請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44630完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 施修明(Hsiu-Ming Shih) | |
| dc.contributor.author | Szu-Wen Wang | en |
| dc.contributor.author | 王思文 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:52:00Z | - |
| dc.date.available | 2012-09-09 | |
| dc.date.copyright | 2010-09-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-09 | |
| dc.identifier.citation | Angrisano, T., F. Lembo, et al. (2006). 'TACC3 mediates the association of MBD2 with histone acetyltransferases and relieves transcriptional repression of methylated promoters.' Nucleic Acids Res 34(1): 364-72.
Aratani, Y., E. Sugimoto, et al. (1987). 'Lithium ion reversibly inhibits inducer-stimulated adipose conversion of 3T3-L1 cells.' FEBS Lett 218(1): 47-51. Chiang, M. H., L. F. Chen, et al. (2008). 'Ubiquitin-conjugating enzyme UBE2D2 is responsible for FBXW2 (F-box and WD repeat domain containing 2)-mediated human GCM1 (glial cell missing homolog 1) ubiquitination and degradation.' Biol Reprod 79(5): 914-20. Christodoulides, C., C. Lagathu, et al. (2009). 'Adipogenesis and WNT signalling.' Trends Endocrinol Metab 20(1): 16-24. Cowherd, R. M., R. E. Lyle, et al. (1999). 'Molecular regulation of adipocyte differentiation.' Semin Cell Dev Biol 10(1): 3-10. Farmer, S. R. (2005). 'Regulation of PPARgamma activity during adipogenesis.' Int J Obes (Lond) 29 Suppl 1: S13-6. Farmer, S. R. (2006). 'Transcriptional control of adipocyte formation.' Cell Metab 4(4): 263-73. Feve, B. (2005). 'Adipogenesis: cellular and molecular aspects.' Best Pract Res Clin Endocrinol Metab 19(4): 483-99. Finley, D. (2009). 'Recognition and processing of ubiquitin-protein conjugates by the proteasome.' Annu Rev Biochem 78: 477-513. Forde, J. E. and T. C. Dale (2007). 'Glycogen synthase kinase 3: a key regulator of cellular fate.' Cell Mol Life Sci 64(15): 1930-44. Frame, S. and P. Cohen (2001). 'GSK3 takes centre stage more than 20 years after its discovery.' Biochem J 359(Pt 1): 1-16. Garriga-Canut, M. and S. H. Orkin (2004). 'Transforming acidic coiled-coil protein 3 (TACC3) controls friend of GATA-1 (FOG-1) subcellular localization and regulates the association between GATA-1 and FOG-1 during hematopoiesis.' J Biol Chem 279(22): 23597-605. Gergely, F., V. M. Draviam, et al. (2003). 'The ch-TOG/XMAP215 protein is essential for spindle pole organization in human somatic cells.' Genes Dev 17(3): 336-41. Gergely, F., D. Kidd, et al. (2000). 'D-TACC: a novel centrosomal protein required for normal spindle function in the early Drosophila embryo.' EMBO J 19(2): 241-52. Green, H. and O. Kehinde (1975). 'An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion.' Cell 5(1): 19-27. Guo, X., A. Ramirez, et al. (2008). 'Axin and GSK3- control Smad3 protein stability and modulate TGF- signaling.' Genes Dev 22(1): 106-20. Haglund, K. and I. Dikic (2005). 'Ubiquitylation and cell signaling.' EMBO J 24(19): 3353-9. Hishida, T., M. Nishizuka, et al. (2009). 'The role of C/EBPdelta in the early stages of adipogenesis.' Biochimie 91(5): 654-7. Ho, M. S., P. I. Tsai, et al. (2006). 'F-box proteins: the key to protein degradation.' J Biomed Sci 13(2): 181-91. Jeng, J. C., Y. M. Lin, et al. (2009). 'Cdh1 controls the stability of TACC3.' Cell Cycle 8(21): 3529-36. Kang, S., C. N. Bennett, et al. (2007). 'Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma.' J Biol Chem 282(19): 14515-24. Kang, T., Y. Wei, et al. (2008). 'GSK-3 beta targets Cdc25A for ubiquitin-mediated proteolysis, and GSK-3 beta inactivation correlates with Cdc25A overproduction in human cancers.' Cancer Cell 13(1): 36-47. Katayama, K., K. Wada, et al. (2004). 'RNA interfering approach for clarifying the PPARgamma pathway using lentiviral vector expressing short hairpin RNA.' FEBS Lett 560(1-3): 178-82. Kim, J. B., H. M. Wright, et al. (1998). 'ADD1/SREBP1 activates PPARgamma through the production of endogenous ligand.' Proc Natl Acad Sci U S A 95(8): 4333-7. Kim, K. H., M. J. Song, et al. (2004). 'Regulatory role of glycogen synthase kinase 3 for transcriptional activity of ADD1/SREBP1c.' J Biol Chem 279(50): 51999-2006. Kirkin, V. and I. Dikic (2007). 'Role of ubiquitin- and Ubl-binding proteins in cell signaling.' Curr Opin Cell Biol 19(2): 199-205. Le, T. T. and J. X. Cheng (2009). 'Single-cell profiling reveals the origin of phenotypic variability in adipogenesis.' PLoS One 4(4): e5189. Lefterova, M. I. and M. A. Lazar (2009). 'New developments in adipogenesis.' Trends Endocrinol Metab 20(3): 107-14. Lin, C. H., C. K. Hu, et al. 'Clathrin heavy chain mediates TACC3 targeting to mitotic spindles to ensure spindle stability.' J Cell Biol. Loo, L. H., H. J. Lin, et al. (2009). 'Heterogeneity in the physiological states and pharmacological responses of differentiating 3T3-L1 preadipocytes.' J Cell Biol 187(3): 375-84. MacDonald, B. T., K. Tamai, et al. (2009). 'Wnt/beta-catenin signaling: components, mechanisms, and diseases.' Dev Cell 17(1): 9-26. Monteiro, M. C., B. Wdziekonski, et al. (2009). 'Commitment of mouse embryonic stem cells to the adipocyte lineage requires retinoic acid receptor beta and active GSK3.' Stem Cells Dev 18(3): 457-63. Ntambi, J. M. and K. Young-Cheul (2000). 'Adipocyte differentiation and gene expression.' J Nutr 130(12): 3122S-3126S. Otto, T. C. and M. D. Lane (2005). 'Adipose development: from stem cell to adipocyte.' Crit Rev Biochem Mol Biol 40(4): 229-42. Park, B. H., L. Qiang, et al. (2004). 'Phosphorylation of C/EBPbeta at a consensus extracellular signal-regulated kinase/glycogen synthase kinase 3 site is required for the induction of adiponectin gene expression during the differentiation of mouse fibroblasts into adipocytes.' Mol Cell Biol 24(19): 8671-80. Patel, S., B. Doble, et al. (2004). 'Glycogen synthase kinase-3 in insulin and Wnt signalling: a double-edged sword?' Biochem Soc Trans 32(Pt 5): 803-8. Peset, I. and I. Vernos (2008). 'The TACC proteins: TACC-ling microtubule dynamics and centrosome function.' Trends Cell Biol 18(8): 379-88. Piekorz, R. P., A. Hoffmeyer, et al. (2002). 'The centrosomal protein TACC3 is essential for hematopoietic stem cell function and genetically interfaces with p53-regulated apoptosis.' EMBO J 21(4): 653-64. Ross, S. E., R. L. Erickson, et al. (1999). 'Glycogen synthase kinase 3 is an insulin-regulated C/EBPalpha kinase.' Mol Cell Biol 19(12): 8433-41. Ross, S. E., N. Hemati, et al. (2000). 'Inhibition of adipogenesis by Wnt signaling.' Science 289(5481): 950-3. Sadek, C. M., M. Pelto-Huikko, et al. (2003). 'TACC3 expression is tightly regulated during early differentiation.' Gene Expr Patterns 3(2): 203-11. Saito, T., D. Abe, et al. (2008). 'Sakuranetin induces adipogenesis of 3T3-L1 cells through enhanced expression of PPARgamma2.' Biochem Biophys Res Commun 372(4): 835-9. Tang, Q. Q. and M. D. Lane (2000). 'Role of C/EBP homologous protein (CHOP-10) in the programmed activation of CCAAT/enhancer-binding protein-beta during adipogenesis.' Proc Natl Acad Sci U S A 97(23): 12446-50. Wang, N. D., M. J. Finegold, et al. (1995). 'Impaired energy homeostasis in C/EBP alpha knockout mice.' Science 269(5227): 1108-12. Yang, C. S., C. Yu, et al. (2005). 'FBW2 targets GCMa to the ubiquitin-proteasome degradation system.' J Biol Chem 280(11): 10083-90. Zuo, Y., L. Qiang, et al. (2006). 'Activation of CCAAT/enhancer-binding protein (C/EBP) alpha expression by C/EBP beta during adipogenesis requires a peroxisome proliferator-activated receptor-gamma-associated repression of HDAC1 at the C/ebp alpha gene promoter.' J Biol Chem 281(12): 7960-7. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44630 | - |
| dc.description.abstract | TACC蛋白質家族,最先是在癌症細胞中發現。TACC蛋白被認為與細胞生長和分化相關。TACC3是TACC家族蛋白其中一個成員,大量的表現在胚胎發育及脂肪分化中,然而TACC3在脂肪分化中確實的角色還是未知。GSK3是一個多功能的激酶,在脂肪細胞分化中也扮演一個重要的調控角色,最近由我們實驗室發現GSK3可以負向的調控TACC3蛋白質表現量,經由GSK3對TACC3磷酸化引發下游泛素化接合酶-SCFFbw2主導的泛素化-蛋白質酶體的代謝路徑降解TACC3。在本篇論文中我們探討TACC3在脂肪細胞分化中的角色以及在此分化過程中TACC3表現量是否經由GSK3激酶所調控。我們呈現TACC3蛋白在脂肪細胞分化前期有大量表現,然而隨後TACC3隨著分化時間遞減是脂肪細胞成熟所需的過程。此外TACC3對於脂肪分化中幾個主要的轉譯因子有負向的調控。當使用GSK3的抑制劑LiCl來抑制GSK3活性會造成TACC3蛋白的累積並降低脂肪細胞中主要轉錄因子的表現,造成油滴累積量的下降。我們更進一步呈現,使用shRNA降低TACC3的表現量能部份抵制LiCl對於脂肪分化的抑制進而增加脂肪細胞內油滴的產生。總而言之,我們的研究顯示TACC3在脂肪細胞成熟過程中擔任一個負向調控的角色。 | zh_TW |
| dc.description.abstract | Transforming acidic coiled-coil (TACC) family is a group of proteins containing common C-terminal acidic coiled-coil domain, firstly found in cancer cells. TACC proteins were hypothesized to be involved in cellular growth and differentiation. TACC3, one of TACC family members, is highly expressed during embryonic development and adipocyte differentiation. Currently, the role of TACC3 in adipogenesis is still unknown. GSK3, a multifunction kinase also important for adipocyte development, has recently identified in our lab to negatively regulate TACC3 protein stability by phosphorylation in association with ubiquitin-dependent degradation pathway via SCFFbw2 E3 ligases. Here, we asked whether TACC3 is involved in the differentiation process of adipocytes and whether TACC3 stability is regulated by GSK3 in the process. We demonstrated that the level of TACC3 protein can be induced in early phase and declined during differentiation process of 3T3-L1 in late stage, which is essential for adipogenesis. TACC3 attenuated the levels of several master adipogenic transcription factors. Inhibition of GSK3 by LiCl resulted in an increase of TACC3 protein level, correlating with a suppression of lipid formation. In addition, depletion of TACC3 level by shRNA led to partially abolish the repressive effect of LiCl on adipogenesis. These results suggest that TACC3 plays a negatively regulatory role in adipocyte differentiation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:52:00Z (GMT). No. of bitstreams: 1 ntu-99-R97448004-1.pdf: 2571587 bytes, checksum: 7b29769b15e3d58da63ea4b7372b7718 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 目 錄
口試委員會審定書…………………………………………………………… I 誌謝………………………………………………………………………………. II 中文摘要………………………………………………………………………. III 英文摘要………………………………………………………………………. IV CHAPTER I Introduction…………………………………………………. 1 1. TACC3…………………………………………………………………….. 2 2. Ubiquitination…………………………………………………………….. 7 3. Adipogenesis……………………………………………………………….. 10 CHAPTER II Meterials and Methods........................................................ 19 CHAPTER III Results……………………………………………………… 26 CHAPTER IV Discussion…………………………………………………. 36 CHAPTER V Figures………………………………………………………. 42 Appendixes……………………………………………………………………... 62 References…………………………………………………………………..…. 67 | |
| dc.language.iso | en | |
| dc.subject | PPARγ | zh_TW |
| dc.subject | TACC3 | zh_TW |
| dc.subject | 脂肪分化 | zh_TW |
| dc.subject | GSK3 | zh_TW |
| dc.subject | Fbw2 | zh_TW |
| dc.subject | 泛素化 | zh_TW |
| dc.subject | C/EBPα | zh_TW |
| dc.subject | adipogenesis | en |
| dc.subject | PPARγ | en |
| dc.subject | C/EBPα | en |
| dc.subject | ubiquitination | en |
| dc.subject | GSK3 | en |
| dc.subject | TACC3 | en |
| dc.subject | Fbw2 | en |
| dc.title | TACC3於脂肪分化過程中之角色 | zh_TW |
| dc.title | The role of TACC3 in adipocyte differentiation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李芳仁(Fang-Jen Lee),陳宏文(Hungwen Chen) | |
| dc.subject.keyword | TACC3,脂肪分化,GSK3,Fbw2,泛素化,C/EBPα,PPARγ, | zh_TW |
| dc.subject.keyword | TACC3,adipogenesis,GSK3,Fbw2,ubiquitination,C/EBPα,PPARγ, | en |
| dc.relation.page | 70 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-12 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
