請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44636完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王維新(Way-Seen Wang) | |
| dc.contributor.author | Chia-Hsing Kang | en |
| dc.contributor.author | 康家興 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:52:05Z | - |
| dc.date.available | 2010-07-15 | |
| dc.date.copyright | 2010-07-15 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-09 | |
| dc.identifier.citation | [1] I. Andonovic and D. Uttamchandnni, Principles of Modern Optics Systems, chap. 19, Artech House, 1989.
[2] R. G. Hunsperger, Integrated Optics: Theory and Technology 5th Ed., Springer, 2002. [3] G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” OPT. Quantum Electron., vol. 16, pp. 373-375, 1984. [4] M. E. Glicksman, Diffusion in Solids: Field Theory, Solid-State Principles, and Applications, Wiley, 2000. [5] W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization, and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate,” J. Lightwave Technol., vol 10, no.9, pp. 1238-1246, Sep. 1992. [6] R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett., vol. 25, no. 8, pp. 458-460, Oct. 1974. [7] M. N. Armenise, “Fabrication techniques of lithium niobate waveguides,” IEE Proc., vol. 135, no. 2, pp. 85-91, Apr. 1988. [8] J. L. Jackal, “Suppression of outdiffusion in titanium diffused LiNbO3,” J. Opt. Commun., vol. 3, pp. 82-85, 1982. [9] B. U. Chen and A. C. Pastor, “Elimination of Li2O outdiffusion waveguide in LiNbO3 and LiTaO3,” Appl. Phys. Lett., vol. 30, no. 11, pp. 570-571, 1977. [10] Y. P. Liao, D. J. Chen, R. C. Lu, and W. S. Wang, “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Technol. Lett., vol. 8, no. 4, pp. 548-550, Apr. 1996. [11] W. H. Hsu, K. C. Lin, J. Y. Li, Y. S. Wu, and W. S. Wang, “Polarization Splitter with variable TE-TM mode converter using Zn and Ni codiffused LiNbO3 waveguides,” IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 1, pp. 271-277 Jan. / Feb. 2005. [12] P. K. Wei and W. S. Wang, “Novel TE/TM mode splitter on lithium niobate using nickel indiffusion and proton exchange techniques,” Electon. Lett., vol.30, no. 1, pp. 35-37, 1994. [13] W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, and H. J. Shaw, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO: LiNbO3,” Opt. Lett., vol.16, no.13, pp.995-997, 1991 [14] 涂瑞清,“長波長鋅擴散式鈮酸鋰光波導元件之研製”,國立台灣大學電機工程學研究所博士論文,2000. [15] 徐文浩,“鋅鎳共同擴散式鈮酸鋰光波導元件之特性與應用”,國立台灣大學電機工程學研究所博士論文,2000. [16] 楊志華, “鋅鎳同步擴散式鈮酸鋰光波導之研製,”,國立台灣大學電機工程學研究所碩士論文, 1996. [17] 陳卓彥,“藍光鋅鎳擴散式馬赫任德電光調變器之研製” ,國立台灣大學光電工程學研究所碩士論文,2005. [18] 陳松良,“鈮酸鋰藍光方向耦合器之研製”,國立台灣大學光電工程學研究所碩士論文,2005. [19] S. Fouchet, A. Carenco, C, Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol., vol. 5, pp.700-708, May 1987. [20] 黃文宏,“鎵擴散式鈮酸鋰光波導特性之研究” ,國立台灣大學光電工程學研究所博士論文,2008. [21] B. Glance, “Polarization independent coherent optical receive,” J. Lightwave Technol., vol. 5 no.2, pp. 274-276, Feb.1987. [22] W. J. Minford, R. Depaula, and G. A. Bogert, “Interferometric fiber optical gyroscope using a novel 3×3 integrated optic polarizer/splitter,” in Dig. Conf. Optical Fiber Sensors, 1988, pp. 385-392. [23] W. Warzanakyj, F. Heismann, and R. C. Alferness, “Polarization independent electro-optically tunable narrow-band wavelength filter,” Appl. Phys. Lett., vol. 53, no.1, pp. 13-15, 1988. [24] M. Kobayashi, H. Terui, and K. Egashira, “An optical TE-TM mode splitter,” Appl. Phys. Lett., vol. 32, no. 5, pp. 300-302, 1978. [25] D. Yap, L. M. Johnson, and G. W. Pratt. Jr., “Passive Ti:LiNbO3 channel waveguide TE-TM mode splitter,” Appl. Phys. Lett., vol. 44, no. 6, pp. 583-585, 1984. [26] R. C. Twu, C. C. Huang, and W. S. Wang, “TE-TM mode splitter with heterogeneously coupled Ti-diffused and Ni-diffused waveguides on Z-cut lithium niobate,” Electron. Lett., vol. 36, no. 3, pp. 220-221, Feb. 2000. [27] H. Yajima, “Dielectric thin-film optical branching waveguide,” Appl. Phys. Lett., vol. 22, no. 12, pp. 647-649, 1973. [28] W. K. Burns and A. F. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron., vol. 11, no. 1, pp. 32-39, Jan. 1975. [29] M. Masuda and G. L. Yip, “An optical TE/TM mode splitter using a LiNbO3 branching waveguide,” Appl. Phys. Lett., vol. 37, no. 1, pp. 20-22, 1980. [30] J. J. G. M. van der Tol, and J. H. Laarhuis, “A polarization splitter on LiNbO3 using only titanium diffusion,” J. Lightwave Technol., vol. 9, no. 7, pp. 879-886, Jul. 1991. [31] N. Goto and G. L. Yip, “A TE-TM mode splitter in LiNbO3 by proton exchange and Ti diffusion,” J. Lightwave Technol., vol. 7, no. 10, pp. 1567-1574, Oct. 1989. [32] P. K. Wei and W. S. Wang, “Novel TE-TM mode splitter on lithium niobate using nickel indiffusion and proton exchange techniques,” Electron. Lett., vol. 30, no. 1, pp. 35-37, Jan. 1994. [33] 林佳蔚, “鈮酸鋰側壁延伸式電極大角度可控制極化分離器,” 國立台灣大學電子工程學研究所博士論文, 2009. [34] R. C. Alferness, “Waveguide electooptic modulators,” IEEE Transactions on Microwave Theory and Techniques., vol. MTT-30, No.8, Aug 1982. [35] E. J. Lim, M. M. Fejer, and R. L. Byer, “Blue light generation by frequency doubling in periodically poled LiNbO3 channel waveguide”, Electron. Lett., vol. 25, no. 11, pp.731-732,1989 [36] 陳祥麟,“鋅鎳及鎵擴散式鈮酸鋰光波導極化分離器之研製”,國立台灣大學光電工程學研究所碩士論文,2009. [37] R. C. Alferness, “Efficient waveguide electro-optic TE↔TM mode converter/wavelength filter,” Appl. Phys. Lett., vol.36, no.7, pp. 513-515, 1980. [38] L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y. S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter” J. Lightwave. Technol., vol. 25, no. 3, pp. 740-746, Mar. 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44636 | - |
| dc.description.abstract | 本論文利用鋅鎳共同擴散及鎵擴散在Z切鈮酸鋰基板上製作可調式極化分離器。元件架構為一非對稱Y形分岔結構,輸入波導為一鋅鎳共同擴散式波導搭配指狀調變電極,直分支輸出波導為僅導通橫電模態(水平極化方向)之鋅鎳共同擴散式波導,彎曲分支輸出波導為僅導通橫磁模態(垂直極化方向)之鎵擴散式波導。
本論文所提出的製程方式,僅需要一次高溫擴散步驟,有別於先前已發表之極化分離器製程需要兩次或兩次以上高溫擴散步驟,因此能夠有效簡化製造過程。 在元件應用上,實驗結果顯示橫電模態的訊熄比為20.8dB,橫電模態的訊熄比為24.2dB,已達實際應用的標準。此外利用鈮酸鋰晶體的電光效應特性,搭配指狀電極的設計,在操作波長為1.55μm,操作電壓為 90V 下,此元件具有 37.5 %的極化轉換效率,提供了極化分離器微調整輸出光功率的機制。 | zh_TW |
| dc.description.abstract | In this thesis, a controllable polarization splitter with Zn and Ni co-diffusion optical waveguide and Ga diffusion optical waveguide is successfully fabricated on Z-cut LiNbO3 substrate. The basic structure of the proposed polarization splitter is an asymmetrical Y-branch with the advantage of high fabrication tolerance. Both TE and TM modes are supported in the input waveguide fabricated by Zn and Ni co-diffusion. For electrooptic modulation, a pair of interdigitated electrodes is placed on both sides of the input waveguide. In the output section, only TE modes are supported in the straight waveguide fabricated by Zn and Ni co-diffusion, whereas only TM modes are supported in the bent waveguide fabricated by Ga diffusion.
As only one diffusion step is needed, instead of two or more diffusion steps used in previous works, the device fabrication process can be greatly simplified. The measured extinction ratios are 24.2dB for the TE mode and 20.8dB for the TM mode, which are good enough for practical applications. In addition, using the property of electro-optic effect in LiNbO3 crystal and design of finger-type electrodes can achieve 37.5% mode conversion efficiency in the condition of input light with 1.55 μm wavelength and 90V drive voltage. The output power ratio between two polarization components can be electrically controlled. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:52:05Z (GMT). No. of bitstreams: 1 ntu-99-R97941062-1.pdf: 1355532 bytes, checksum: 4b6b786c0cd966f57c623044e9afba44 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 第一章 序論
1-1 研究背景 1 1-2 鈮酸鋰晶體簡介 2 1-3 研究動機 4 1-4 內容簡介 5 第二章 研究方法 2-1 鈮酸鋰晶體光學特性 6 2-2 金屬擴散式波導 9 2-2-1 鈦擴散式鈮酸鋰光波導簡介 11 2-2-2 鎳擴散式鈮酸鋰光波導簡介 11 2-2-3 鋅擴散式鈮酸鋰光波導簡介 12 2-2-4 鋅鎳共同擴散式鈮酸鋰光波導簡介 13 2-2-5 鎵擴散式鈮酸鋰光波導簡介 13 第三章 鈮酸鋰光波導極化分離器 3-1 方向耦合式極化分離器 16 3-2 非對稱Y分岔式極化分離器 18 3-2-1 模態檢選效應 20 第四章 可調式光極化分離器製作與量測系統 4-1 擴散式光波導製作流程 25 4-1-1 晶圓切割 26 4-1-2 晶片清洗 26 4-1-3 光微影術 27 4-1-4 薄膜製程 28 4-1-5 掀離法 32 4-1-6 高溫擴散 32 4-1-7 研磨拋光 34 4-2 可調式極化分離器製作參數 35 4-2-1 鋅鎳共同擴散式鈮酸鋰光波導製程參數 36 4-2-2 鎵擴散式鈮酸鋰光波導製程參數 38 4-3 量測系統 40 4-3-1 可調式極化分離器訊熄比量測系統 40 4-3-2 可調式極化分離器轉換效率量測系統 41 第五章 可調式極化分離器實驗結果與討論 5-1可調式鋅鎳共同擴散與鎵擴散極化分離器訊熄比 43 5-2可調式鋅鎳共同擴散與鎵擴散極化分離器轉換效率 45 第六章 結論與未來展望 6-1 結論 49 6-2 未來展望 50 參考文獻 51 中英名詞對照表 55 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鈮酸鋰 | zh_TW |
| dc.subject | 極化分離器 | zh_TW |
| dc.subject | 鎵擴散 | zh_TW |
| dc.subject | 鋅鎳共同擴散 | zh_TW |
| dc.subject | Lithium Niobate | en |
| dc.subject | polarization splitter | en |
| dc.subject | Ga-diffused | en |
| dc.subject | Zn-Ni-codiffused | en |
| dc.title | 可調式鋅鎳共同擴散及鎵擴散式鈮酸鋰光波導極化分離器之研製 | zh_TW |
| dc.title | Design and Fabrication of Controllable Zinc-and-Nickel-Codiffused and Gallium-Diffused Lithium Niobate Optical Polarization Splitters | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張宏鈞(Hung-Chun Chang),彭隆瀚(Lung-Han Peng),李清庭(Ching-Ting Lee) | |
| dc.subject.keyword | 鈮酸鋰,極化分離器,鎵擴散,鋅鎳共同擴散, | zh_TW |
| dc.subject.keyword | Lithium Niobate,polarization splitter,Ga-diffused,Zn-Ni-codiffused, | en |
| dc.relation.page | 57 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-09 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
