請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44623完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊照彥 | |
| dc.contributor.author | Chung-Dao Chen | en |
| dc.contributor.author | 陳俊道 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:51:54Z | - |
| dc.date.available | 2012-07-13 | |
| dc.date.copyright | 2010-07-13 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-12 | |
| dc.identifier.citation | [1] Bird, G. A., (1994) Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press Oxford.
[2] Capinski, W. S. and Maris, H. J., (1996) “Thermal conductivity of GaAs/AlAs superlattices,” Physica B, 219, pp. 699-701. [3] Chen, G., (1997) “Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures, ASME Journal of Heat Transfer,” 119, pp. 220-229. [4] Chen, G., (1998) “Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices”, Physical Review B, 57, pp. 14958-14973. [5] Chen, G., (2001) “Ballistic-Diffusive Heat-Conduction Equation,” Physical Review Letters, 86, pp. 2297-2300. [6] Chen, G., Tien, C. L., Wu, X., and Smith, J. S., (1994) “Thermal Diffusivity Measurement of GaAs/AlGaAs Thin-Film Structures,” ASME Journal of Heat Transfer, 116, pp. 325-331. [7] Chen, G. and Neagu, M., (2001) “Thermal Conductivity and Heat Transfer in Superlattices,” Applied Physics Letters, 71, pp. 2761-2763. [8] Chen, H., Chen, S., and Matthaeus, W. H., (1992) “Recovery of the Navier-Stokes Equation Using a Lattice Boltzmann Method,” Physical Review A, 45, pp. 5339-5342. [9] Chen, S., Martinez, D., and Mei, R., (1996) “On Boundary Conditions in Lattice Boltzmann Methods,” Physics of Fluids, 8, 2527. [10] Escobar, R. A., Ghai, S. S., Jhon, M. S., and Amon, C. H., (2006) “Multi-length and Time Scale Thermal Transport Using the Lattice Boltzmann Method with Application to Electronics Cooling,” International Journal of Heat and Mass Transfer, 49, pp. 97–107. [11] Escobar, R., Smith, B., and Amon, C., (2006) “Lattice Boltzmann Modeling of Subcontinuum Energy Transport in Crystalline and Amorphous Microelectronic Devices,” ASME Journal of Electronic Packaging, 128, pp. 115-124. [12] Flik, M. I., (1990) “Size Effect on Thermal Conductivity of High-Tc Thin-Film Superconductors,” ASME Journal of Heat Transfer, 112, pp. 872-880. [13] Higuera, F. and Jimenez, J., (1989) “Boltzmann Approach to Lattice Gas Simulation,” Europhysics Letters, 9, pp. 663-668. [14] Hsieh, T. Y., Yang, J. Y., and Hong, Z. C., (2009) “Thermal Conductivity Modeling of Compacted Type Nanocomposites,” Journal of Applied Physics ,106, pp. 023528. [15] Hyldgaard, P. and Mahan, G. D., (1997) “Phonon superlattice transport,” Physical Review B, 56, pp. 10754-10757. [16] Majumdar, A., (1993) “Microscale Heat Conduction in Dielectric Thin Film,” ASME Journal of Heat Transfer, 115, pp. 7-16. [17] McNamara, G. and Zanetti, G., (1988) “Use of the Boltzmann Equation to Simulate Lattice-Gas Automata,” Physical Review, 61, pp.2332-2335. [18] Niu, X. D., Shu. C., and Chew, Y.T., (2006) “A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows,” Computers & Fluids, 36, pp.273–281. [19] Qian, T. H., D’Humieres, D., and Lallemand, P., (1992) “Lattice BGK Models for Navier-Stokes Equation,” Europhysics Letters 17, pp. 479-484. [20] Shan, X., Yuan, X.-F., and Chen, H., (2006) “Kinetic Theory Representation of Hydrodynamics: A Way Beyond the Navier-Stokes Equation,” Journal of Fluid Mechanics, 550, pp. 413-441. [21] Srinivasan, S., Miller, R. S., and Marotta, E., (2004) “Parallel Computation of the Boltzamnn Transport Equation for Microscale Heat Transfer in Multilayered Thin Films,” Numerical Heat Transfer, Part B, 46, pp. 31-58. [22] Swartz, E. T. and Pohl, R. O., (1989) “Thermal Boundary Resistance.” Reviews of Modern Physics, 61, pp. 605-668. [23] Yang, J. Y. and Hung, L. H., (2009) “Lattice Uehling-Uhlenbeck Boltzmann-Bhatnagar-Gross-Krook Hydrodynamics of Quantum Gases.” Physical Review E, 79, pp. 056708 [24] Yang, R. and Chen, G., (2004) “Thermal Conductivity Modeling of Periodic Two-Dimensional Nanocomposites,” Physical Review B, 69, pp. 195316. [25] 王鎮雄、朱朝煌、李世榮、劉傳仁、蔡豐欽 (2006) 熱傳遞學,高立圖書。 [26] 何雅玲、王勇、李慶 (2009) 格子Boltzmann方法的原理及應用(Lattice Boltzmann Method: Theory and Applications),科學出版社。 [27] 沈青 (2003) 稀薄氣體動力學(Rarefied Gas Dynamics),國防工業出版社。 [28] 郭照立、鄭楚光 (2009) 格子Boltzmann方法的原理及應用(Theory and Applications of Lattice Boltzmann Method),科學出版社。 [29] 謝澤揚 (2007) 聲子熱傳輸與理想量子氣體動力學之高解析算則,國立台灣大學工學院應用力學所博士論文,台北。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44623 | - |
| dc.description.abstract | 近年來隨著製程技術的迅速發展,半導體產業、光電產業及微機電系統的需求,使微型化成爲趨勢,其中材料的熱物理性質也隨著尺度的縮小而與傳統尺度的物理現象有所不同,用於研究巨觀熱傳現象的傅立葉熱傳導定率(Fourier Law of Heat Conduction)將不適用。其中原因爲在巨觀下,分子可視爲連續體,對於連續介質現象,利用傳統的連續、動量及能量方程,即可求得系統的巨觀變量;然而在微尺度中,分子碰撞減少,只可利用分子動力學方法經過適當的積分後,導出連續方程,由微觀推導出巨觀公式。
本研究採用晶格Boltzmann法(Lattice Boltzmann Method, LBM)模擬微尺度熱傳問題,此方法於近十年間,逐漸受到廣泛的使用。本文利用週期性邊界條件取出週期性單元作爲模擬區域,於材料邊界使用非彈性擴散失諧理論模式。由研究結果可發現,矽(Si)薄膜、鍺矽(Ge-Si)薄膜及孔洞材料不僅有尺寸效應,於微尺度下材料界面產生的界面散射將使熱傳導係數下降及溫度分布產生滑移。 | zh_TW |
| dc.description.abstract | Current microfabrication technologies have allowed the semiconductor industry, photovoltaic industry and microelectromechanical system to produce smaller devices. Microscopic heat transfer differs from macroscopic. Micro-scale heat transfer no longer follows the Fourier law. In macroscopic scale, substance is considered as continuum, and the transport phenomena can be described by macroscopic governing equations. As the size shrinks, heat carriers become rarefied when characteristic length of the thin film is comparable with the molecule mean free path. Because the frequency of the carriers collision decreases, we need to consider motions and interactions of the individual molecules.
This article uses Lattice Boltzmann Method to solve phonon Boltzmann-BGK equation and simulate heat transfer in the thin film with different material arrangement. Several geometries are studied including: Si thin film, Ge-Si embedded supper lattice, Ge-Pore embedded supper lattice and Ge-Si compacted supper lattice. This research uses periodic boundary and IDMM interface boundary. Results suggest that reducing feature size will decrease the thermal conductivity, and temperature will become non-continuum distributions in the interface. And the effective thermal conductivity changes not only with the length of the thin film, but also with the boundary thermal resistance. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:51:54Z (GMT). No. of bitstreams: 1 ntu-99-R97543015-1.pdf: 2710408 bytes, checksum: 9e2f4d1a948497548c504a26286b8814 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 誌謝 II 目 錄 IV 圖目錄 VI 第一章、緒論 1 1.1 引言 1 1.2 微尺度熱傳導 1 1.3 晶格Boltzmann法簡介 2 1.4 晶格Boltzmann法文獻回顧 2 1.5 微尺度熱傳文獻回顧 3 1.6 研究目的 5 1.7 本文架構 5 第二章、Boltzmann方程式 6 2.1 Knudsen數 6 2.2 Boltzmann方程 8 2.3 鬆弛時間近似 9 2.4 連續體模型方程 9 2.5 平衡態分布函數的Hermite展開 12 2.6 聲子間散射 15 2.7 聲子輻射熱傳方程式 17 第三章、半古典晶格Boltzmann法 19 3.1 三種統計 19 3.2 半古典晶格Boltzmann方程 20 第四章、基本模型與邊界處理方法 25 4.1 分布函數 25 4.2 晶格Boltzmann法 26 4.3 邊界條件 29 4.3.1 黑體定溫邊界 29 4.3.2 週期邊界處理 29 4.3.3 定溫週期邊界 30 4.3.4 非彈性擴散失諧理論模式 30 4.4 計算流程 31 第五章、模擬結果與討論 34 5.1 問題描述 34 5.2 模擬結果分析與討論 34 5.2.1矽薄膜 36 5.2.2一維矽鍺薄膜 41 5.2.3二維超晶格材料 45 第六章、結論與展望 56 6.1 結論 56 6.2 展望 57 參考文獻 58 | |
| dc.language.iso | zh-TW | |
| dc.subject | 晶格Boltzmann法 | zh_TW |
| dc.subject | 奈米複合材料 | zh_TW |
| dc.subject | Knudsen Number | zh_TW |
| dc.subject | 等效熱傳導係數 | zh_TW |
| dc.subject | 微尺度熱傳 | zh_TW |
| dc.subject | Effective Conductivity | en |
| dc.subject | Microscopic Heat Transfer | en |
| dc.subject | Lattice Boltzmann Method | en |
| dc.subject | Knudsen Number | en |
| dc.subject | Nano Composite | en |
| dc.title | 利用晶格波茲曼法之奈米尺度聲子熱傳模擬 | zh_TW |
| dc.title | Simulation of Nanoscale Phonon Heat Transfer Using Lattice Boltzmann Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳兆勛,黃家健,黃俊誠 | |
| dc.subject.keyword | 晶格Boltzmann法,微尺度熱傳,等效熱傳導係數,Knudsen Number,奈米複合材料, | zh_TW |
| dc.subject.keyword | Lattice Boltzmann Method,Microscopic Heat Transfer,Effective Conductivity,Knudsen Number,Nano Composite, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
