Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44622
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李伯訓
dc.contributor.authorYao-Fang Liuen
dc.contributor.author劉耀方zh_TW
dc.date.accessioned2021-06-15T03:51:53Z-
dc.date.available2013-09-09
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-07-12
dc.identifier.citationAeinehchi M, Eslami B, Ghanbariha M, Saffar AS (2003). Mineral trioxide aggregate (MTA) and calcium hydroxide as pulp capping agents in human teeth: a preliminary report. Int Endod J 36(3):225-231.
Briso A, Rahal V, Mestrener S, Dezan Jr. (2006). Biological response of pulps submitted to different capping materials. Braz Oral Res 20(3):219-225.
Brunner A, Mader K, Gopferich A (1999). pH and osmotic pressure inside biodegradable microspheres during erosion. Pharm Res 16:847-853.
Carson JS, Bostrom MP (2007). Synthetic bone scaffolds and fracture repair. Injury 38 (Suppl 1):S33-S37.
Chen X, Kidder LS, Lew WD (2002). Osteogenic protein-1 induced bone formation in an infected segmental defect in the rat femur. J Orthop Res 20:142–150.
Cook SD, Patron LP, Salkeld SL, Rueger DC (2003). Repair of articular cartilage defects with osteogenic protein-1(BMP-7) in dogs. J Bone Joint Surg Am 85:116 –123.

Cummings SR, Bauer DC (2000). Do statins prevent both cardiovascular disease and fracture? JAMA 283(24):3255-3257.
Decup F, Six N, Palmier B (2000). Bone sialoprotein-induced reparative dentinogenesis in the pulp of rat’s molar. Clin Oral Investig 4:110 –119.
Faraco Junior IM, Holland R (2001). Response of the pulp of dogs to capping with mineral trioxide aggregate or calcium hydroxide cement. Dent Traumatol 17:163-166.
Ford TR, Torabinejad M, Abedi HR, Bakland LK, Kariyawasam SP (1996). Using mineral trioxide aggregate as a pulp capping material. J Am Dent Assoc 127(10):1491-1494.
Fu K, Pack DW, Klibanov AM, Langer R (2000). Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid)(PLGA) microspheres. Pharm Res 17:100-106.
Garrett IR, Gutierrez G, Mundy GR (2001). Statins and bone formation. Curr Pharm Des 7:715-736.
Garrett IR, Gutierrez GE, Rossini G, Nyman J, McCluskey B, Flores A, Mundy GR (2007). Locally delivered lovastatin nanoparticles enhance fracture healing in rats. J Orthop Res 25:1351–1357.
Goldberg M, Six N, Decup F (2001). Application of bioactive molecules in pulp-capping situations. Adv Dent Res 15:91–95.
Goldberg M, Six N, Decup F (2003). Bioactive molecules and the future of pulp therapy. Am J Dent 16:66 –76.
Gottlow J, Nyman S, Lindhe J (1984). New attachment formation as a result of controlled tissue regeneration. J Clin Periodontol 11:494-498.
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625-13630.
Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A (2002). Stem cell properties of human dental pulp stem cells. J Dent Res 81:531-535.
Haberstadt C, Anderson P, Bartel R, Cohen R, Naughton G (1992). Physiological cultures skin substitutes for wound healing. Mater Res Soc Symp Proc 252:323-330.
Ignatius AA, Claes LE (1996). In vitro biocompatibility of bioresorbable polymers : poly(L,DL-lactide) and poly(L-lactide-co-glycolide). Biomaterials 7:631-639.
Iohara K, Nakashima M, Ito M, Ishikawa M, Nakasima A, Akamine A (2004). Dentin regeneration by dentin pulp stem cell therapy with recombinant human bone morphogenic protein-2. J Dent Res 83(8):590-595.
Ishaug SL, Yaszemski MJ, Bizios R, Mikos AG (1994). Osteoblast function on synthetic biodegradable polymers. J Biomed Mater Res 28:1445-1453.
Lin Z, Qin W, Zhang N, Xiao L, Ling J (2007). Adenovirus-mediated recombinant human bone morphogenetic protein-7 expression promotes differentiation of human dental pulp cells. J Endod 33:930 –935.
Maeda T, Kawane T, Horiuchi N (2003). Statins augment vascular endothelial growth factor expression in osteoblastic cells via inhibition of protein prenylation. Endocrinology 144:681-692.
Meier CR, Schlienger RG, Kraenzlin ME, Schlegel B, Jick H (2000). HMG-CoA reductase inhibitors and the risk of fractures. JAMA 283(24):3205-3210.
Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, Boyce B, Zhao M, Gutierrez G (1999). Stimulation of bone formation in vitro and in rodents by statins. Science 286:1946-1949.
Nakao K, Morita R, Saji Y, et al (2007). The development of a bioengineered organ germ method. Nat Methods 4:227–230.
Nakashima M, Nagasawa H, Yamada Y, Reddi AH (1994). Regulatory role of transforming growth factor-β, bone morphogenetic protein-2, and protein-4 on gene expression of extracellular matrix proteins and differentiation of dental pulp cells. Dev Biol 162:18-28.
Nakashima M, Reddi AH (2003). The application of bone morphogenetic protein to dental tissue engineering . Nat Biotech 21:1025-1031.
Nkenke E, Schultze-Mosgau S, Radespiel-Troger M, Kloss F, Neukam FW (2001). Morbidity of harvesting of chin grafts: a prospective study. Clin Oral Implants Res 12:495-502.
Noer JE (2006). Tooth regeneration in operative dentistry. Oper Dent 31:633– 642.
Okamoto Y, Sonoyama W, Ono M, Akiyama K, Fujisawa T, Oshima M, Tsuchimoto Y, Matsuka Y, Yasuda T, Shi S, Kuboki T (2009). J Endod 35:367-372
Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL, Gunsolley JC (2003). The efficacy of bone replacement grafts in the treatment of periodontal osseous defects. A systematic review. Ann Periodontol 8:227-265.
Rutherford RB, Wahle J, Tucker M, Rueger D, Charette M (1993). Induction of reparative dentine formation in monkeys by recombinant human osteogenic protein-1. Arch Oral Biol 38:571– 576.
Rutherford RB, Spangberg L, Tucker M, Rueger D, Charette M (1994). The time-course of the induction of reparative dentine formation in monkeys by recombinant human osteogenic protein-1. Arch Oral Biol 39:833–838.
Rutherford RB, Gu K (2000). Treatment of inflamed ferret dental pulps with recombinant bone morphogenetic protein-7. Eur J Oral Sci 108:202–206.
Schliephake H, Weich H, Dullin C, Gruber R, Frahse S (2008). Mandibular bone repair by implantation of rhBMP-2 in a slow release carrier of polylactic acid – An experimental study in rats. Biomaterials 29:103-110.
Six N, Lasfargues JJ, Goldberg M (2002). Differential repair responses in the coronal and radicular areas of the exposed rat molar pulp induced by recombinant human bone morphogenetic protein 7 (osteogenic protein 1). Arch Oral Biol 47:177– 187.

Sugiyama M, Kodama T, Konishi K, Abe K, Asami S, Oikawa S (2000). Compactin and simvastatin, but not pravastatin, induce bone morphogenic protein-2 in human osteosarcoma cells. Biochem Biophys Res Commun 271(3):688-692.
Teuscher GW, Zander HA (1938). A preliminary report on pulpotomy. Northwest Univ Dent Res Grad Q bull 39:4.
Tziafas D, Smith AJ, Lesot H (2000). Designing new treatment strategies in vital pulp therapy. J Dent 28:77-92.
Uchida T, Yagi A, Oda Y, Nakada Y, Goto S (1996). Instability of bovine insulin in poly(lactide-co-glycolide)(PLGA) microspheres. Chem Pharm Bull 44:236-236.
Wang PS, Solomon DH, Mogun H, Avorn J (2000). HMG-CoA reductase inhibitorsand the risk of hip fractures in elderly patients. JAMA 283(24):3211-3216.
Whang K, McDonald J, Khan A, Satsangi N (2005). A novel osteotropic biomaterial OG-PLG: Synthesis and in vitro release. J Biomed Mater Res 74(2):237-246.
Wu Z, Liu C, Zang G (2008). The effect of simvastatin on remodelling of the alveolar bone following tooth extraction. Int J Oral Maxillofac Surg 37:170–176.
Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC (2002). Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res 81:695–700.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44622-
dc.description.abstractStatin類藥物是一種目前臨床上大量使用的高血脂症治療藥物,可有效降低總膽固醇,並減少心血管疾病發生率。近年來,有許多的實驗同時也發現,statin類藥物可以刺激BMP-2(Bone morphogic protein)的表現,而BMP2表現上升,可以促進人類骨頭以及牙髓組織的鈣化以及再生。
但是,statin類藥物光使用口服方式使用,不容易在患區維持足夠的作用濃度;若考慮局部注射方式,statin類藥物又有細胞毒性的問題。為了解決上述兩種問題,可以採用高分子包膜技術將適量之statin包覆進高分子外膜內,如此一來可以透過控制釋放機制,在患區維持適當之statin濃度,達成避免細胞毒性及維持有效濃度的雙重功效。
本實驗使用20隻雄性大白鼠,隨機分成四組,在各隻老鼠的下顎骨兩側分別做出一5mm大小之人工缺損,Group I置入1mg包有lovastatin的PLGA高分子,對側置入gelfoam做為對照組;Group II置入3mg 包有lovastatin的PLGA高分子及gelfoam;Group III置入1mg包有 lovastatin的PLGA高分子,對側則置入1mg不含lovastatin的PLGA高分子作為對照組;Group IV置入3mg 含有lovastatin的PLGA高分子及3mg不含lovastatin的PLGA高分子。在3、6、9、12週,使用cone-beam CT掃描實驗動物的缺損區觀察其變化,12週後犧牲實驗動物,將其下顎骨送病理切片,觀察骨頭生成的實際情形。
實驗結果可以觀察到,各組隨著時間變化,都有大小不一的缺損癒合狀況,但是癒合體積狀況最理想的是1mg含lovastatin的高分子,且在病理組織切片之下,也可以明顯看出新生骨的出現,由此可知,在適當的控制釋放機制之下,statin類藥物可以有效的促進骨頭的癒合及再生。
而在牙本質再生方面,在實驗中使用4隻李宋細小耳種迷你豬的乳牙前牙,一共24顆牙齒,將24顆牙齒隨機分為四實驗組,在牙齒上做出一個Class V的窩洞,並將牙髓腔暴露出來,在止血及沖洗後,Group I中直接以GIC填補起來;Group II則是先以MTA做覆髓動作,再以GIC填補;Group III則是先以lovastatin直接覆髓後,以GIC填補起來;Group IV則是先在牙髓表面注入帶有紅色螢光的乳牙牙髓幹細胞(SHED) 後,再以GIC填補。經過45天癒合後,將牙齒拔下來,先用牙科根尖X光機及CT掃描,觀察是否有鈣化物質生成,再將牙齒送組織切片觀察。
從CT掃描結果可以觀察到先使用MTA、lovastatin及SHED做覆髓處理後,牙髓腔內都有鈣化物質的生成,將拔下來的牙齒經過組織處理並切片染色後,也可以在顯微鏡底下發現修復性牙本質的生成,而且牙髓組織的活性及組成都是正常狀態。因此lovastatin對於牙本質再生方面,也同樣具有保護牙髓以及刺激修復性牙本質生成的能力。
zh_TW
dc.description.abstractThe statins are commonly prescribed drugs that inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG Co-A) reductase and decrease hepatic cholesterol biosynthesis, thereby reducing serum cholesterol concentrations and lowering the risk of heart attack. Recently, lots of studies found that statins showed enhanced expression of BMP-2 mRNA, which can induce the regeneration of bone and dental pulp tissue.
However, the efficacy of statin using oral administration is not expected, because the ultimate systemic availability is only 2.4%, far less than bone formation needed. When injected locally, statin has the side effect of cytotoxicity. Therefore, a suitable control release device is important to deliver the drug.
In this study, 20 male wistar rats were used. The animals were randomly divided into 4 groups. Artificial bony defects of 5mm were created with bone trephine bur on mandibular bodies of both sides. Group 1 received 1 mg PLGA nanoparticles containing lovastatin in the right side defects and gelfoam was placed in the left side defects which served as control. Group 2 received 3 mg PLGA nanoparticles containing lovastatin in the right side defects and gelfoam was placed in the left side defects. Group 3 received 1 mg PLGA nanoparticles containing lovastatin in the right side defects and 1 mg PLGA nanoparticles without lovastatin were placed in the left side defects. Group 4 received 3 mg PLGA nanoparticles containing lovastatin in the right side defects and 3 mg PLGA nanoparticles without lovastatin were placed in the left side defects. CBCT scan was used at 3, 6, 9, and 12 weeks after surgery to measure the progressive volume changes of the artificial bony defect. The rats were sacrificed at 12 weeks, and the mandible bones were sent for histological examination.
According to the X-ray scan, each group shows the trend of bone healing through time, but group I has the most significant outcome. We can also find new bone formation under histological examination. Thus, using proper delivery device, lovastatin has the ability to induce bone healing and regeneration.
In the odontogenic induction study, we used 4 miniature pigs, with a total number of 24 deciduous anterior teeth. All teeth were randomly divided into 4 groups. Class V cavities were created on each tooth, then the cavities were deepened to expose the pulp tissue. After bleeding control and irrigation. Group I were restored with GIC directly. Group II capped with MTA, then restored with GIC. Group III capped with lovastatin, then restored with GIC. Group IV capped with red fluorescent SHED, then restored with GIC. After a healing period of 45 days. All the teeth were extracted. After periapical film and CBCT scan, histological examination were used to examine the reparative dentin formation.
Under CT scan, group I, II and III could find calcified images in pulp space. Under microscope, reparative dentin could be found in group I, II and III, and the underlying pulp tissue were all vital. Thus, lovastatin may have the ability to protect exposed pulp tissue and induce reparative dentin formation.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:51:53Z (GMT). No. of bitstreams: 1
ntu-99-R96422022-1.pdf: 3387673 bytes, checksum: fa0e708d610ad16733be371f75f42656 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目錄
論文口試委員審定書--------------------------------------------I
致謝詞-----------------------------------------------------II
中文摘要--------------------------------------------------III
Abstract---------------------------------------------------V
第一章 緒論-----------------------------------------------1
1.1lovastatin的骨組織再生------------------------------------1
1.2lovastatin的牙本質再生------------------------------------2
第二章文獻回顧-----------------------------------------------4
2.1 lovastatin的骨組織再生-----------------------------4
2.1.1 引導骨組織再生術-----------------------------4
2.1.2 骨癒合與再塑--------------------------------5
2.1.3 骨填補材-----------------------------------7
2.1.4 Statin------------------------------------9
2.1.5 藥物投遞系統-------------------------------10
2.1.6 當前研究發展-------------------------------13
2.2 lovastatin的牙本質再生----------------------------14
2.2.1 牙髓-牙本質複合體(pulp-dentin complex)----14
2.2.2 牙本質生成(dentinogenesis)---------------15
2.2.3 覆髓(pulp capping)----------------------16
2.2.4 覆髓材料----------------------------------18
2.2.5 牙本質再生研究現況--------------------------20
2.2.6 Lovastatin與牙本質再生---------------------23
2.2.7 SHED與牙本質再生---------------------------24
第三章 動機與目的-----------------------------------------26
第四章 實驗材料與方法--------------------------------------28
4.1 骨誘導生成動物實驗---------------------------------28
4.1.1 實驗材料與設備-----------------------------28
4.1.2 實驗用藥品--------------------------------29
4.1.3 實驗動物來源與飼養管理-----------------------30
4.1.4 動物實驗步驟-------------------------------30
4.1.5 骨癒合情形觀察-----------------------------32
4.2 牙本質誘導生成動物實驗------------------------------34
4.2.1 實驗材料與設備-----------------------------34
4.2.2 實驗藥品----------------------------------34
4.2.3 細胞培養相關藥品----------------------------35
4.2.4 實驗動物來源、飼養管理-----------------------36
4.2.5 幹細胞來源及取得方法------------------------36
4.2.6 細胞培養----------------------------------37
4.2.7 動物實驗方法-------------------------------38
4.2.8 牙本質誘導再生觀察--------------------------39
第五章 實驗結果-------------------------------------------42
5.1 骨誘導生成動物實驗---------------------------------42
5.1.1 骨誘導生長量的X光觀察-----------------------42
5.1.2 人工缺損區體積變化觀察-----------------------42
5.1.3 病理切片結果-------------------------------43
5.2 牙本質誘導生成動物實驗------------------------------45
5.2.1 牙齒放射線影像觀察--------------------------45
5.2.2 修復性牙本質厚度量測------------------------46
5.2.3 組織切片觀察-------------------------------47
第六章 討論----------------------------------------------50
6.1 骨誘導生成動物實驗---------------------------------50
6.1.1 實驗藥物顆粒性質----------------------------50
6.1.2 人工缺損體積變化探討------------------------51
6.1.3 病理切片骨癒合變化探討-----------------------53
6.2 牙本質誘導生成動物實驗------------------------------56
6.2.1 放射線影像觀察結果探討-----------------------56
6.2.2 鈣化影像厚度探討----------------------------60
6.2.3 組織切片結果探討----------------------------62
第七章 結論-----------------------------------------------67
參考文獻---------------------------------------------------68
表次
表一 骨生成動物實驗分組及使用材料表-----------------------------76
表二 骨生成動物實驗各實驗組樣本數統計表--------------------------76
表三 牙本質生成動物實驗各組牙齒實驗顆數及最終樣本數統計表-----------77
圖次
圖一 老鼠動物實驗流程 麻藥----------------------------------78
圖二 老鼠動物實驗流程 注射方式-------------------------------78
圖三 老鼠動物實驗流程 毛髮剃除-------------------------------79
圖四 老鼠動物實驗流程 局部麻藥注射----------------------------79
圖五 老鼠動物實驗流程 下刀----------------------------------80
圖六 老鼠動物實驗流程 肌肉剝離-------------------------------80
圖七 老鼠動物實驗流程 人工缺損製作----------------------------81
圖八 老鼠動物實驗流程 成膜----------------------------------81
圖九 老鼠動物實驗流程 填入材料-------------------------------82
圖十 老鼠動物實驗流程 二次成膜-------------------------------82
圖十一 老鼠動物實驗流程 傷口縫合-----------------------------83
圖十二 老鼠動物實驗流程 CBCT掃描----------------------------83
圖十三 老鼠動物實驗流程 犧牲--------------------------------84
圖十四 老鼠動物實驗流程 剝離軟組織----------------------------84
圖十五 老鼠動物實驗流程 游離下顎骨----------------------------85
圖十六 老鼠動物實驗流程 取出之下顎骨--------------------------85
圖十七 豬動物實驗流程 麻藥注射-------------------------------86
圖十八 豬動物實驗流程 窩洞製作-------------------------------86
圖十九 豬動物實驗流程 暴露神經-------------------------------87
圖二十 豬動物實驗流程 止血----------------------------------87
圖二十一 豬動物實驗流程 置入材料-----------------------------88
圖二十二 豬動物實驗流程 窩洞填補-----------------------------88
圖二十三 各實驗組人工缺損變化情形------------------------------89
圖二十四 各實驗組各時間點體積變化長條圖-------------------------90
圖二十五 1 mg 包覆lovastatin PLGA顆粒病理切片----------------91
圖二十六 3 mg 包覆lovastatin PLGA顆粒病理切片----------------92
圖二十七 gelfoam病理切片------------------------------------93
圖二十八 1 mg 純PLGA病理切片--------------------------------94
圖二十九 3 mg 純PLGA病理切片--------------------------------95
圖三十 各實驗組根尖X光片影像---------------------------------96
圖三十一 各實驗組CT影像-------------------------------------97
圖三十二 各組修復性牙本質平均厚度------------------------------98
圖三十三 SHED組組織切片-------------------------------------99
圖三十四 MTA組組織切片-------------------------------------100
圖三十五 lovastatin組組織切片------------------------------101
圖三十六 GIC組組織切片-------------------------------------102
dc.language.isozh-TW
dc.subject促進牙本質再生zh_TW
dc.subject修復性牙本質zh_TW
dc.subject覆髓zh_TW
dc.subject促進骨再生zh_TW
dc.subject控制釋放zh_TW
dc.subjectlovastatinzh_TW
dc.subjectBMP-2zh_TW
dc.subjectodontogenic inductionen
dc.subjectreparative dentinen
dc.subjectpulp cappingen
dc.subjectosteogenic inductionen
dc.subjectcontrol releaseen
dc.subjectlovastatinen
dc.subjectBMP-2en
dc.titleLovastatin對於骨誘導生成及牙本質誘導生成能力之探討zh_TW
dc.titleThe Osteogenic Induction and the Odontogenic Induction Properties of Lovastatinen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江俊斌,何明樺
dc.subject.keywordBMP-2,lovastatin,控制釋放,促進骨再生,覆髓,修復性牙本質,促進牙本質再生,zh_TW
dc.subject.keywordBMP-2,lovastatin,control release,osteogenic induction,pulp capping,reparative dentin,odontogenic induction,en
dc.relation.page102
dc.rights.note有償授權
dc.date.accepted2010-07-12
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
3.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved