請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44603完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹迺立(Nei-Li Chan) | |
| dc.contributor.author | Shu-I Tsai | en |
| dc.contributor.author | 蔡淑儀 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:51:38Z | - |
| dc.date.available | 2011-09-26 | |
| dc.date.copyright | 2010-09-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-07-13 | |
| dc.identifier.citation | 1.Cuendet, M. & Pezzuto, J. M. The role of cyclooxygenase and lipoxygenase in cancer chemoprevention. Drug Metabol Drug Interact 17, 109-157 (2000).
2.Caughey, G. E., Cleland, L. G., Penglis, P. S., Gamble, J. R. & James, M. J. Roles of cyclooxygenase (COX)-1 and COX-2 in prostanoid production by human endothelial cells: selective up-regulation of prostacyclin synthesis by COX-2. J Immunol 167, 2831-2838 (2001). 3.Matsumoto, H. et al. Concordant induction of prostaglandin E2 synthase with cyclooxygenase-2 leads to preferred production of prostaglandin E2 over thromboxane and prostaglandin D2 in lipopolysaccharide-stimulated rat peritoneal macrophages. Biochem Biophys Res Commun 230, 110-114 (1997). 4.Bunting, S., Moncada, S. & Vane, J. R. The prostacyclin--thromboxane A2 balance: pathophysiological and therapeutic implications. Br Med Bull 39, 271-276 (1983). 5.Majerus, P. W. Arachidonate metabolism in vascular disorders. J Clin Invest 72, 1521-1525 (1983). 6.Guengerich, F. P. Reactions and significance of cytochrome P-450 enzymes. J Biol Chem 266, 10019-10022 (1991). 7.Griffoni, C. et al. Selective inhibition of prostacyclin synthase activity by rofecoxib. J Cell Mol Med 11, 327-338 (2007). 8.Hara, S. et al. Isolation and molecular cloning of prostacyclin synthase from bovine endothelial cells. J Biol Chem 269, 19897-19903 (1994). 9.Miyata, A. et al. Molecular cloning and expression of human prostacyclin synthase. Biochem Biophys Res Commun 200, 1728-1734 (1994). 10.Smith, W. L., DeWitt, D. L. & Allen, M. L. Bimodal distribution of the prostaglandin I2 synthase antigen in smooth muscle cells. J Biol Chem 258, 5922-5926 (1983). 11.Gupta, R. A. et al. Prostacyclin-mediated activation of peroxisome proliferator-activated receptor delta in colorectal cancer. Proc Natl Acad Sci U S A 97, 13275-13280 (2000). 12.Lim, H. & Dey, S. K. A novel pathway of prostacyclin signaling-hanging out with nuclear receptors. Endocrinology 143, 3207-3210 (2002). 13.Uchida, K. Current status of acrolein as a lipid peroxidation product. Trends Cardiovasc Med 9, 109-113 (1999). 14.Bos, C. L., Richel, D. J., Ritsema, T., Peppelenbosch, M. P. & Versteeg, H. H. Prostanoids and prostanoid receptors in signal transduction. Int J Biochem Cell Biol 36, 1187-1205 (2004). 15.Mills, J. L. et al. Prostacyclin and thromboxane changes predating clinical onset of preeclampsia: a multicenter prospective study. JAMA 282, 356-362 (1999). 16.Kreutzer, M. et al. Specific components of prostanoid-signaling pathways are present in non-small cell lung cancer cells. Oncol Rep 18, 497-501 (2007). 17.Stearman, R. S. et al. Analysis of orthologous gene expression between human pulmonary adenocarcinoma and a carcinogen-induced murine model. Am J Pathol 167, 1763-1775 (2005). 18.Moussa, O. et al. Prognostic and functional significance of thromboxane synthase gene overexpression in invasive bladder cancer. Cancer Res 65, 11581-11587 (2005). 19.Hecker, M. & Ullrich, V. On the mechanism of prostacyclin and thromboxane A2 biosynthesis. J Biol Chem 264, 141-150 (1989). 20.Topol, E. J. Failing the public health--rofecoxib, Merck, and the FDA. N Engl J Med 351, 1707-1709 (2004). 21.Kisley, L. R. et al. Celecoxib reduces pulmonary inflammation but not lung tumorigenesis in mice. Carcinogenesis 23, 1653-1660 (2002). 22.Nemenoff, R. et al. Prostacyclin prevents murine lung cancer independent of the membrane receptor by activation of peroxisomal proliferator--activated receptor gamma. Cancer Prev Res (Phila Pa) 1, 349-356 (2008). 23.Nakazawa, M., Iizuka, K., Ujiie, A., Hiraku, S. & Ohki, S. [Research and development of ozagrel, a highly selective inhibitor of TXA2 synthase]. Yakugaku Zasshi 114, 911-933 (1994). 24.Chiang, C. W., Yeh, H. C., Wang, L. H. & Chan, N. L. Crystal structure of the human prostacyclin synthase. J Mol Biol 364, 266-274 (2006). 25.Li, Y. C. et al. Structures of prostacyclin synthase and its complexes with substrate analog and inhibitor reveal a ligand-specific heme conformation change. J Biol Chem 283, 2917-2926 (2008). 26.Hsu, P. Y. & Wang, L. H. Protein engineering of thromboxane synthase: conversion of membrane-bound to soluble form. Arch Biochem Biophys 416, 38-46 (2003). 27.Barnes, H. J., Arlotto, M. P. & Waterman, M. R. Expression and enzymatic activity of recombinant cytochrome P450 17 alpha-hydroxylase in Escherichia coli. Proc Natl Acad Sci U S A 88, 5597-5601 (1991). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44603 | - |
| dc.description.abstract | 血栓素合成酶 (Thromboxane synthase) 與前列環素合成酶 (prostacyclin synthase) 均屬於細胞色素P450超家族的成員。細胞色素P450 是一群含有血紅素基團 (heme) 的酵素,並參與細胞中許多重要分子的氧化與生合成。一般而言,大部分的 P450酵素係藉由催化單氧化反應(monooxygenation) 以執行其生理功能,且反應過程需要NAPH以及氧分子的參與。然而,不同於其他P450酵素,血栓素合成酶與前列環素合成酶具有催化同分異構化反應(isomerization)的活性,由於此兩酵素作用時不需其他cofactors,因而被歸類為第三型細胞色素P450。有趣的是,前列腺素(prostaglandin H2) 為兩者共同的受質,但卻會產生血栓素以及前列環素兩種不同的產物。先前的光譜學研究已指出,兩酵素與受質在立體空間上結合的特異性是控制反應專一性的關鍵。在血栓素合成酶的催化過程中,前列腺素利用O-9與血紅素基團結合;但在前列環素合成酶之血紅素基團則與前列腺素的O-11結合。雖然血栓素合成酶與前列腺素合成酶皆以前列腺素為其生合成的前驅物,兩者卻扮演著相對的生物功能。血栓素能刺激血管收縮及血小板活化凝集;相反的,前列環素則是抑制血管收縮與血小板的活化。因此,此兩生物活性脂共同維繫心血管系統的正常運作,並與動脈粥樣硬化、休克症候群以及癌化過程密切相關。
為了探討前列腺素與酵素結合的立體特異性,我們先前已對前列環素合成酶與抑制物或受質類似物的複合體進行結構解析。結構分析可知活性中心周圍的胺基酸可能影響受質的結合模式並於催化反應扮演著很重要的角色。為了更進一步釐清這些胺基酸的重要性,我們將直接以凡得瓦力和氫鍵與受質作用的W272及N277 分別突變成alanine,希望透過結構的角度了解突變蛋白與受質的交互作用是否發生變化。另一方面,我們也將著手於血栓素合成酶的結構研究,探討與前列腺素結合的立體特異性。 我們已順利判定前列環素合成酶突變蛋白N277A及其與受質類似物複合體的晶體結構,經X-ray 繞射解析度分別為2.37 Å 及 2.57 Å的解析度,且兩者均屬於P212121的空間群。由活性中心的電子密度圖可知,突變後,雖然N277側鏈與受質O-9間的氫鍵消失了,但對受質與血紅素基團結合的方向性以及周圍胺基酸的排列並無太大變化。出乎意料的是,W272A突變會影響N277側鏈於空間中的位置,使其無法與受質形成氫鍵,由於W272的突變蛋白失去催化活性,因此可知W272及N277對催化極為重要。另一方面,為了得到可溶的血栓素合成酶,我們以MAKKTSS親水性序列取代其N端的跨膜區域。然而,目前老鼠血栓素合成酶的純化產量、純度與均質性仍然過低,尚不足以用於結晶,此為未來仍須努力的方向。 | zh_TW |
| dc.description.abstract | Thromboxane synthase (TXAS) and prostacyclin synthase(PGIS) belong to the heme-containing cytochrome P450 superfamily that participates in numerous crucial oxidation processes. However, rather than possessing a monooxygenation activity like most other P450 enzymes, PGIS and TXAS carry out isomerization reactions and require neither NAPH nor O2 for function, they are classified as class III P450. Interestingly, while prostaglandin H2 (PGH2) is a common substrate for both enzymes, thromboxane A2 (TXA2) and prostacyclin (PGI2) are produced by TXAS and PGIS, respectively. Spectroscopic studies indicated that stereospecific substrate binding determines product specificity. In TXAS, the O-9 of PGH2 ligates to the heme-iron, but in PGIS the O-11 of PGH2 serves as the heme ligand. Although TXAS and PGIS catalyze chemical conversion of the same substrate (PGH2), their respective product displays opposite biological activities. TXA2 is a potent stimulator of vasoconstriction and platelet activation. In contrast, PGI2 inhibits vasoconstriction and platelet aggregation. Together, these two bioactive prostanoids mediate key events in atherosclerosis, shock syndromes and carcinogenesis.
To understand how the stereospecific PGH2 binding is achieved, our lab has previously determined the crystal structures of PGIS and its complexes with substrate analog and inhibitor. Structural comparison has lead to the identification of residues in the catalytic center that may be crucial for catalysis. To understand these residues catalytic roles in greater detail, residues W272 and N277 have been mutated as alanines, and crystallographic analyses are performed to examine how substrate binding is affected by mutations. In addition, we attempted to initiate structural studies on TXAS to gain more insights on the molecular basis of stereospecific substrate recognition. The crystal structures of ligand-free and substrate analog-bound PGIS-N277A mutant were determined at 2.37 Å and 2.57 Å, respectively. The structure around the enzyme active site reveals that the hydrogen bond between N277 side chain and O-9 of PGH2 was abolished upon mutating N277 to Alanine. However, the spatial orientation of the substrate analog and the arrangement of surrounding residues are not altered. Unexpectedly, the W272A mutation alters the conformation of N277 side chain, leading to the loss of hydrogen bond between N277 and O-9 of PGH2. These observations support the potential importance of W272 and N277 in catalysis and are consistent with the highly conserved nature of these residues. To obtain soluble protein samples for crystallization, TXAS was modified by replacing the N-terminal transmembrane domain with a hydrophilic sequence, MAKKTSS. Nevertheless, homogeneity and yield of purified mouse TXAS remain to be improved before crystallization trials can be performed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:51:38Z (GMT). No. of bitstreams: 1 ntu-99-R97442007-1.pdf: 3421604 bytes, checksum: 1f06966fe6fd2a921b656c035c4bb0d8 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 中文摘要...................................................i
Abstract.................................................iii Tables of Contents........................................vi List of Figures.........................................viii List of Tables.............................................x Introduction...............................................1 1.The events downstream of COX signaling are related to diseases...................................................1 2.Biological functions of prostacyclin and thromboxanes....2 3.Biosynthesis of prostacyclin and thromboxanes............2 4.PGIS and TXAS are atypical cytochrome P450 types.........3 5.The PGIS/TXAS balance in health and disease..............6 6.The mechanism of prostacyclin synthase and thromboxane synthase...................................................7 7.PGIS and TXAS as targets for therapies...................9 8.The known PGIS structure and its stereospecific substrate binding pocket............................................10 9.The specific aims.......................................11 Materials and Methods.....................................12 Part I Thromboxane synthase 1.Construction of expression plasmids.....................12 2.Small scale expression and solubility test of recombinant mTXAS.....................................................14 3.Large scale expression of recombinant mTXAS.............16 4.Purification of mTXAS...................................16 Part II mutant zebrafish prostacyclin synthase 1.Construction of mutant zPGIS (zPGIS-N277A)..............19 2.Overexpression of zPGIS-N277A...........................20 3.Purification of zPGIS-N277A.............................21 4.Crystallization of zPGIS-N277A..........................24 5.Cryoprotection of crystals..............................26 6.Data collection and processing..........................26 7.Structure determination and refinement..................27 Results...................................................28 Part I Thromboxane synthase 1.Optimization of expression and solubility...............28 2.Purification of mTXAS...................................29 Part II mutant zebrafish prostacyclin synthase 1.Expression of mutant zPGIS-N277A........................30 2.Purification of mutant zPGIS-N277A for crystallization..31 3.Quantification and purity of zPGIS-N277A................32 4.Crystallization of zPGIS-N277A..........................33 5.Data collection.........................................34 6.Structure determination.................................35 7.The extra water molecules existed between U51605 and A277......................................................36 8.Structure of ligand-free zPGIS N277A and U51605-bound zPGIS-N277A...............................................37 Discussion................................................38 References................................................42 Figures and Tables........................................44 | |
| dc.language.iso | en | |
| dc.subject | X-ray繞射 | zh_TW |
| dc.subject | 血栓素合成酶 | zh_TW |
| dc.subject | 前列環素合成酶 | zh_TW |
| dc.subject | 細胞色素P450 | zh_TW |
| dc.subject | 血紅素基團 | zh_TW |
| dc.subject | Cytochrome P450 | en |
| dc.subject | heme | en |
| dc.subject | Thromboxane synthase (TXAS) | en |
| dc.subject | Prostacyclin synthase (PGIS) | en |
| dc.subject | X-ray diffraction | en |
| dc.title | 血栓素合成酶與突變的前列環素合成酶之結構研究 | zh_TW |
| dc.title | Structural Studies of Thromboxane Synthase and Mutant Prostacyclin Synthase | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪慧芝(Hui-Chih Hung),徐駿森(Chun-Hua Hsu) | |
| dc.subject.keyword | 血栓素合成酶,前列環素合成酶,細胞色素P450,血紅素基團,X-ray繞射, | zh_TW |
| dc.subject.keyword | Thromboxane synthase (TXAS),Prostacyclin synthase (PGIS),Cytochrome P450,heme,X-ray diffraction, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-07-13 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 3.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
