Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4459
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃升龍
dc.contributor.authorSong-Pu Yangen
dc.contributor.author楊松蒲zh_TW
dc.date.accessioned2021-05-14T17:42:24Z-
dc.date.available2016-08-20
dc.date.available2021-05-14T17:42:24Z-
dc.date.copyright2015-08-20
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citation[1] 黃玠維, '次波長光柵實現半導體雷射陣列側向激發之高功率光纖雷射,' 國立臺灣大學, 博士論文, 2012.
[2] https://en.wikipedia.org/wiki/Double-clad_fiber
[3] E. Snitzer, H. Po, R.P. Tumminelli, and F.Hakimi, “Optical fiber lasers and amplifiers,” U.S. patent 4,815,079, Mar. 21, 1989.
[4] R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, pp. 1049-1056, 1997.
[5] E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. Mc-Collum, “Double-clad, offset core Nd fiber laser,” Optical Fiber Sensors, paper PD5, 1998.
[6] G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D. N. Payne, “Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16, pp. 1990–2001, 1998.
[7] V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110W fiber laser,” Electron. Lett. 35, pp. 1158-1160, 1999.
[8] J. Limpert, A. Liem, H. Zellmer, and A. Tunnemann, “500 W continuous-wave fiber laser with excellent beam quality,” Electron. Lett. 39, pp. 645-647, 2003.
[9] Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12, pp. 6088-6092, 2004.
[10] V. Fomin, A. Mashkin, M. Abramov, A. Ferin, V. Gapontsev, and IPG Laser GmbH Burbach Germany, “3 kW Yb fiber lasers with a single-mode output,” International Symposium on High-Power Fiber Lasers and their Applications, 2006.
[11] E. Stiles, “New developments in IPG fiber laser technology,' Proc. of 5th International Workshop on Fiber Lasers, 2009.
[12] D. Kouznetsov and J. V. Moloney, 'Highly efficient, high-gain, short-length, and power-scalable incoherent diode slab-pumped fiber amplifier/laser,' Quantum Electronics, IEEE Journal of, vol. 39, pp. 1452-1461, 2003.
[13] http://en.wikipedia.org/wiki/Diode-pumped_solid-state_laser
[14] P. Schreiber, B. Hoefer, P. Dannberg, and U. D. Zeitner, 'High-brightness fiber-coupling schemes for diode laser bars,' Optics & Photonics 2005, pp. 587602-587602-10, 2005.
[15] H.-G. Treusch, K. Du, M. Baumann, V. Sturm, B. Ehlers, and P. Loosen, 'Fiber-coupling technique for high-power diode laser arrays,' Optoelectronics and High-Power Lasers & Applications, pp. 98-106, 1998.
[16] K. Du, M. Baumann, B. Ehlers, H. Treusch, and P. Loosen, 'Fiber-coupling technique with micro step-mirrors for high-power diode laser bars,' Advanced Solid State Lasers, 1997.
[17] H. Schlüter, C. Tillkorn, U. Bonna, G. Charache, J. Hostetler, T. Li, C. Miester, R. Roff, T. Vethake, and C. Schnitzler, 'Dense spatial multiplexing enables high brightness multi-kW diode laser systems,' Lasers and Applications in Science and Engineering, pp. 61040M-61040M-8, 2006.
[18] M. Haag, B. Köhler, J. Biesenbach, and T. Brand, 'Novel high-brightness fiber coupled diode laser device,' Proc. SPIE, p. 64560T, 2007.
[19] L. Goldberg, J. P. Koplow, and D. A. Kliner, 'Highly efficient 4-W Yb-doped fiber amplifier pumped by a broad-stripe laser diode,' Optics Letters, vol. 24, pp. 673-675, 1999.
[20] L. Goldberg, J. P. Koplow, R. P. Moeller, and D. A. Kliner, 'High-power superfluorescent source with a side-pumped Yb-doped double-cladding fiber,' Optics Letters, vol. 23, pp. 1037-1039, 1998.
[21] J. P. Koplow, S. W. Moore, and D. A. Kliner, 'A new method for side pumping of double-clad fiber sources,' Quantum Electronics, IEEE Journal of, vol. 39, pp. 529-540, 2003.
[22] Q. Xiao, P. Yan, S. Yin, J. Hao, and M. Gong, '100 W ytterbium‐doped monolithic fiber laser with fused angle‐polished side‐pumping configuration,' Laser Physics Letters, vol. 8, pp. 125-129, 2011.
[23] R. Herda, A. Liem, B. Schnabel, A. Drauschke, H.-J. Fuchs, E.-B. Kley, H. Zellmer, and A. Tuennermann, 'Efficient side-pumping of fibre lasers using binary gold diffraction gratings,' Electronics Letters, vol. 39, pp. 276-277, 2003.
[24] J. Walpole, 'Semiconductor amplifiers and lasers with tapered gain regions,' Optical and Quantum Electronics, vol. 28, pp. 623-645, 1996.
[25] 林軒立, '光柵式側向耦光技術於摻鉺釔鋁石榴石晶體光纖雷射之研究,' 國立臺灣大學, 碩士論文, 2013.
[26] Rsoft Design Group, http://optics.synopsys.com/rsoft/
[27] M. Moharam, E. B. Grann, D. A. Pommet, and T. Gaylord, 'Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,' Journal of the Optical Society of America A, vol. 12, pp. 1068-1076, 1995.
[28] C.-W. Huang, D.-W. Huang, C.-L. Chang, D.-Y. Jheng, K.-Y. Hsu, C.-H. Kuan, and S.-L. Huang, 'Demonstration of side coupling between high power laser diode array and double-clad fiber using sub-wavelength grating,' CLEO: Science and Innovations, 2011.
[29] P. Johnson and R. Christy, 'Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,' Physical Review B, vol. 9, pp. 5056, 1974.
[30] M. A. Ordal, R. J. Bell, R. Alexander Jr, L. Long, and M. Querry, 'Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,' Applied optics, vol. 24, pp. 4493-4499, 1985.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4459-
dc.description.abstract近年來,利用半導體雷射激發之光纖雷射逐漸成為高功率雷射主流,藉由光纖輸出,此種雷射具有極佳的光束品質、窄線寬及高電光轉換效應等優點。半導體雷射陣列是一種可靠的高功率雷射激發光源,並且廣泛地使用在各種雷射幫浦應用上。本實驗室於2011年提出半導體雷射陣列之側向式光柵耦光系統,將976-nm 半導體雷射陣列耦入內纖衣尺寸為400 μm光纖,其輸出功率為21瓦並達到50%耦光效率,但該研究提及第二次繞射效應所造成之耦光效率損耗,將使得光源要耦入更小內纖衣尺寸之光纖更為困難。
因此在本論文中,主要將光柵週期改變至675 nm,在內纖衣尺寸為400 μm時,可以減少第二次繞射效應以提高耦光效率達至67.63%,將光纖內纖衣尺寸縮小至250 μm,其耦光效率可接近光源以680-nm光柵耦入400-μm內纖衣光纖,因此提升光纖輸出亮度2.36倍;另外引用基因演算法方式,可以提供設計光柵及優化之方向,如解決第二次繞射損耗及折射率匹配液損耗等問題。在本論文中,利用基因演算法設計出光柵之±1st 階繞射效率呈現非對稱型態,並以增強+1st 階繞射效率解決折射率匹配液帶來之損耗。此外,本論文將討論系統結構參數與光學架構因素損耗之關係,以達到高亮度、高功率輸出之光纖雷射側向耦光系統。
zh_TW
dc.description.abstractIn recent years, diode-pumped fiber lasers have become main-stream in the high-power laser field, owing to their superior beam quality, narrow linewidth, and high electrical-optical conversion efficiency. Besides, laser diode array (LDA) is a reliable high-power pump source, and it has been widely used in many applications. In 2011, we have demonstrated a side-coupling scheme, a 50% coupling efficiency was achieved by using 680-nm period gold-embedded grating to couple 21-W, 976-nm LDA pump source into a 400-μm double-clad passive fiber. But in such a system, there was coupling loss caused by the secondary diffraction. The issue made it harder to couple pump source into a small cladding fiber.
In this work, we achieve 67.63% coupling efficiency into a 400-μm fiber by using a 675-nm grating. In addition, even using the fiber with the cladding diameter to 250 μm, the coupling efficiency is as good as the above mentioned case. In this result, the brightness has been enhanced by a factor of 2.36. Secondly, we introduce a genetic algorithm to optimize the grating coupling efficiency by eliminating the secondary diffraction and index-matching-gel coupling loss. We design an asymmetrical ±1st-order-diffraction-efficiency grating to increase +1st order diffraction efficiency, and reduce the coupling loss caused by the use of index-matching gel. Finally, we discuss the correlation between coupling loss issues and system structure parameters to achieve a high brightness, high power fiber laser output with a compact side coupling system.
en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:42:24Z (GMT). No. of bitstreams: 1
ntu-104-R02941077-1.pdf: 4525817 bytes, checksum: 2846ed19554510acfc5b21e4b8b29c28 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
致謝 iii
中文摘要 iv
Abstract v
圖目錄 3
表目錄 6
第一章 緒論與研究動機 7
第二章 高功率光纖雷射簡介 9
2.1 雙纖衣光纖 9
2.2 內層纖衣幫浦技術 12
2.2.1 端面幫浦技術 12
2.2.2 側向幫浦技術 14
2.3 光柵輔助側向耦光技術 16
2.4 各項技術亮度耦合效率比較 17
第三章 側向耦光之光學系統原理 20
3.1 側向耦光之光學架構 20
3.2 反射光柵之二次繞射損耗 21
3.3 折射率匹配液造成之損耗 24
第四章 側向耦光光柵設計與製作 26
4.1 側向耦光光柵設計 26
4.1.1 光柵結構理論 26
4.1.2 矩形結構光柵之模擬 28
4.1.3 梯形結構模擬 30
4.2基因演算法應用於光柵設計 32
4.2.1 基因演算法介紹 32
4.2.2 基因演算法法則及演算過程 33
4.2.3 基因演算光柵模型 35
4.2.4 基因演算法優化光柵結構 38
4.3 側向耦光光柵製作 40
4.3.1 內嵌式光柵製作與流程 40
4.3.2 基因演算法光柵製作流程 41
第五章 側向耦光光柵實驗與結果 44
5.1半導體雷射陣列光源特性 44
5.2 側向耦光光柵實驗 48
5.3 基因演算法光柵實驗 56
5.4 無慢軸透鏡側向耦光光柵實驗 59
5.5 結果與討論 62
第六章 結論與未來展望 65
6.1 結論 65
6.2 未來展望 65
參考文獻 67
dc.language.isozh-TW
dc.subject繞射zh_TW
dc.subject高功率光纖雷射zh_TW
dc.subject半導體雷射陣列zh_TW
dc.subject光柵zh_TW
dc.subject光柵耦合器zh_TW
dc.subjecthigh-power fiber laseren
dc.subjectgrating coupleren
dc.subjectgratingen
dc.subjectdiffractionen
dc.subjectlaser diode arrayen
dc.title光柵式側向耦光技術應用於高功率半導體雷射陣列之研究zh_TW
dc.titleStudy of Grating Based Side-coupling Technology for High Power Laser Diode Arrayen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李穎玟,黃鼎偉,管傑雄
dc.subject.keyword高功率光纖雷射,半導體雷射陣列,光柵,光柵耦合器,繞射,zh_TW
dc.subject.keywordhigh-power fiber laser,laser diode array,grating,grating coupler,diffraction,en
dc.relation.page70
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-08-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf4.42 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved