kluwer Academic
Publishers (1998).
[25] M. Kakihana, M. Yoshimura, Bull. Chem. Soc. Jpn. 72 (1999) 1427.
[26] Y. Zhao, J.J. Zhu, J.M. Hong, N. Bian, H.Y. Chen, Eur. J. Inorg. Chem.
(2004) 4072.
[27] R. Ahlers, U. Ruschewitz, Zeitschrift Fur Anorganische Und Allgemeine
Chemie 631 (2005) 1241.
[28] B. Vaidhyanathan, K. Rao, Chem. Mater. 9 (1997) 1196.
[29] I.V. Nikolaenko, G.P. Shveikin, Refractories and Industrial Ceramics 42
(2001) 276.
[30] P. Lidstrom, J. Tierney, B. Wathey, J. Westman and Tetrahegron 57 (2001)
9225.
[31] J.C. Sczancoski, L.S. Cavalcante, M.R. Joya, J.A. Varela, P.S. Pizani, E.
Longo, Chem. Eng. J. 140 (2008) 632.
[32] K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology,
Noyes Publications, New Jersey, USA, (2001).
[33] B.J. Shen, J.S. Ma, H.C. Wu, C.H. Lu, Mater. Lett. 62 (2008) 4075.
[34] J.C. Sczancoski, L.S. Cavalcante, M.R. Joya, J.A. Varela, P.S. Pizani, E.
Longo, Chem. Eng. J. 140 (2008) 632.
[35] M. Zawadzki, J. Alloys Compd. 439 (2007) 312.
[36] L. Muresan, E.-J. Popovici, R. Grecu, L.B. Tudoran, J. Alloys Compd. 471
(2009) 421.
[37] R. Ghildiyal, P. Page, K.V.R. Murthy, J. Lumin. 124 (2007) 217.
[38] C.H. Lu, R. Jagannathan, Appl. Phys. Lett. 80 (2002) 3608.
[39] S.S. Yi, K.S. Shim, H.K. Yang, B.K. Moon, B.C. Choi, J.H. Jeong, J.H.
Kim, J.S. Bae, Appl. Phys. A 87 (2007) 667.
[40] L. Zhou, J. Wei, J. Wu, F. Gong, L. Yi, J. Huang, J. Alloys Compd. 476
(2009) 390.
[41] E. Danielson, M. Devenney, D.M. Giaquinta, J.H. Golden, R.C. Haushalter,
E.W. McFarland, D.M. Poojary, C.M. Reaves, W.H. Weinberg, X.D. Wu,
Science 279 (1998) 837.
[42] E. Danielson, M. Devenney, D.M. Giaquinta, J.H. Golden, R.C. Haushalter,
E.W. McFarland, D.M. Poojary, C.M. Reaves, W.H. Weinberg, X.D. Wu, J.
Mol. Struct. 470 (1998) 229.
[43] X.M. Liu, Y. Luo, J. Lin, J. cry. growth 290 (2006) 266.
[44] T. Masui, T. Chiga, N. Imanaka, G. Adachi, Mater. Res. Bull. 38 (2003) 17.
[45] D.S. Xing, M.L. Gong, X.Q. Qiu, D.J. Yang, K.W. Cheah, J. Rare Earth 24
(2006) 289.
[46] X. Li, Z. Yang, L. Guan, Q. Guo, C. Liu, P. Li, J. Alloys Compd. 464
(2008) 565.
[47] K.Y. Jung, J.H. Seo, Electrochem. Solid State Lett. 11 (2008) J64.
[48] T. Nishida, T. Ban, N. Kobayashi, Appl. Phys. Lett. 82 (2003) 3817.
[49] ICDD Powder Diffraction File, card NO 89-5546.
[50] Y.M. Chiang, Physical Ceramics: Principles for Ceramics Science and
Engineering, Wiley P.15, 1997, U.S.A.
[51] R. Sankar, G.V. Subba Rao, J. Electrochem. Soc. 147 (2000) 2773.
[52] L. van Pieterson, S. Soverna, A. Meijerink, J. Electrochem. Soc. 147 (2000)
4688.
[53] G.L. Miessler, D.A. Tarr, Inorganic Chemistry, 3rd Edition, Pearson
Prentice Hall, 2004.
[54] J. Gomes. A.M. Pires, O.A. Serra, Quim. Nova 27 (2004) 706.
[55] C.H. Lu, C.T. Chen, J. Sol-Gel Sci. Tech. 43 (2007) 179.
[56] Y.C. Chung, Y.H. Chang, B.S. Tsai, J. Alloys Compd. 398 (2005) 256.
[57] A. Nag, T.R.N. Kutty, J. Mater. Chem. 13 (2003) 370.
[58] L.Y. Cai, X.D. Wei, H. Li, Q.L. Liu, J. Lumin. 129 (2009) 165.
[59] S.J. Chen, X.T. Chen, Z. Yu, J.M. Hong, Z. Xue, X.Z. You, Solid State
Commun. 130 (2004) 281.
[60] C. Ronda, Luminescence: From Theory to Applications, WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim (2008).
[61] T. Aitasalo, A. Hietikko, D. Hreniak, J. Holsa, M. Lastusaari, J. Niittykoski,
W. Strek, J. Alloys Compd. 451 (2008) 229.
[62] K.Y. Jung, H.W. Lee, J. Lumin. 126 (2007) 469.
[63] X. Zhang, H. He, Z. Li, T. Yu, Z. Zou, J. Lumin. 128 (2008) 1876.
[64] N. Suriyamurthya, B.S. Panigrahi, J. Lumin. 126 (2007) 483.
[65] Y. Ding, Y. Zhang, Z. Wang, W. Li, D. Mao, H. Han, C. Chang, J. Lumin.
129 (2009) 294.
[66] C.H. Lu, P.C. Wu, J. Alloys Compd. 466 (2008) 457.
[67] M.D. Chambers, P.A. Rousseve, D.R. Clarke, J. Lumin. 129 (2009) 263.
[68] X.M. Han, J. Lin, Z. Li, X.W. Qi, M.Y. Li, X.Q. Wang, J. Rare Earth 26
(2008) 904.
[69] Y. Suwa, S. Naka, T. Noda, Mater. Res. Bull. 3 (1968) 139.
[70] ICDD powder diffraction file, Card No 20-1410.
[71] P. Dorenbos, J. Lumin. 99 (2002) 283.
[72] N. Kodama, M. Yamaga, B. Henderson, J. Appl. Phys. 84 (1998) 5820.
[73] H. Yang, D.K. Lee, Y.S. Kim, Mater. Chem. Phys. 114 (2009) 665.
[74] Q. Zhang, J. Wang, R. Yu, M. Zhang, Q. Su, Electrochem. Solid State Lett.
11 (2008) H335.
[75] C. Guo, L. Luan, Y. Xu, F. Gao, L. Liang, J. Electrochem. Soc. 155 (2008)
J310.
[76] J.K. Park, M.A. Lim, C.H. Kim, H.D. Park, J.T. Park, S.Y. Choi, Appl.
Phys. Lett. 82 (2003) 683.
[77] W.J. Yang, T.M. Chen, Appl. Phys. Lett. 90 (2007) 171908.
[78] U. Caldino, J. Phys.-Condens. Mater. 15 (2003) 3821.
[79] H. Jiao, F. Liao, S. Tian, X.J. Jing, J. Electrochem. Soc. 150 (2003) H220.
[80] C.K. Chang, T.M. Chen, Appl. Phys. Lett. 90 (2007) 161901.
[81] U.G. Caldino, A.F. Munoz, J.O. Rubio, J. Phys.-Condens. Mater. 5 (1993)
2195.
[82] W.J. Yang, L. Luo, T.M. Chen, N.S. Wang, Chem. Mater. 17 (2005) 3883.
[83] U. Caldino, J. Phys.-Condens. Mater. 15 (2003) 7127.
[84] R.J. Xie, N. Hirosaki, K. Sakuma, N. Kimura, J. Phys. D 41 (2008) 41
144013.
[85] X. Piao, K.I. Machida, T. Horikawa, H. Hanzawa, Appl. Phys. Lett. 91
(2007) 041908.
[86] R.J. Xie, N. Hirosaki, X.J. Liu, T. Takeda, H.L. Li, Appl. Phys. Lett. 92
(2008) 201905.
[87] C.H. Lu, H.C. Hong, R. Jagannathan, J. Mater. Sci. Lett. 21 (2002) 1489.
[88] R.J. Xie, N. Hirosaki, M. Mitomo, K. Sakuma, N. Kimura, Appl. Phys.
Lett. 89 (2006) 241103.
[89] X. Piao, T. Horikawa, H. Hanzawa, K.I. Machida, J. Electrochem. Soc.
153 (2006) H232.
[90] Y.Q. Li, A.C.A. Delsing, G. de With, H.T. Hintzen, Chem. Mater. 17 (2005)
3242.
[91] Y.Q. Li, G. de With, H.T. Hintzen, J. Mater. Chem. 15 (2005) 4492.
[92] B.G. Yun, K.I. Machida, H.J. Yamamoto, Ceram. Soc. Jpn. 115 (2007) 619.
[93] W.H. Zhu, P.L. Wang, W.Y. Sun, D.S. Yan, J. Mater. Sci. Lett. 13 (1994)
560.
[94] V. Bachmann, T. Justel, A. Meijerink, C. Ronda, P.J. Schmidt, J. Lumin.
121 (2006) 441.
[95] R.S. Liu, Y.H. Liu, N.C. Bagkar, S.F. Hu, Appl. Phys. Lett. 91 (2007)
061119.
[96] O. Oeckler, F. Stadler, T. Rosenthal, W. Schnick, Solid State Sci. 9 (2007)
205.
[97] C.H. Lu, S.V. Godbole, M. Qureshi, Jpn. J. Appl. Phys. 45 (2006) 2606.
[98] P.Y. Jia, M. Yu, J. Lin, J. Solid State Chem. 178 (2005) 2734.
[99] H.A. Höppe, F. Stadler, O. Oeckler, W. Schnick, Angew. Chem. Int. Edit.
43 (2004) 5540.
[100] G.J. Wilson, A.S. Matijasevich, D.R.G. Mitchell, J.C. Schulz, G.D. Will,
Langmuir 22 (2006) 2016.
[101] C.H. Lu, S.Y. Chen, C.H. Hsu, Mater. Sci. Eng. B 140 (2007) 218.
[102] Y.Q. Li, G. de With, H.T. Hintzen, J. Lumin. 116 (2006) 107.
[103] B. Dierre, R.J. Xie, N. Hirosaki, T. Sekiguchi, J. Mater. Res. 22 (2007)
1933.
[104] Y.Q. Li, N. Hirosaki, R.J. Xie, T. Takeda, M. Mitomo, Chem. Mater. 20
(2008) 6704.
[105] C.H. Lu, S.V. Godbole, V. Natarajan, J. Mater. Sci. 41 (2006) 2471.
[106] H. Jiao, N. Zhang, X. Jing, D. Jiao, Opt. Mater. 29 (2007) 1023.
[107] C.H. Yang, Y.X. Pan, Q.Y. Zhang, Z.H. Jiang, J. Fluoresc. 17 (2007) 500.
[108] O.M. Ntwaeaborwa, H.C. Swart, R.E. Kroon, P.H. Holloway, J.R. Botha,
J. Phys. Chem. Solids 67 (2006) 1749.
[109] W.B. Im, Y.I. Kim, N.N. Fellows, H. Masui, G.A. Hirata, Appl. Phys. Lett.
93 (2008) 091905.
[110] Y. Zorenko, V. Gorbenko, T. Voznyak, M. Batentschuk, A. Osvet, A.
Winnacker, J. Lumin. 128 (2008) 652.
[111] D. Jia, X.J. Wang, W. Jia, W.M. Yen, J. Appl. Phys. 93 (2003) 148.
[112] S.D. Cheng, C.H. Kam, S. Buddhudu, Mater. Res. Bull. 36 (2001) 1131.
[113] L. Li, H. Liang, Z. Tian, H. Lin, Q. Su, G. Zhang, J. Phys. Chem. C 112
(2008) 13763.
[114] C.C. Lin, Y.S. Tang, S.F. Hu, R.S. Liu, J. Lumin. 129 (2009) 1682.
[115] J. Liao, B. Qiu, H. Lai, J. Lumin. 129 (2009) 668.
[116] C.H. Lu, C.H. Huang, B.M. Cheng, J. Alloys Compd. 473 (2009) 376.
[117] B. Han, H. Liang, H. Ni, Q. Su, G. Yang, J. Shi, G. Zhang, Opt. Express
17 (2009)7138.
[118] A.A. de Silva, M.A. Cebim, M.R. Davolos, J. Lumin. 128 (2008) 1165.
[119] C.H. Hsu, C.H. Lu, Adv. Appl. Ceram. 108 (2009) 149.
[120] N. Kimura, K. Sakuma, S. Hirafune, K. Asano, N. Hirosaki, R.J. Xie,
Appl. Phys. Lett. 90 (2007) 051109.
[121] M. Zhang, J. Wang, Z. Zhang, Q. Zhang, Q. Su, Appl. Phys. B 93 (2008)
829.
[122] C.H. Lu, H.C. Hong, R. Jagannathan, J. Mater. Chem. 12 (2002) 2525.
[123] W.H. Hsu, M.H. Sheng, M.S. Tsai, J. Alloys Compd. 467 (2009) 491.
[124] H.L. Li, R.J. Xie, N. Hirosaki, T. Suehiro, Y. Yajima, J. Electrochem. Soc.
155 (2008) J175.
[125] Y. Gu, Q. Zhang, Y. Li, H. Wang, R.J. Xie, Mater. Lett. 63 (2009) 1448.
[126] X. Song, H. He, R. Fu, D. Wang, X. Zhao, Z. Pan, J. Phys. D 42 (2009)
065409.
[127] M. Wang, J. Zhang, X. Zhang, Y. Luo, X. Ren, S. Lu, X. Liu, X. Wang, J.
Phys. D 41 (2008) 205103.
[128] S.W. Choi, S.H. Hong, Y.J. Kim, J. Am. Ceram. Soc. 92 (2009) 2025.
[129] Y.Q. Li, J.E.J. van Steen, J.W.H. van Krevel, G. Botty, A.C.A. Delsing,
F.J. DiSalvo, G. de With, H.T. Hintzen, J. Alloys Compd. 417 (2006) 273.
[130] R.D. Shannon, Acta Cryst. A32 (1976) 751.
[131] Y.C. Chiu, W.R. Liu, Y.T. Yeh, S.M. Jang, T.M. Chen, J. Electrochem.
Soc. 156 (2009) J221.
[132] R.J. Xie, N. Hirosaki, M. Mitomo, Y. Yamamoto, T. Suehiro, K. Sakuma,
J. Phys. Chem. B 108 (2004) 12027.
[133] V. Bachmann, C. Ronda, O. Oeckler, W. Schnick, A. Meijerink, Chem.
Mater. 21 (2009) 316.
[134] X.H. He, N. Lian, J.H. Sun, M.Y. Guan, J. Mater. Sci. 44 (2009) 4763.
[135] X. Song, R. Fu, S. Agathopoulos, H. He, X. Zhao, S. Zhang, J. Appl.
Phys. 106 (2009) 033103.
[136] H. Lin, X.R. Liu, E.Y.B. Pun, Opt. Mater. 18 (2002) 397.
[137] H.L. Li, R.J. Xie, N. Hirosaki, Y. Yajima, J. Electrochem. Soc. 155 (2009)
J378.
[138] X. Piao, T. Horikawa, H. Hanzawa, K.I. Machida, Appl. Phys. Lett. 88
(2006) 161908.
[139] R.J. Xie, N. Hirosaki, T. Suehiro, F.F. Xu, and M. Mitomo, Chem. Mater.
18 (2006) 5578.
[140] Z. Lences, L. Benco, J. Madejova, Y. Zhou, L. Kipsova, K. Hirao, J. Eur.
Ceram. Soc. 28 (2008) 1917.
[141] M. Zeuner, F. Hintze, W. Schnick, Chem. Mater. 21 (2009) 336.
[142] M. Zeuner, P.J. Schmidt, W. Schnick, Chem. Mater. 21 (2009) 2467.
[143] K. Uheda, H. Takizawa, T. Endo, H. Yamane, M. Shimada, C.-M. Wang,
M. Mitomo, J. Lumin. 87-89 (2000) 967.
[144] Z. Inoue, M. Mitomo, N. II, J. Mater. Sci. 15 (1980) 2915.
[145] H. Watanabe, N. Kijima, J. Alloys Compd. 475 (2009) 434.
[146] L. Liu, R.J. Xie, N. Hirosaki, T. Takeda, C.N. Zhang, J. Li, X. Sun, J.
Electrochem. Soc. 157 (2010) H50.
[147] V. Kumar, S.S. Pitale, V. Mishra, I.M. Nagpure, M.M. Biggs, O.M.
Ntwaeaborwa, H.C. Swart, J. Alloys Compd. 492 (2010) L8.
[148] I.M. Nagpure, K.N. Shinde, V. Kumar, O.M. Ntwaeaborwa, S.J. Dhoble,
H.C. Swart, J. Alloys Compd. 492 (2010) 384.
[149] H.Y. Chung, C.H. Hsu, C.H. Lu, J. Am. Ceram. Soc. (in press).
[150] H.S. Jang, Y.H. Won, S. Vaidyanathan, D.H. Kim, D.Y. Jeon, J.
Electrochem. Soc. 156 (2009) J138.
[151] J. Sokolnicki, M. Guzik, Opt. Mater. 31 (2009) 826.
[152] M. Yamaga, Y. Ohsumi, T. Nakayama, N. Kashiwagura, N. Kodama,
T.P.J. Han, J. Mater. Sci. 20 (2009) S471.
[153] H. Zhang, T. Horikawa, K.I. Machida, J. Electrochem. Soc. 153 (2006)
H151.
[154] Z. Jiang, Y. Wang, L. Wang, J. Electrochem. Soc. 157 (2010) J155.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44639-
dc.description.abstract為了解決UV-LED 螢光粉體低熱穩定性,激發位置波長太短(<350 nm),以及發光顏色可調性差等缺點,本研究利用三項理論進行螢光粉體特性之改善,分別為電子雲擴散效應(共價效應)、晶場理論,以及能量轉移機制。此外由於熱穩定性與螢光粉主體之共價性具有高度相關性,論文中依照螢光粉主體共價性的不同,製備氧化物、氮氧化物、氮化物以及氮碳化物四大類。
論文首先選擇鈰酸鍶(Sr2CeO4)氧化物螢光粉體,激發光譜中顯示一寬廣峰,為Ce4+-O2-之價荷轉移所造成,由於最高峰落在296 nm,為了增加UV-LED 之使用性,添加錫離子(Sn4+)進行材料改質,最高的激發峰波長會由296 nm 移動至346 nm,且隨Sn4+添加量增加,346 nm 位置之吸收也隨之增強,大幅增加螢光粉體在UV-LED 之應用,在346 nm 激發下,粉體發射出483 nm 之藍綠光,添加Sn4+可增加39%之粉體放光強度。
為了調整螢光粉體色光,第二部份製備氧化物主體,MgY4Si3O13: Ce3+,Mn2+,文中探討Ce3+及Mn2+之間的能量轉移機制,隨著Mn2+濃度增加,Ce3+所產生的藍光強度下降而Mn2+產生的橘紅光強度增加,此能量轉移使得粉體的發光顏色由藍光轉移為白光,最後再轉移為橘紅光,因此利用能量轉移機制可大幅度調整粉體之發光顏色。
為了提升粉體的熱穩定性,第三部份選擇高共價性之氮氧化物 SrSi2O2N2 為主體材料,僅添加Ce3+之SrSi2O2N2 螢光粉體產生447 nm 之藍光,共添加Tb3+會造成能量轉移,隨著Tb3+濃度的增加,造成放光顏色的改變,由藍光經水藍光再移動至綠光,另一方面,本研究第一次報導此材料在真空紫外光(VUV)之光學特性,發現分別添加Ce3+及Tb3+之粉體在真空紫外光區皆有良好的吸收,本章節亦針對粉體的熱穩定性進行研究,隨著溫度增加,粉體螢光強度下降,此乃由於熱淬滅效應所致,但由於氮氧化物之高共價性,此螢光粉具有優異之熱穩定性。
然而添加Ce3+及Tb3+之SrSi2O2N2 螢光材料之吸收波長小於350 nm,不利UV-LED 之使用,因此論文第四部份選擇CaSi2O2N2 氮氧化物為主體,僅添加Ce3+及Eu2+之CaSi2O2N2 螢光材料分別具有470 nm 及550 nm之放光,Ce3+及Eu2+共添加之粉體隨著Eu2+添加量增加,激發光譜強度增加且最高峰位置由330 往352 nm 移動,增加UV-LED 適用性,且Ce3+之藍光強度下降而Eu2+之黃光增加,發光顏色可由藍光移動至黃綠光。
為了持續提高粉體之熱穩定性,第五部份選擇共價性更高之氮化物(CeSi3N5)及氮碳化物(Y2Si4N6C)作為主體材料,CeSi3N5 螢光粉體之激發光譜最高峰位置在353 nm,在UV 波段激發下可獲得453 nm 之藍光,當添加Tb3+進入主體晶格,產生能量轉移現象,發光顏色由藍光往藍綠光方向移動。Y2Si4N6C: Ce3+螢光粉體之激發光譜在384 和429 nm 有最佳之吸收,在UV 激發下產生538 nm 之黃綠光,添加La3+離子取代主體中Y3+離子位置可大幅改變發光中心(Ce3+)周圍之晶場,吸收位置及發光波長往短波長移動,放光顏色由黃綠光移動至藍光,因此可透過適當La3+的添加,調整粉體之發光顏色,此外由於碳氮化物之高共價性,Y2Si4N6C: Ce3+螢光粉體具有優異之熱穩定性。
論文針對四大類(氧化物、氮氧化物、氮化物、氮碳化物)六種螢光粉體進行結構及光學特性分析,利用電子雲擴散效應(共價效應)、晶場理論,以及能量轉移機制,提升粉體熱穩定性,調整粉體最佳激發波長使大於350 nm,以及增加粉體放光顏色之可調性,並進而建立粉體吸放光位置調整規則,增加螢光粉體在UV-LED 之實用性。
zh_TW
dc.description.abstractTo overcome the drawbacks of the phosphors for UV-LEDs, such as low thermal stability, short excitation wavelength (< 350 nm) and poor color tunability, the nephelauxetic (covalency) theory, crystal-field theory and energy transfer mechanisms are applied to improve the luminescent properties. In addition, it is known that the thermal stability of the phosphors strongly depends on the covalency of the host materials. In this study, four types of phosphors (oxides, oxynitrides, nitrides and carbonitrides) with increased covalency were prepared, and the luminescent properties were investigated.
Sr2CeO4 phosphors have broad excitation bands in the range of 200 to 450 nm. Sn4+ ions were doped in the host materials to shift the highest excitation peak from 296 to 346 nm. Upon the excitation at around 346 nm, the intensity of the blue emission peak at 483 nm was enhanced 39% as compared to that of undoped Sr2CeO4 phosphors.
In the second section, the energy transfer mechanism of MgY4Si3O13:Ce3+, Mn2+ phosphors from Ce3+ to Mn2+ was revealed to be dipole-quadrupole interaction. As the Mn2+ concentration increased, the Mn2+ emission intensity increased and the Ce3+ emission intensity decreased. This resulted in shifting the chromaticity coordinates of the prepared phosphors from the blue, white to orange region.
In the third section, the oxynitride-based SrSi2O2N2 phosphors with high covalency were selected as the host materials. As Ce3+ and Tb3+ ions were co-doped into SrSi2O2N2, the energy transfer process occurred. With increasing the Tb3+ concentration, the emitting colors of SrSi2O2N2: Ce3+, Tb3+ phosphors shifted from the blue towards green region. The increased temperatures caused the reduction of the emission intensity of the prepared phosphors due to the thermal quenching effects. It is found the prepared SrSi2O2N2-based phosphors have excellent thermal stability.
In the fourth section, oxynitride-based phosphors CaSi2O2N2 were selected as the host materials. Increasing the Eu2+ concentration of the Ce3+ and Eu2+-codoped phosphors led the excitation wavelength to shift from 330 to 352 nm and the excitation intensity to increase. In addition, the Eu2+ emission (550 nm) intensity increased and Ce3+ emission (470 nm) intensity decreased, leading the emitting colors of the prepared phosphors to shift from the blue to yellowish green region.
In the fifth section, the nitridosilicate (CeSi3N5) and carbonitride (Y2Si4N6C) phosphors with high covalency were selected as the host materials. For CeSi3N5 phosphors, the wavelength of the maximum excitation peak was at 353 nm. The emission spectrum exhibited an intense blue emission at 453 nm. When Tb3+ ions were doped, the emitting colors shifted from the blue to greenish blue. For Ce3+-doped Y2Si4N6C phosphors, the incorporation of La3+ ions led the emitting colors of (Y, La)2Si4N6C: Ce3+ phosphors to vary from the yellowish green to blue region. The blue shift in emission bands was due to the variation in the crystal-field strength around the activators. In addition, the excellent thermal stability of Y2Si4N6C-based phosphors was revealed.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:52:08Z (GMT). No. of bitstreams: 1
ntu-99-D95524006-1.pdf: 3864232 bytes, checksum: 20fe66fe7c4a2e79ffcd1dfdbead5b1d (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsContents
摘要
Abstract
Contents………………………………………………………..I
List of Figures………………………………………………..VI
List of Tables……………………………………………….XIV
Chapter 1 Introduction and background
1.1 Preface.................................................................................................... 1
1.2 Luminescent materials............................................................................ 2
1.2.1 Classification of luminescence ...................................................... 2
1.2.2 Mechanism of luminescence ......................................................... 3
1.2.3 Application of phosphors.............................................................. 4
1.3 Luminescence theory .............................................................................. 5
1.3.1 Configuration coordinate diagram ............................................... 5
1.3.2 Radiative and nonradiative transitions......................................... 6
1.3.3 Energy transfer between luminescent centers .............................. 7
1.3.4 Crystal-field theory and Stark splits............................................. 8
1.3.5 Concentration quenching and thermal quenching........................ 9
1.3.6 Quantum yield.............................................................................11
1.3.7 Rare-earth ions (4fn) ....................................................................11
1.3.8 Luminescent characteristics of Ce3+, Eu2+, Mn2+, Tb3+ ions .........12
1.4 Introduction of synthesis techniques......................................................14
1.4.1 Sol-gel method .............................................................................14
1.4.2 Microwave-assisted hydrothermal method..................................15
1.5 Research objective .................................................................................18
Chapter 2 Experimental
2.1 Preparation of the phosphors……………………………………………..46
2.1.1 Sr2(Ce1-xSnx)O4 phosphors…............................................................46
2.1.2 MgY4Si3O13: Ce3+, Mn2+ phosphors…….........................................46
2.1.3 SrSi2O2N2: Ce3+, Tb3+ phosphors……….........................................47
2.1.4 CaSi2O2N2: Ce3+, Eu2+ phosphors....................................................47
2.1.5 CeSi3N5: Tb3+ and (Y0.95-xLaxCe0.05)2Si4N6C phosphors..................48
2.2 Measurement procedures............................................................................48
2.2.1 Characterization and microstructures……………………………48
2.2.2 Optical analysis……………………………………………………..49
2.2.3 Other analysis………………………………………………………50
Chapter 3 Luminescence properties of sol-gel derived Sr2(Ce1-xSnx)O4 blue phosphors
3.1 Introduction...........................................................................................57
3.2 Results and Discussion...........................................................................58
3.2.1 Characterization and microstructures of sol-gel derived Sr2(Ce1-xSnx)O4 phosphors..........................................................58
3.2.2 Luminescence properties of sol-gel derived Sr2(Ce1-xSnx)O4 phosphors ...................................................................................59
3.2.3 Band structure of sol-gel derived Sr2(Ce1-xSnx)O4 phosphors ......65
3.3 Conclusions............................................................................................65
Chapter 4 Energy transfer, structural refinement and optical properties of MgY4Si3O13: Ce3+, Mn2+ phosphors
4.1 Introduction...........................................................................................78
4.2 Results and Discussion...........................................................................79
4.2.1 Phase characterization and structural refinement of MgY4Si3O13: Ce3+, Mn2+ phosphors .................................................................79
4.2.2 Optical properties of MgY4Si3O13: Ce3+, Mn2+ phosphors ...........81
4.2.3 Energy transfer study between Ce3+ and Mn2+ in MgY4Si3O13: Ce3+, Mn2+ phosphors .................................................................84
4.3 Conclusions............................................................................................86
Chapter 5 Microwave-hydrothermally synthesized SrSi2O2N2: Ce3+, Tb3+ phosphors: Efficient energy transfer, structural refinement and photoluminescence properties
5.1 Introduction.........................................................................................100
5.2 Results and discussion .........................................................................102
5.2.1 Phase, structural refinement and microstructure of SrSi2O2N2: Ce3+, Tb3+ phosphors ................................................................102
5.2.2 Diffuse Reflectance spectra of microwave-hydrothermally derived SrSi2O2N2: Ce3+, Tb3+ phosphors ..............................................104
5.2.3 Photoluminescence properties of microwave-hydrothermally derived SrSi2O2N2: Ce3+, Tb3+ phosphors .................................106
5.2.4 Energy transfer mechanism between Ce3+ and Tb3+ ..................109
5.2.5 Temperature dependence of emission spectra for SrSi2O2N2: Ce3+/Tb3+ phosphors ................................................................. 111
5.2.6 Photoluminescence Properties in VUV region for SrSi2O2N2: Ce3+/Tb3+ phosphors ................................................................. 114
5.3 Conclusions.......................................................................................... 116
Chapter 6 Photoluminescent properties and energy transfer mechanism of color-tunable CaSi2O2N2: Ce3+, Eu2+ phosphors
6.1 Introduction.........................................................................................135
6.2 Results and discussion .........................................................................136
6.2.1 Phase characterization and structural refinement of CaSi2O2N2: Ce3+, Eu2+ phosphors ................................................................136
6.2.2 Photoluminescent properties of CaSi2O2N2: Ce3+, Eu2+ phosphors ..................................................................................................137
6.2.3 Energy transfer study between Ce3+ and Eu2+ in CaSi2O2N2: Ce3+, Eu2+ phosphors .........................................................................139
6.2.4 Temperature dependence of emission spectra for CaSi2O2N2: Ce3+, Eu2+ phosphors .........................................................................144
6.3 Conclusions..........................................................................................145
Chapter 7 Structural and optical characteristics of new nitridosilicate (CeSi3N5: Tb3+) and carbonitride ((Y, La)2Si4N6C: Ce3+) phosphors
7.1 Introduction.........................................................................................159
7.2 Results and discussion .........................................................................160
7.2.1 Characterization and structural refinement of CeSi3N5: Tb3+ phosphors .................................................................................160
7.2.2 Luminescence properties and energy transfer of CeSi3N5: Tb3+ phosphors .................................................................................161
7.2.3 Chromaticity coordinates of CeSi3N5: Tb3+ phosphors ..............163 7.2.4 Characterization and structural refinement of
(Y0.95-xLaxCe0.05)2Si4N6C phosphors ..........................................164
7.2.5 Luminescence properties and crystal-field effects of (Y0.95-xLaxCe0.05)2Si4N6C phosphors ..........................................165
7.2.6 Chromaticity coordinates of (Y0.95-xLaxCe0.05)2Si4N6C phosphors ..................................................................................................167
7.3 Conclusions..........................................................................................168
Chapter 8 Conclusions ......................................................... 186
Reference................................................................................193
Publication List ..................................................................... 203
List of Figures
Figure 1.1 Schematic diagram of radiative transitions between the conduction band (Ec), the valence band (Ev) and excition (EE), donor (ED) and acceptor (EA) levels in a semiconductor……...21
Figure 1.2 Applications of phosphors under different excitation sources..22
Figure 1.3 Configurational coordinate diagram plotted by the energy E versus the metal-ligand distance R…………………………..….23
Figure 1.4 Symmetrical stretching vibration of a square-planar complex. The ligands (open circles) move in phase from and to the central metal ion……………………………………………………….…24
Figure 1.5 Radiative and non-radiative transitions explained by the configurational coordinate model………………………………25
Figure 1.6 Sketch map for the concentration quenching………….....……26
Figure 1.7 Diagram of the energy transfer between the sensitizer and activator……………………………………...…………………...27
Figure 1.8 Diagram of the energy transfer mechanisms of the exchange and electrostatic interactions…………………..………………..28
Figure 1.9 Splitting of the five d orbitals in various types of the crystal fields………………………………………………………………29
Figure 1.10 Splitting of the energy levels due to coulomb repulsion, spin-orbit coupling and crystal field splitting. Crystal-field numbers are for Y2O3: Eu3+……………………………..………30
Figure 1.11 Energy levels of 4fn configurations of trivalent lanthanide ions……………………………………………………………..…31
Figure 1.12 Simplified energy level scheme for Ce3+ ion (4f1), where SO is the spin-orbit coupling and Δ indicates the crystal field splitting………………………………………………………...…32
Figure 1.13 Schematic diagram of the energies of the 4f 7 and 4f 65d1 levels in Eu2+ influenced by the crystal field Δ………………………...33
Figure 1.14 Energy levels of the d5 configuration as a function of the octahedral crystal field…………………………………………..34
Figure 1.15 Tb3+ emission spectrum of GdTaO4: Tb3+………...………......35
Figure 1.16 Hydrolysis and condensation mechanisms of TEOS……...….36
Figure 1.17 Concept of the sol-gel process via the Pechini method….....…37
Figure 1.18 Sketch map of dipole molecules which align with an oscillating electric field…………………………………………..……….….38
Figure 1.19 Sketch map of the movement of charged particles in a solution will the applied electric field…………………...……………......39
Figure 1.20 Sketch map of the conventional hydrothermal route…...........40
Figure 1.21 Sketch map of the microwave-assisted hydrothermal route………………………………………………………………41
Figure 1.22 Design the phosphors according to the covalency of the phosphors. (A: activators (including rare-earth ions and transition metal ions), Cv: covalency)………………………..…42
Figure 1.23 Design the phosphors according to the crystal-field theory. (A: activators (including rare-earth ions and transition metal ions), Dq: crystal-field strength)…………………………………….....43
Figure 1.24 Design the phosphors according to the energy transfer mechanism. (S: sensitizers (including rare-earth ions and transition metal ions))…………………………………………...44
Figure 1.25 Main outline of the thesis……………………………………....45
Figure 2.1 Synthesis procedures for Sr2(Ce1-xSnx)O4 phosphors prepared via the sol-gel route………………………………………………51
Figure 2.2 Synthesis procedures for (Mg1-yMny)(Y3.8Ce0.2)Si3O13 phosphors prepared via the solid-state route……………………………….52
Figure 2.3 Synthesis procedures for SrSi2O2N2: Ce3+, Tb3+ phosphors prepared via the microwave-assisted hydrothermal route……53
Figure 2.4 Synthesis procedures for CaSi2O2N2: Ce3+, Eu2+ phosphors prepared via the solid-state route……………………………….54
Figure 2.5 Synthesis procedures for CeSi3N5: Tb3+ phosphors prepared via the carbothermal reduction and nitridation route……………...55
Figure 2.6 Synthesis procedures for (Y0.95-xLaxCe0.05)2Si4N6C phosphors prepared via the carbothermal reduction and nitridation route………………………………………………………………..56
Figure 3.1 X-ray diffraction patterns of Sr2(Ce1-xSnx)O4 (0 ≦ x ≦ 0.07) phosphors calcined at 1000oC for 4 h………………….……..…67
Figure 3.2 Scanning electron microscopic images of Sr2(Ce1-xSnx)O4 phosphors calcined at 1000oC for 4 h: (a) x = 0, (b) x = 0.03, and (c) x = 0.07…………………………………….…………………..68
Figure 3.3 Excitation spectra (λem = 483 nm) of Sr2(Ce1-xSnx)O4 (0 ≦ x ≦ 0.07) phosphors calcined at 1000oC for 4 h…………………….69
Figure 3.4 Deconvolution results of excitation spectra of Sr2(Ce1-xSnx)O4 (0 ≦ x ≦ 0.07) phosphors calcined at 1000oC for 4 h…………....70
Figure 3.5 Dependence of intensity ratio of the high-energy to low-energy excitation peaks on the doping amount of Sn4+ ions………...…71
Figure 3.6 Emission spectra (λex ~ 346 nm) of Sr2(Ce1-xSnx)O4 (0 ≦ x ≦ 0.07) phosphors calcined at 1000oC for 4 h; the inset is the photograph of Sr2Ce0.93Sn0.07O4 phosphor upon UV excitation………………………………………………………….72
Figure 3.7 Emission spectra (λex ~ 296 nm) of Sr2(Ce1-xSnx)O4 (0 ≦ x ≦ 0.07) phosphors calcined at 1000oC for 4 h………………….…73
Figure 3.8 X-ray photoelectron spectroscopy of Sr2(Ce1-xSnx)O4 phosphors ((a) x = 0; (b) x = 0.1; (c) x = 0.3; (d) x = 0.5; (e) x = 0.7) for Ce (3d)………………………………………………………………..74
Figure 3.9 Dependence of emission intensity of Sr2(Ce1-xSnx)O4 (x = 0.07) phosphors excited at 297 and 345 nm on the doping amount of Sn4+ ions…………………………………………………………..75
Figure 3.10 Thermal quenching behaviors for Sr2CeO4 and commercial YAG: Ce3+ and Sr2SiO4: Eu2+ phosphors……………………….76
Figure 3.11 Schematic diagram of the energy levels in Sr2(Ce1-xSnx)O4 (x = 0.07) phosphors…………………………………………………...77
Figure 4.1 Observed (×) and calculated (red solid line) X-ray diffraction pattern of Mg(Y3.8Ce0.2)Si3O13 phosphor with difference profile (blue solid line) and positions of all the reflections (vertical bars). Inset: the microstructure of Mg(Y3.8Ce0.2)Si3O13……................91
Figure 4.2 Crystal structure (a) and coordination environment of Y/Mg atoms (b) in Mg(Y3.8Ce0.2)Si3O13 phosphor……………………..92
Figure 4.3 Excitation and emission spectra of MgY4Si3O13: Mn2+ and MgY4Si3O13: Ce3+ phosphors. Inset: deconvoluted emission spectrum of MgY4Si3O13: Ce3+ phosphors…………………...…93
Figure 4.4 Excitation spectra of (Mg1-yMny)(Y3.8Ce0.2)Si3O13 phosphors....94
Figure 4.5 Emission spectra (λex = 328 nm) of (Mg1-yMny)(Y3.8Ce0.2)Si3O13 phosphors. Inset: dependence of the energy transfer efficiency ηT on Mn2+ concentration……………………………………....95
Figure 4.6 Dependence of the luminescence intensity and wavelength of Mn2+ emission on Mn2+ concentration for (Mg1-yMny)(Y3.8Ce0.2)Si3O13 phosphors………………………..96
Figure 4.7 Dependence of IS0/ IS of Ce3+ on (a) C6/3 and (b) C8/3 for (Mg1-yMny)(Y3.8Ce0.2)Si3O13 phosphors........................................97
Figure 4.8 CIE chromaticity coordinates of (Mg1-yMny)(Y3.8Ce0.2)Si3O13 phosphors………………………………………………………..98
Figure 4.9 Thermal quenching behaviors for MgY4Si3O13: Ce3+ and commercial YAG: Ce3+ and Sr2SiO4: Eu2+ phosphors………..99
Figure 5.1 Observed (×) and calculated (solid line) X-ray diffraction pattern of (Sr0.94Ce0.05Tb0.01)Si2O2N2 phosphor with difference profile (dot line) and positions of all the reflections (vertical bars). Inset: Scanning electron microscopic image of (Sr0.94Ce0.05Tb0.01)Si2O2N2 phosphor……………………….…120
Figure 5.2 Crystal structure of SrSi2O2N2 (red spheres: O, blue spheres: N, white spheres: Sr, and brown spheres: Si): (a) view approximately along [1 0 0], (b) coordination environment of the Sr atoms in SrSi2O2N2……………………………………..121
Figure 5.3 X-ray diffraction patterns of (a) (Sr0.95Ce0.05)Si2O2N2 and (Sr0.95-yCe0.05Tby)Si2O2N2 (y = (b) 0.01, (c) 0.02, (d) 0.03, (e) 0.04 and (f) 0.05)……………………………………………….....…122
Figure 5.4 Diffuse reflectance spectra of (a) (Sr0.95Ce0.05)Si2O2N2 and (Sr0.95-yCe0.05Tby)Si2O2N2 (y = (b) 0.01, (c) 0.02, (d) 0.03, (e) 0.04 and (f) 0.05)……………………………………………….......…123
Figure 5.5 Excitation and emission spectra of (a) (Sr0.95Ce0.05)Si2O2N2 and (b) (Sr0.95Tb0.05)Si2O2N2. (c) spectral overlap between excitation spectrum of (Sr0.95Tb0.05)Si2O2N2 and emission spectrum of (Sr0.95Ce0.05)Si2O2N2. Inset of (c): enlarged area of spectral overlap………………………………………………………......124
Figure 5.6 Emission spectra of (a) (Sr0.95Ce0.05)Si2O2N2 and (Sr0.95-yCe0.05Tby)Si2O2N2 (y = (b) 0.01, (c) 0.02, (d) 0.03, (e) 0.04 and (f) 0.05)...................................................................................125
Figure 5.7 Log plot for the emission intensity as a function of the activator concentration……………………………………………………126
Figure 5.8 CIE chromaticity coordinates of (a) (Sr0.95Ce0.05)Si2O2N2, (b) (Sr0.95Tb0.05)Si2O2N2 and (Sr0.95-yCe0.05Tby)Si2O2N2 (y = (c) 0.01, (d) 0.02, (e) 0.03, (f) 0.04 and (g) 0.05)………………………....127
Figure 5.9 Temperature-dependent emission spectra and the relative emission intensity (inset) of (Sr0.95Ce0.05)Si2O2N2 phosphor...128
Figure 5.10 Plot of activation energy for thermal quenching of (Sr0.95Ce0.05)Si2O2N2 phosphor. Inset: configuration coordinate diagram of Ce3+ in SrSi2O2N2-based phosphors……………..129
Figure 5.11 Temperature-dependent emission spectra of (Sr0.95Tb0.05)Si2O2N2 phosphor. Upper inset shows the temperature dependence of emission intensity at 480 and 487 nm. Lower inset illustrates the enlarged emission spectra in the range of 570-650 nm…………………………………………..130
Figure 5.12 Thermal quenching behaviors for SrSi2O2N2: Ce3+ and commercial YAG: Ce3+ and Sr2SiO4: Eu2+ phosphors…...…131
Figure 5.13 Excitation spectra of (Sr0.95Ce0.05)Si2O2N2 and (Sr0.95Tb0.05)Si2O2N2 phosphors……………………………….132
Figure 5.14 Emission spectra of (Sr0.95-xCe0.05Tbx)Si2O2N2 (x = 0.01 - 0.05) phosphors under the excitation at 172 nm. Inset depicts the deconvoluted excitation spectrum of Sr0.92Ce0.05Tb0.03)Si2O2N2 phosphor……………………………………………………….133
Figure 5.15 Schematic energy-level diagram for Ce3+ and Tb3+ ions in SrSi2O2N2: Ce3+, Tb3+ phosphors……………………………..134
Figure 6.1 Observed (×) and calculated (solid line) X-ray diffraction pattern of (Ca0.95Ce0.05)Si2O2N2 phosphor with positions of all the reflections (vertical bars). Inset: microstructure of (Ca0.95Ce0.05)Si2O2N2.…………………………….…….………..149
Figure 6.2 Crystal structure of CaSi2O2N2 (red spheres: O, blue spheres: N,
white spheres: Ca, and brown spheres: Si)……………………150
Figure 6.3 X-ray diffraction patterns of (Ca0.95-yCe0.05Euy)Si2O2N2 ((a) y = 0,
(b) y = 0.001, (c) y = 0.003, (d) y = 0.005, (e) y = 0.01, (f) y = 0.02)
and (g) (Ca0.95Eu0.05)Si2O2N2 phosphors...................................151
Figure 6.4 Excitation and emission spectra of (a) (Ca0.95Ce0.05)Si2O2N2 and
(b) (Ca0.95Eu0.05)Si2O2N2 phosphors. (c) Spectral overlap between
excitation spectrum of (Ca0.95Eu0.05)Si2O2N2 and emission
spectrum of (Ca0.95Ce0.05)Si2O2N2……………………………...152
Figure 6.5 Excitation spectra of (Ca0.95-yCe0.05Euy)Si2O2N2 phosphors….153
Figure 6.6 Emission spectra of (Ca0.95-yCe0.05Euy)Si2O2N2
phosphors…...154
Figure 6.7 CIE chromaticity coordinates of (Ca1-x-yCexEuy)Si2O2N2
phosphors: (a) x = 0.05, y = 0, (b) x = 0, y = 0.05, (c) x = 0.05, y
= 0.001, (d) x = 0.05, y = 0.003, (e) x = 0.05, y = 0.005, (f) x =
0.05, y = 0.01 and (g) x = 0.05, y = 0.02....................................155
Figure 6.8 Temperature-dependent emission spectra and the relative
emission intensity (inset) of (Ca0.949Ce0.05Eu0.001)Si2O2N2
phosphor…………………………………………………….…156
Figure 6.9 Plot of activation energy for thermal quenching of
(Ca0.949Ce0.05Eu0.001)Si2O2N2 phosphor. Inset: configuration
coordinate diagram of Eu2+ in CaSi2O2N2-based phosphors...157
Figure 6.10 Thermal quenching behaviors for CaSi2O2N2: Ce3+ and
commercial YAG: Ce3+ and Sr2SiO4: Eu2+ phosphors……...158
Figure 7.1 X-ray diffraction patterns of (Ce1-xTbx)Si3N5 (x = 0 - 0.07)
phosphors……….................................................................…....173
Figure 7.2 Observed (×) and calculated (solid line) X-ray diffraction
pattern of CeSi3N5 phosphor with difference profile (dotted line)
and positions of all the reflections (vertical bars). Inset: the
projection of CeSi3N5 structure along (1 0 0) and the
microstructure of CeSi3N5...........................................................174
Figure 7.3 (a) Unit cell and (b) the projection of CeSi3N5 structure along (1
0 0)……………………………………………………………….175
Figure 7.4 Excitation spectra (λem = 453 nm) of (Ce1-xTbx)Si3N5 (x = 0 - 0.07)
phosphors. Inset: dependence of the energy transfer efficiency η
on Tb3+ concentration………………………………………......176
Figure 7.5 Emission spectra (λex = 353 nm) of (Ce1-xTbx)Si3N5 (x = 0 - 0.07)
phosphors. Inset: dependence of the emission intensity ratio of
Iλm545/ Iλm453 on Tb3+ concentration…………………………….177
Figure 7.6 Thermal quenching behaviors for CeSi3N5 and commercial
YAG: Ce3+ and Sr2SiO4: Eu2+ phosphors……………………...178
XIV
Figure 7.7 CIE chromaticity coordinates of (Ce1-xTbx)Si3N5 phosphors: (a)
x = 0, (b) x = 0.01, (c) x = 0.03, (d) x = 0.05 and (e) x = 0.07….179
Figure 7.8 Observed (×) and calculated (solid line) X-ray diffraction
pattern of (Y0.95Ce0.05)2Si4N6C phosphor with difference profile
(dot line) and positions of all the reflections (vertical bars). Inset:
the microstructure of (Y0.95Ce0.05)2Si4N6C…………………......180
Figure 7.9 (a) Unit cell and (b) a view of (Y0.95Ce0.05)2Si4N6C structure
along [1 0 0] (blue spheres: N, black spheres: C, white spheres:
Y and brown spheres: Si)………………………………………181
Figure 7.10 Excitation spectra of (Y0.95-xLaxCe0.05)2Si4N6C (0≦x≦1)
phosphors.....................................................................................182
Figure 7.11 Emission spectra of (Y0.95-xLaxCe0.05)2Si4N6C (0≦x≦1)
phosphors. Inset: Dependence of the emission wavelength on
La3+ concentration……………………………………………...183
Figure 7.12 Thermal quenching behaviors for Y2Si4N6C: Ce3+ and
commercial YAG: Ce3+ and Sr2SiO4: Eu2+ phosphors………..184
Figure 7.13 CIE chromaticity coordinates of (Y0.95-xLaxCe0.05)2Si4N6C (x =
(a) 0, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, (f) 0.5, (g) 0.6 and (h) 1)
phosphors…………………………………………………..…...185
Figure 8.1 Summary of the main conclusions in the thesis……………....192
List of Tables
Table 4.1 Crystal structural data and lattice parameters of
Mg(Y3.8Ce0.2)Si3O13
phosphor………………………………….…88
Table 4.2 Refined interatomic distances in Mg(Y3.8Ce0.2)Si3O13
phosphor…………………………………………………………...89
Table 4.3 CIE chromaticity coordinates of (Mg1-yMny)(Y3.8Ce0.2)Si3O13
phosphors……………………………………………………….…90
Table 5.1 Crystal structural data and lattice parameters of
(Sr0.94Ce0.05Tb0.01)Si2O2N2 phosphor………………………….…118
Table 5.2 CIE chromaticity coordinates of (Sr1-x-yCexTby)Si2O2N2
phosphors………………………………………………………...119
Table 6.1 Crystal structural data and lattice parameters of
(Ca0.95Ce0.05)Si2O2N2 phosphor………………………………….147
Table 6.2 CIE chromaticity coordinates of (Ca1-x-yCexEuy)Si2O2N2
phosphors………………………………………………………...148
Table 7.1 CIE chromaticity coordinates of (Ce1-xTbx)Si3N5 (x = 0 - 0.07)
phosphors………………………………………………………...170
Table 7.2 Refined interatomic distances in (Y0.95Ce0.05)2Si4N6C
phosphor……………………………………………………….....171
Table 7.3 CIE chromaticity coordinates of (Y0.95-xLaxCe0.05)2Si4N6C
phosphors………………………………………………………...172
Table 8.1 Relations between the radii of the doped metal ions and the
photoluminescence properties…………………………………..190
Table 8.2 Summary of the photoluminescence properties and energy
transfer mechanisms of the prepared phosphors………………191
dc.language.isoen
dc.title白光發光二極體之新穎螢光材料製備及螢光特性分析zh_TW
dc.titlePreparation and Photoluminescence Properties of
Potential Phosphors for White Light-Emitting Diodes
en
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee萬本儒,吳紀聖,陳登銘,蔡大翔
dc.subject.keyword螢光粉,發光二極體,能量轉移,晶場理論,zh_TW
dc.subject.keywordphosphor,light-emitting diode,enregy transfer,crystal field,en
dc.relation.page206
dc.rights.note有償授權
dc.date.accepted2010-07-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2300-01-01-
Appears in Collections:化學工程學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
3.77 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved