請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44590
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳延平(Yan-Ping Chen) | |
dc.contributor.author | Yen-Ming Chen | en |
dc.contributor.author | 陳彥銘 | zh_TW |
dc.date.accessioned | 2021-06-15T03:51:28Z | - |
dc.date.available | 2012-07-15 | |
dc.date.copyright | 2010-07-15 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-13 | |
dc.identifier.citation | Abramoff, M. D., Magelhaes, P .J. and Ram, S. J., Image processing with ImageJ, Biophotonics Int., 11 (2004) 36-42
Alessi, P., Cortesi, A., Kikic, I., Foster, N. R., Macnaughton, S. J. and Colombo, I., Particle production of steroid drugs using supercritical fluid processing, Ind. Eng. Chem. Res., 35 (1996) 4718-4726 Anwar, J., Tarling, S. E. and Barnes, P., Polymorphism of sulfathiazole, J. Pharm. Sci. 78 (1989) 337-342 Asghari-Khiavi, M. and Yamini, Y., Solubility of the drugs bisacodyl, methimazole, methylparaben, and iodoquinol in supercritical carbon dioxide, J. Chem. Eng. Data, 48 (2003) 61-65 Asghari-Khiavi, M., Yamini, Y. and Farajzadeh M. A., Solubilities of two steroid drugs and their mixtures in supercritical carbon dioxide, J. Supercritical Fluids, 30 (2004) 111-117 Baek, J. K., Kim, S., Lee, G. S. and Shim J. J., Density correlation of solubility of C. I. Disperse Orange 30 dye in supercritical carbon dioxide, Korean J. Chem. Eng., 21 (2004) 230-235 Bahrami, M. and Ranjbarian, S., Production of micro- and nano-composite particles by supercritical carbon dioxide. J. Supercritical Fluids, 40 (2007) 263-283 Bartle, K. D., Clifford, A. A. and Jafar, S. A., Shilstone G. F., Solubilities of solids and liquids of low volatility in supercritical carbon dioxide, J. Phys. Chem. Ref. Data, 20 (1991) 713-756 Beckman, E. J., Supercritical and near-critical CO2 in green chemical synthesis and processing, J. Supercritical Fluids, 28 (2004) 121-191 Bettini, R., Rossi, A., Lavezzini, E., Frigo, E., Pasquali, I. and Giordano, F., Thermal and morphological characterization of micronized acetylsalicylic acid powders prepared by rapid expansion of a supercritical solution, J. Therm. Anal. Cal., 73 (2003) 487-497 Bristow, S., Shekunov, B. Y. and York, P., Solubility analysis of drug compounds in supercritical carbon dioxide using static and dynamic extraction systems, Ind. Eng. Chem. Res., 40 (2001) 1732-1739 Bush, D. and Eckert, C. A., Prediction of solid-fluid equilibria in supercritical carbon dioxide using linear salvation energy relationships, Fluid Phase Equilibria, 150-151 (1998) 479-492 Cabral, V. F., Santos, W. L. F., Muniz, E. C., Rubira, A. F. and Cardozo-Filho, L., Correlation of dye solubility in supercritical carbon dioxide, J. Supercritical Fluids, 40 (2007) 163-169 Cansell, F., Aymonier, C. and Loppinet-Serani, A., Review on materials science and supercritical fluids, Curr. Opin. Solid State Mater. Sci., 7 (2003) 331-340 Chang, C. J. and Randolph, A. D., Solvent expansion and solute solubility predictions in gas-expanded liquids, AIChE J., 36 (1990) 933-942 Charoenchaitrakool, M., Dehghani, F., Foster, N. R. and Chan, H. K., Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly water-soluble pharmaceuticals, Ind. Eng. Chem. Res., 39 (2000) 4794-4802 Chen, Y. M. and Chen, Y. P., Measurements for the solid solubilities of antipyrine, 4-aminoantipyrine and 4-dimethylaminoantipyrine in supercritical carbon dioxide, Fluid Phase Equilibria, 282 (2009) 82-87 Chen, Y. M., Lin, P. C., Tang, M. and Chen, Y. P., Solid solubility of antilipemic agents and micronization of gemfibrozil in supercritical carbon dioxide, J. Supercritical Fluids, 52 (2010) 175-182 Chrastil, J., Solubility of solids and liquids in supercritical gases, J. Phys. Chem., 86 (1982) 3016-3021 Christov, M. and Dohrn, R., High pressure fluid-phase equilibria: experimental methods and systems investigated (1994-1999), Fluid Phase Equilibria, 202 (2002) 153-218 Chung, S. T. and Shing, K. S., Multiphase behavior of binary and ternary systems of heavy aromatic hydrocarbons with supercritical carbon dioxide part I. experimental results, Fluid Phase Equilibria, 81 (1992) 321-341 Cocero, M. J., Martin, A., Mattea, F. and Varona, S., Encapsulation and co-precipitation processes with supercritical fluids: fundamentals and applications, J. Supercritical Fluids, 47 (2009) 546-555 Coimbra, P., Fernandes, D., Gil, M. H. and de Sousa, H. C., Solubility of diflunisal in supercritical carbon dioxide, J. Chem. Eng. Data, 53 (2008) 1990-1995 Cortesi, A., Kikic, I., Alessi, P., Turtoi, G. and Garnier, S., Effect of chemical structure on the solubility of antioxidants in supercritical carbon dioxide: experimental data and correlation, J. Supercritical Fluids, 14 (1999) 139-144 Costa, P., Manuel, J. and Lobo, S., Modeling and comparison of dissolution profiles, Eur. J. Pharm. Sci., 13 (2001) 123-133 Craig, D., Royall, P., Kett, V. and Hopton, L., The relevance of the amorphous state to pharmaceutical dosage forms glassy drugs and freeze dried systems, Int. J. Pharm., 179 (1999) 179-207 Crampon, C., Charbit, G. and Neau, E., High-pressure apparatus for phase equilibria studies: solubility of fatty acid esters in supercritical CO2, J. Supercritical Fluids, 16 (1999) 11-20 Day, C. Y., Chang, C. J. and Chen, C. Y., Phase equilibrium of ethanol + CO2 and acetone + CO2 at elevated pressures, J. Chem. Eng. Data, 44 (1999) 365 de la Fuente, J. C., Quezada, N. and del Valle, J. M., Solubility of boldo leaf antioxidant components (Boldine) in high-pressure carbon dioxide, Fluid Phase Equilibria, 235 (2005) 196-200 Dobbs, J. M., Wong, J. M., Lahiere, R. J. and Johnston, K. P., Modification of supercritical fluid phase behavior using polar cosolvents, Ind. Eng. Chem. Res., 26 (1987) 56-65 Dohrn, R. and Brunner, G., High pressure fluid-phase equilibria: experimental methods and systems investigated (1988-1993), Fluid Phase Equilibria, 106 (1995) 213-282 Dohrn, R., Peper, S. and Fonseca, J. M. S., High-pressure fluid-phase equilibria: experimental methods and systems investigated (2000-2004), Fluid Phase Equilibria, 288 (2010) 1-54 Draper, S. L., Montero, G. A., Smith, B. and Beck, K., Solubility relationships for disperse dyes in supercritical carbon dioxide, Dyes and Pigments, 45 (2000) 177-183 Duarte, A. R. C., Coimbra, P., de Sousa, H. C. and Duarte, C. M. M., Solubility of flurbiprofen in supercritical carbon dioxide, J. Chem. Eng. Data, 49 (2004) 449-452 Elvassore, N., Bertucco, A. and Caliceti, P., Production of protein-loaded polymer microcapsules by compressed CO2 in a mixed solvent, Ind. Eng. Chem. Res., 40 (2001) 795-800 Ely, J. F., Haynes, W. M. and Bain, B. C., Isochoric (P, Vm, T) measurements on CO2 and on (0.982CO2 + 0.018N2) from 250 to 330K at pressure to 35MPa, J. Chem. Thermodyn., 21 (1989) 879-894 Esmaeilzadeh, F. and Goodarznia, I., Supercritical extraction of phenanthrene in the crossover region, J. Chem. Eng. Data, 50 (2005) 49-51 Fedors, R. F., A method for estimating both the solubility parameters and molar volume of liquids, Pol. Eng. Sci., 14 (1974) 147-154 Fornari, R., Alessi, P. and Kikic, I., High pressure fluid phase equilibria: experimental methods and systems investiaged (1978-1987), Fluid Phase Equilibria, 57 (1990) 1-33 Foster, N., Mammucari, R., Dehghani, F., Barrett, A., Bezanehtak, K., Coen, E., Combes, G., Meure, L., Aaron, N., Regtop, H. and Tandya, A., Processing pharmaceutical compounds using dense gas technology, Ind. Eng. Chem. Res, 42 (2003) 6476-6493 Franceschi, E., De Cesaro, A. M., Ferreira, S. R. S. and Vladimir Oliveira, J., Precipitation of β-carotene microparticles from SEDS technique using supercritical CO2, J. Food Eng., 95 (2009) 656-663 Fusaro, F., Kluge, J., Mazzotti, M. and Muhrer, G., Compressed CO2 antisolvent precipitation of lysozyme, J. Supercritical Fluids, 49 (2009) 79-92 Galia, A., Argentino, A., Scialdone, O. and Filardo, G., A new simple static method for the determination of solubilities of condensed compounds in supercritical fluids, J. Superitical Fluids, 24 (2002) 7-17 Garcia-Gonzalez, J., Molina, M. J., Rodriguez, F. and Mirada, F., Solubilities of phenol and pyrocatechol in supercritical carbon dioxide, J. Chem. Eng. Data, 46 (2001) 918-921 Garmroodi, A., Hassan, J. and Yamini, Y., Solubilities of the drugs benzocaine, metronidazole benzoate, and naproxen in supercritical carbon dioxide, J. Chem. Eng. Data, 49 (2004) 709-712 Gennaro, A., Remington's Pharmaceutical Sciences, Mack Publishing Co., 1985 Gordillo, M. D., Blanco, M. A., Molero, A. and Martinez de la Ossa, E., Solubility of the antibiotic penicillin G in supercritical carbon dioxide, J. Supercritical Fluids, 15 (1999) 183-190 Gupta, R. B. and Shim, J. J., Solubility in Supercritical Carbon Dioxide, CRC Press, New York, 2007 Gurdial, G. S. and Foster, N. R., Solubility of o-hydroxybenzoic acid in supercritical carbon dioxide, Ind. Eng. Chem. Res., 30 (1991) 575-580 Guzel, B. and Akgerman, A., Solubility of disperse and mordant dyes in supercritical CO2, J. Chem. Eng. Data, 44 (1999) 83-85 Hampson, J. W., Maxwell, R. J., Li, S. and Shadwell R. J., Solubility of three veterinary sulfonamides in supercritical carbon dioxide by a recirculating equilibrium method, J. Chem. Eng. Data, 44 (1999) 1222-1225 Hirunsit, P., Huang, Z., Srinophakun, T., Charoenchaitrakool, M. and Kawi, S., Particle formation of ibuprofen-supercritical CO2 system from rapid expansion of supercritical solutions (RESS): a mathematical model, Powder Technology, 154 (2005) 83-94 Hojjati, M., Yamini, Y., Khajeh, M. and Vatanara A., Solubility of some statin drugs in supercritical carbon dioxide and representing the solute solubility data with several density-based correlations, J. Supercritical Fluids, 41 (2007) 187-194 Hourri, A., St-Arnaud, J. M., and Bose, T. K., Solubility of solids in supercritical fluids from the measurements of the dielectric constant: application to CO2-naphthalene, Rev. Sci. Instrum., 69 (1998) 2732-2737 Hu, G. Q., Chen, H. Y. and Cai, J. G., Micronization of griseofulvin by RESS in supercritical CO2 with cosolvent acetone, Chinese J. Chem. Eng., 11 (2003) 403-407 Huang, Z., Kawi, S. and Chiew, Y. C., Solubility of cholesterol and its esters in supercritical carbon dioxide with and without cosolvents, J. Supercritical Fluids, 30 (2004a) 25-39 Huang, Z., Lu, W. D., Kawi, S. and Chiew Y. C., Solubility of aspirin in supercritical carbon dioxide with and without acetone, J. Chem. Eng. Data, 49 (2004b) 1323-1327 Hubbard, A. T., Encyclopedia of Surface and Colloid Science, Marcel Dekker, New York, 2002 Huron, M. J. and Vidal, J., New mixing rules in simple equations of state for representing vapor-liquid equilibria of strongly non-ideal mixtures, Fluid Phase Equilibria, 3 (1979) 255-271 Iwai, Y., Koga, Y., Fukuda, T. and Arai, Y., Correlation of solubilities of high-boiling components in supercritical carbon dioxide using a solution model, J. Chem. Eng. Jpn., 25 (1992) 757-760 Iwai, Y., Koga, Y., Maruyama, H. and Arai, Y., Solubilities of stearic acid, stearyl alcohol, and arachidyl alcohol in supercritical carbon dioxide at 35 oC, J. Chem. Eng. Data, 38 (1993a) 506-508 Iwai, Y., Mori, Y., Hosotani, N., Higashi, H., Furuya, T. and Arai, Y., Solubilities of 2,6- and 2,7-dimethylnaphthalenes in supercritical carbon dioxide, J. Chem. Eng. Data, 38 (1993b) 509-511 Iwai, Y., Yamamoto, H., Tanaka, Y. and Arai, Y., Solubilities of 2,5- and 2,6-xylenols in supercritical carbon dioxide, J. Chem. Eng. Data, 35 (1990) 174-176 Jain, A., Yang, G. and Yalkowsky, S. H., Estimation of total entropy of melting of organic compounds, Ind. Eng. Chem. Res.,43 (2004) 4376-4379 Jarmer, D. J., Lengsfeld, C. S. and Randolph, T. W., Nucleation and growth rates of poly(l-lactic acid) microparticles during precipitation with a compressed-fluid antisolvent, Langmuir, 20 (2004) 7254-7264 Jin, J. S., Pei, X. M., Li, J. L. and Zhang, Z. T., Solubility of p-aminobenzenesulfonamide in supercritical carbon dioxide with acetone cosolvent, J. Chem. Eng. Data, 54 (2009) 157-159 Joback, K. G. and Reid, R. C., Estimation of pure-component properties from group contributions, Chem. Eng. Commun., 57 (1987) 233-243 Johannsen, M. and Brunner, G., Solubilities of the fat-soluble vitamins A, D, E, and K in supercritical carbon dioxide, J. Chem. Eng. Data, 42 (1997) 106-111 Joung, S. N. and Yoo, K. P., Solubility of disperse anthraquinone and azo dyes in supercritical carbon dioxide at 313.15 to 393.15 K and from 10 to 25 MPa, J. Chem. Eng. Data, 43 (1998) 9-12 Kalaga, A. and Trebble, M., Density changes in supercritical solvent + hydrocarbon solute binary mixtures, J. Chem. Eng. Data, 44 (1999) 1063-1066 Karpinski, P. H., Polymorphism of active pharmaceutical ingredients, Chem. Eng. Technol., 29 (2006) 233-237 Ke, J., Mao, C., Zhong, M., Han, B. and Yan, H., Solubilities of salicylic acid in supercritical carbon dioxide with ethanol cosolvent, J. Supercritical Fluids, 9 (1996) 82-87 Kim, J. H., Paxton, T. E. and Tomasko, D. L., Microencapsulation of naproxen using rapid expansion of supercritical solutions, Biotechnol. Prog., 12 (1996) 650-661 King, J. W. and Williams, L. L., Utilization of critical fluids in processing semiconductors and their related materials, Curr. Opin. Solid State Mater. Sci., 7 (2003) 413-424 Knapp, H., Doring, R., Olellrich, L., Plocker, U. and Prausnitz, J. M., Vapor-Liquid Equilibria for Mixture of Low Boiling Substances, DECHENA Chem. Data Series VI, 1981 Koga, Y., Iwai, Y., Hata, Y., Yamamoto, M. and Arai, Y., Influence of cosolvent on solubilities of fatty acids and higher alcohols in supercritical carbon dioxide, Fluid Phase Equilibria, 125 (1996) 115-128 Kordikowski, A., Siddiqi, M. and Palakodaty, S., Phase equilibria for the CO2 + methanol + sulfathiazole system at high pressure, Fluid Phase Equilibria, 194-197 (2002) 905-917 Kurnlk, R. T., Holla, S. J. and Reid, R. C., Solubility of solids in supercritical carbon dioxide and ethylene, J. Chem. Eng. Data, 26 (1981) 47-51 Lee, J. W., Min, J. M. and Bae, H. K., Solubility measurement of disperse dyes in supercritical carbon dioxide, J. Chem. Eng. Data, 44 (1999) 684-687 Lee, J. W., Park, M. W. and Bae, H. K., Measurement and correlation of dye solubility in supercritical carbon dioxide, Fluid Phase Equilibria, 173 (2000) 277-284 Lee, L. S., Huang, J. F. and Zhu, O. X., Solubilities of solid benzoic acid, phenanthrene, and 2,3-dimethylhexane in supercritical carbon dioxide, J. Chem. Eng. Data, 46 (2001) 1156-1159 Lee, L. Y., Wang, C. H. and Smith, K. A., Supercritical antisolvent production of biodegradable micro- and nanoparticles for controlled delivery of paclitaxel, J. Controlled Release, 125 (2008) 96-106 Leon, S. and Andrew, Y., Applied Biopharmaceutics and Pharmacokinetics, 4th Edition, McGraw-Hill, 1999 Leuner, C. and Dressman, J., Improving drug solubility for oral delivery using solid dispersions, Eur. J. Pharm. Biopharm., 50 (2000) 47-60 Li, Q., Zhang, Z., Zhong, C., Liu, Y. and Zhou, Q., Solubility of solid solutes in supercritical carbon dioxide with and without cosolvents, Fluid Phase Equilibria., 207 (2003) 183-192 Lin, H. M., Ho, C. C. and Lee, M. J., Solubilities of disperse dyes of blue 79:1, red 82 and modified yellow 119 in supercritical carbon dioxide and nitrous oxide, J. Supercritical Fluids, 32 (2004) 105-114 Loth, H. and Hemgesberg, E., Properties and dissolution of drugs micronized by crystallization from supercritical gases, Int. J. Pharm., 32 (1986) 265-267 Lucien, F. P. and Foster, N. R., Influence of matrix composition on the solubility of hydroxybenzoic acid isomers in supercritical carbon dioxide, Ind. Eng. Chem. Res., 35 (1996) 4686-4699 Macnaughton, S. J., Kikic I., Foster, N. R., Alessi, P., Cortesi, A. and Colombo, I., Solubility of anti-inflammatory drugs in supercritical carbon dioxide, J. Chem. Eng. Data, 41 (1996) 1083-1086 Martin, A. and Cocero, M. J., Micronization processes with supercritical fluids: fundamentals and mechanism, Adv. Drug Deliv. Rev., 60 (2008) 339-350 Matsuyama, K., Mishima, K., Ohdate, R., Chidori, M. and Yang, H., Solubilities of 7,8-dihydroxyflavone and 3,3’,4’,5,7-pentahydroxyflavone in supercritical carbon dioxide, J. Chem. Eng. Data, 48 (2003) 1040-1043 Mendez-Santiago, J. and Teja, A. S., The solubility of solids in supercritical fluids, Fluid Phase Equilibria, 158-160 (1999) 501-510 Mishima, K., Matsuyama, K., Tanabe, D., Yamauchi, S., Young, T. J. and Johnston, K. P., Microencapsulation of protein by rapid expansion of supercritical solution with a nonsolvent, AIChE J., 46 (2000) 857-865 Mori, Y., Shlmlzu, T., Iwai, Y. and Arai Y., Solubllitles of 3,4-xylenol and naphthalene + 2,5-xylenol in supercritical carbon dioxide at 35 oC, J. Chem. Eng. Data, 37 (1992) 317-319 Moribe, K., Fukino, M., Tozuka, Y., Higashi, K. and Yamamoto, K., Prednisolone multicomponent nanoparticle preparation by aerosol solvent extraction system, Int. J. Pharm., 380 (2009) 201-205 Mosharraf, M. and Nystrom, C., The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs, Int. J. Pharm., 122 (1995) 35-47 Murga, R., Sanz, M. T., Beltran, S. and Cabezas, J. L., Solubility of some phenolic compounds contained in grape seeds, in supercritical carbon dioxide, J. Supercritical Fluids, 23 (2002) 113-121 Murga, R., Sanz, M. T., Beltran, S. and Cabezas, J. L., Solubility of syringic and vanillic acids in supercritical carbon dioxide, J. Chem. Eng. Data, 49 (2004) 779-782 Nakatani, T., Ohgaki, K. and Katayama, T., Substituent effect on solubilities of solids in supercritical fluids. naphthalene derivatives, Ind. Eng. Chem. Res., 30 (1991) 1362-1366 NIST Chemistry WebBook; NIST Standard Reference Database Number 69, National Institute of Standards and Technology, USA (http://webbook.nist.gov/chemistry/) Park, S. J. and Yeo, S. D., Recrystallization of caffeine using gas antisolvent process, J. Supercritical Fluids 47 (2008) 85-92 Pathak, P., Mohammed, J., Desai, T. and Sun, Y. P., Formation and stabilization of ibuprofen nanoparticles in supercritical fluid processing, J. Supercritical Fluids 37 (2006) 279-286 Pathak, P., Prasad, G. L., Meziani, M. J., Joudeh, A. A. and Sun, Y. P., Nanosized paclitaxel particles from supercritical carbon dioxide processing and their biological evaluation, Langmuir, 23 (2007) 2674-2679 Peng, D. Y. and Robinson, D. B., A new two-constant equation of state, Ind. Eng. Chem. Fundam., 15 (1976) 59-64 Perrut, M. and Clavier, J. Y., Supercritical fluid formulation: process choice and scale-up, Ind. Eng. Chem. Res., 42 (2003) 6375-6383 Perrut, M., Jung, J and Leboeuf, F., Enhancement of dissolution rate of poorly soluble active ingredients by supercritical fluid processes part II: preparation of composite particles, Int. J. Pharm., 288 (2005) 11-16 Pillay, V. and Fassihi, R., Evaluation and comparison of dissolution data derived from different modified release dosage forms: an alternative method, J. Controlled Release, 55 (1998) 45-55 Polli, J. E., Rekhi, G. S., Augsburger, L. L. and Shah, V. P., Methods to compare dissolution profiles and a rationale for wide dissolution specifications for metoprolol tartrate tablets, J. Pharm. Sci., 86 (1997) 690-700 Ravipaty, S., Koebke, K. J. and Chesney, D. J., Polar mixed-solid solute systems in supercritical carbon dioxide: entrainer effect and its influence on solubility and selectivity, J. Chem. Eng. Data, 53 (2008) 415-421 Ravipaty, S., Sclafani, A. G., Fonslow, B. R. and Chesney, D. J., Solubilities of substituted phenols in supercritical carbon dioxide, J. Chem. Eng. Data, 51 (2006) 1310-1315 Reverchon, E. and Adami, R., Nanomaterials and supercritical fluids, J. Supercritical Fluids 37 (2006) 1-22 Reverchon, E., Adami, R., Cardea, S. and Della Porta, G., Supercritical fluids processing of polymers for pharmaceutical and medical applications, J. Supercritical Fluids, 47 (2009) 484-492 Sako, S., Ohgaki, K., and Katayama, T., Solubilities of Naphthalene and Indole in Supercritical Fluids, J. Supercritical Fluids, 1 (1988) 1-6 Sauceau, M., Fages, J., Letourneau, J. J. and Richon, D., A novel apparatus for accurate measurements of solid solubilities in supercritical phases, Ind. Eng. Chem. Res., 39 (2000) 4609-4614 Schmitt, W. J. and Reid, R. C., Solubitity of monofunctional organic solids in chemically diverse supercritical fluids, J. Chem. Eng. Data, 31 (1986) 204-212 Shamsipur, M., Karami, A. R., Yamini, Y. and Sharghi, H., Solubilities of some aminoanthraquinone derivatives in supercritical carbon dioxide, J. Chem. Eng. Data, 48 (2003) 71-74 Shekunov, B. and York, P., Crystallization processes in pharmaceutical technology and drug delivery design, J. Crystal Growth, 211 (2000) 122-136 Sheng, Y. J., Chen, P. C., Chen, Y. P. and Wong, D. S. H., Calculations of solubilities of aromatic compounds in supercritical carbon dioxide, Ind. Eng. Chem. Res., 31 (1992) 967-973 Sherman, G., Shenoy, S., Weiss, R. A. and Erkey, C., A static method coupled with gravimetric analysis for the determination of solubilities of solids in supercritical carbon dioxide, Ind. Eng. Chem. Res., 39 (2000) 846-848 Shimoyama, Y. and Iwai, Y., Development of activity coefficient model based on COSMO method for prediction of solubilities of solid solutes in supercritical carbon dioxide, J. Supercritical Fluids, 50 (2009) 210-217 Shinoda, T. and Tamura, K., Solubilities of C.I. Disperse Orange 25 and C.I. Disperse Blue 354 in supercritical carbon dioxide, J. Chem. Eng. Data, 48 (2003a) 869-873 Shinoda, T. and Tamura, K., Solubilities of C.I. Disperse Red 1 and C.I. Disperse Red 13 in supercritical carbon dioxide, Fluid Phase Equilibria, 213 (2003b) 115-123 Skerget, M., Cretnik, L., Knez, Z. and Skrinjar, M., Influence of the aromatic ring substituents on phase equilibria of vanillins in binary systems with CO2, Fluid Phase Equilibria, 231 (2005) 11-19 Soave, G., Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci., 27 (1972) 1197-1203 Sovova, H., Solubility of ferulic acid in supercritical carbon dioxide with ethanol as cosolvent, J. Chem. Eng. Data, 46 (2001) 1255-1257 Sparks, D. L., Hernandez, R. and Estevez, L. A., Evaluation of density-based models for the solubility of solids in supercritical carbon dioxide and formulation of a new model, Chem. Eng. Sci., 63 (2008) 4292-4301 Stassi, A., Bettini, R., Gazzaniga, A., Giordano, F. and Schiraldi, A., Assessment of solubility of ketoprofen and vanillic acid in supercritical co2 under dynamic conditions, J. Chem. Eng. Data, 45 (2000) 161-165 Su, C. S. and Chen Y. P., Measurement and correlation for the solid solubility of non-steroidal anti-inflammatory drugs (NSAIDs) in supercritical carbon dioxide, J. Supercritical Fluids, 43 (2008) 438-446 Sung, H. D. and Shim, J. J., Solubility of C. I. Disperse Red 60 and C. I. Disperse Blue 60 in supercritical carbon dioxide, J. Chem. Eng. Data, 44 (1999) 985-989 Tai, C. Y., You, G. S. and Wang, D. C., Modified retrograde crystallization process for separation of binary solid mixtures exploiting the crossover region of supercritical carbon dioxide, Ind. Eng. Chem. Res., 39 (2000) 4357-4364 Tamura, K. and Shinoda, T., Binary and ternary solubilities of disperse dyes and their blend in supercritical carbon dioxide, Fluid Phase Equilibria., 219 (2004) 25-32 Tan, C. S. and Weng, J. Y,. Solubility measurements of naphthol isomers in supercritical CO, by a recycle technique, Fluid Phase Equilibria., 34 (1987) 37-47 Teja, A. S. and Eckert, C. A., Commentary on supercritical fluids: research and applications, Ind. Eng. Chem. Res., 39 (2000) 4442-4444 The United States Pharmacopedia, 32th Edition, United States Pharmacopedia Convention, Inc., Washington, D.C., 2009 Ting, S. S. T., Macnaughton, S. J., Tomasko, D. L. and Foster, N. R., Solubility of naproxen in supercritical carbon dioxide with and without cosolvents, Ind. Eng. Chem. Res., 32 (1993) 1471-1481 Tsai, C. C., Lin, H. M. and Lee, M. J., Solubility of C. I. Disperse Violet 1 in supercritical carbon dioxide with or without cosolvent, J. Chem. Eng. Data, 53 (2008) 2163-2169 Turk, M., Helfgen, B., Hils, P., Lietzow, R. and Schaber, K., Micronization of pharmaceutical substances by rapid expansion of supercritical solutions (RESS): experiments and modeling, Particle and Particle Systems Characterization, 19 (2002) 327-335 Turk, M., Influence of thermodynamic behaviour and solute properties on homogeneous nucleation in supercritical solutions, J. Supercritical Fluids, 18 (2000) 169-184 Van Leer, R. A. and Paulaitls, M. E., Solubilities of phenol and chlorinated phenols in supercritical carbon dioxide, J. Chem. Eng. Data, 25 (1980) 257-259 Vatanara, A., Najafabadi, A. R., Khajeh, M. and Yamini, Y. Solubility of some inhaled glucocorticoids in supercritical carbon dioxide, J. Supercritical Fluids, 33 (2005) 21-25 Weber, M. and Thies, M. C., A simplified and generalized model for the rapid expansion of supercritical solutions, J. Supercritical Fluids, 40 (2007) 402-419 Weinstein, R. D., Gribbin J. J. and Muske K. R., Solubility and salting behavior of several β-adrenergic blocking agents in liquid and supercritical carbon dioxide, J. Chem. Eng. Data, 50 (2005) 226-229 Weinstein, R. D., Hanlon, W. H., Donohue, J. P., Simeone, M., Rozich, A. and Muske K. R., Solubility of felodipine and nitrendipine in liquid and supercritical carbon dioxide by cloud point and UV spectroscopy, J. Chem. Eng. Data, 52 (2007) 256-260 Weinstein, R. D., Muske, K. R., Moriarty, J. and Schmidt, E. K., The solubility of benzocaine, lidocaine and procaine in liquid and supercritical carbon dioxide, J. Chem. Eng. Data, 49 (2004) 547-552 Wong, J. M. and Johnston, K. P., Solubilization of biomolecules in carbon dioxide based supercritical fluids, Biotech. Prog., 2 (1986) 29-39 Yamini, Y. and Bahramifar, N., Solubility of polycyclic aromatic hydrocarbons in supercritical carbon dioxide, J. Chem. Eng. Data, 45 (2000) 53-56 Yamini, Y., Fat’hi, M. R., Alizadeh, N. and Shamsipur, M., Solubility of dihydroxybenzene isomers in supercritical carbon dioxide, Fluid Phase Equilibria, 152 (1998) 299-305 Yasuji, T., Takeuchi, H. and Kawashima, Y., Particle design of poorly water-soluble drug substances using supercritical fluid technologies, Adv Drug Deliv. Rev., 60 (2008) 388-398 Yildiz, N. and Tuna, S., Micronization of salicylic acid and taxol (paclitaxel) by rapid expansion of supercritical fluids (RESS), J. Supercritical Fluids, 41 (2007) 440-451 York, P., Kompella, U. and Shekunov, Y., Suprcritical Fluid Technology for Drug Product Development, Marcel Dekker, New York, 2004 Young, T. J., Mawson, S., Johnston, K. P., Henriksen, I. B., Pace, G. W. and Mishra, A. K., Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs, Biotech. Prog., 16 (2000) 402-407 Zuniga-Moreno, A., Galicia-Luna, L. A. and Camacho-Camacho, L. E., Measurements of solid solubilities and volumetric properties of naphthalene + carbon dioxide mixtures with a new assembly taking advantage of a vibrating tube densitometer, Fluid Phase Equilibria, 234 (2005) 151-163 鄭光煒,超臨界二氧化碳中之相平衡測量及固體溶解度計算,國立台灣大學化學工程學研究所博士論文,2002 鄭肇心,無限稀薄活性係數模式之改良及應用,國立台灣大學化學工程學研究所博士論文,2003 蘇至善,藥物固體於超臨界二氧化碳中溶解度與微粒化之硏究,國立台灣大學化學工程學研究所博士論文,2007 黃世岳,固體乙醯苯胺類物質於超臨界二氧化碳中溶解度之實驗量測與關聯,國立台灣大學化學工程學研究所研究所碩士論文,2003 蘇至善,以批式超臨界反溶劑沉積法進行非類固醇抗發炎藥之再結晶研究,國立台灣大學化學工程學研究所碩士論文,2003 張雲評,以超臨界反溶劑沉積法進行藥物微粒化之研究,國立台灣大學化學工程學研究所碩士論文,2005 陳鈞振,以連續式超臨界反溶劑沉積法進行藥物微粒化及包覆之研究,國立台灣大學化學工程學研究所碩士論文,2006 林柏青,利用超臨界快速膨脹法進行Gemfibrozil、Lidocaine、Ethosuximide及Tolbutamide藥物微粒化之研究,國立台灣大學化學工程學研究所碩士論文,2008 蔡豐年,利用連續式超臨界反溶劑法處理原料藥:Sulfamerazine and Acetazolamide,國立台灣大學化學工程學研究所碩士論文,2008 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44590 | - |
dc.description.abstract | 本研究主要是針對藥物於超臨界二氧化碳中之固體溶解度,進行實驗量測與使用理論模式進行廻歸計算,最後以超臨界溶液快速膨脹法 (RESS) 與超臨界反溶劑法 (SAS) 對藥物進行再結晶與微粒化研究。
在固體溶解度實驗量測方面,本研究建立一半流動式量測設備,搭配使用HPLC的非線上分析方法,選擇3種非類固醇抗發炎藥,分別為antipyrine、4-aminoantipyrine與4-dimethylaminoantipyrine;與3種降血脂劑,分別為clofibric acid、fenofibrate與gemfibrozil,進行其於超臨界二氧化碳中之固體溶解度量測。量測溫度為308.2、318.2與328.2 K,每個固定溫度下,於10~22 MPa之間各7個量測壓力,共得到126個實驗數據點。並使用MST、Chrastil與Bartle等3種半經驗模式,針對溶解度實驗數據進行廻歸計算,發現皆能得到良好的計算結果。 對於固體於超臨界二氧化碳中溶解度之理論廻歸計算而言,本研究依照固體結構式或依照藥物功能性,將計算系統分類為9種,分別為酚環類固體、萘類固體、非類固醇抗發炎藥、降血脂劑、類固醇藥、磺胺藥、維生素、抗氧化劑與染料,共91種固體溶質於超臨界二氧化碳中的溶解度數據,總共2158個實驗數據點。並將與超臨界密度相關之溶液模式進行無因次化的修正,利用其來進行溶解度數據廻歸計算,最後將參數進行簡化與關聯,發現經由將參數與相對應的固體溶質熱力學性質進行關聯所得到的預測模式,皆能有效且合理的預測固體溶解度行為。而利用單一實驗數據點之調整來預測溶解度行為之方法,更能提升預測之效能,在僅需要單一數據點的要求下,即可對固體溶解度行為進行有效的描述。 在研究的最後兩部分中,本研究首先建立一超臨界溶液快速膨脹法微粒化設備,將降血脂劑fenofibrate之平均粒徑由原始的19.50減小至3.94 μm,同時也成功的利用RESOLV程序,將藥物經由噴嘴噴入一水溶液的環境中,製備成穩定的微粒懸浮液,微粒化後之平均粒徑可再減小至2.02 μm。而經由微粒化後,藥物的多晶型態並沒有造成改變。且經超臨界反溶劑法處理後的藥物微粒,其溶離速率有顯著的提升,最高可比原始藥物快2.95倍。除此之外,本研究接著建立一半連續式超臨界反溶劑法微粒化設備,將磺胺藥sulfathiazole之平均粒徑由原始的42.99減小至2.07 μm。而經由微粒化後,在使用丙酮為溶劑時,藥物多晶型態可由原始的晶型Form III轉變成晶型Form I,而在使用乙醇為溶劑時,則轉變成晶型Form IV。同樣的,經超臨界反溶劑法處理後的藥物微粒,其溶離速率亦有顯著的提升,最高可比原始藥物快3.19倍。 | zh_TW |
dc.description.abstract | In this study, measurement and correlation of solid solubility for active pharmaceutical ingredients (APIs) and organic compounds in supercritical carbon dioxide were investigated. And re-crystallization and micronization for APIs were also investigated using rapid expansion of supercritical solution (RESS) and supercritical anti-solvent (SAS) processes.
The solid solubilities of three non-steroidal anti-inflammatory drugs (NSAIDs) of antipyrine, 4-aminoantipyrine, 4-dimethylaminoantipyrine, and three antilipemic agents of clofibric acid, fenofibrate, gemfibrozil in supercritical carbon dioxide were measured using a semi-flow apparatus. Total 126 data points were obtained. These experimental results were correlated by three semi-empirical models of Mendez-Santiago-Teja, Chrastil and Bartle. The measured data satisfied the self-consistency test, and the parameters in the semi-empirical models are feasible for data extrapolation. Beside the solubility measurement, the solubility data for nine families of phenolic compounds, naphthalene compounds, nsaids, antilipemic agents, steroids, sulfonamids, vitamins, antioxidant agents and dyes, totally 91 compounds and 2158 data points, were correlated using the solution model in its dimensionless form. This correlation can further be generalized to predict the solubility of complex solid in supercritical carbon dioxide. Furthermore, prediction of the solubility using only single data point was available. The solution model with less parameters yielded comparably satisfactory results to those from commonly used semi-empirical models. The unique prediction ability of the solution model is also demonstrated. Re-crystallization and micronization for an antilipemic agent fenofibrate were investigated using rapid expansion of supercritical solution (RESS) process. The mean particle size of fenofibrate was reduced from its original 19.50 to 3.94 μm under the optimal operation conditions. We also using RESOLV process to formation the fenofibrate particles in aqueous suspension. The mean particle size was further reduced to 2.02 μm after RESOLV treated under the optimal operation conditions. It presented an enhanced dissolution rate for fenofibrate in a simulated gastric fluid that was 2.95 times than the original compound. Finally, re-crystallization and micronization for a sulfonamid sulfathiazole were investigated using semi-continuous supercritical anti-solvent (SAS) process. The mean particle size of sulfathiazole was reduced from its original 42.99 to 2.07 μm under the optimal operation conditions. It was observed that different kinds of solvents resulted in different polymorphisms. The original sulfathiazole had the Form III crystalline. It was re-crystallized and micronized into Form I when acetone was used as the solvent in SAS process. The polymorph changed to Form IV when ethanol was used as the solvents. It also presented an enhanced dissolution rate for sulfathiazle in a simulated intestinal fluid that was 3.19 times than the original compound. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T03:51:28Z (GMT). No. of bitstreams: 1 ntu-99-F94524049-1.pdf: 4106256 bytes, checksum: 2fcf469d36de7bd8f01848a37408bb15 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 中文摘要 I
英文摘要 III 目錄 V 表目錄 VII 圖目錄 XI 第一章 緒論 1-1 超臨界流體之介紹與應用發展 1 1-2 熱力學性質研究之重要性 3 1-3 藥物微粒化與多晶型之重要性 4 1-4 超臨界流體微粒製備技術介紹 7 1-5 研究規劃 11 第二章 藥物固體於超臨界二氧化碳中之溶解度實驗量測 2-1 研究背景與動機 17 2-2 實驗方法 21 2-3 應用熱力學模式計算固體溶解度 27 2-4 實驗用藥品 29 2-5 實驗結果與討論 29 2-6 結論 32 第三章 利用活性係數模式計算固體溶質於超臨界二氧化碳中之溶解度 3-1 研究背景與動機 62 3-2 計算方法 65 3-3 計算用系統 70 3-4 計算結果與討論 71 3-5 結論 89 第四章 利用超臨界溶液快速膨脹法進行藥物再結晶與微粒化研究 4-1 研究背景與動機 152 4-2 實驗方法 155 4-3 分析方法 159 4-4 實驗用藥品 165 4-5 實驗結果與討論 165 4-6 結論 171 第五章 利用超臨界反溶劑法進行藥物再結晶與微粒化研究 5-1 研究背景與動機 186 5-2 實驗方法 190 5-3 分析方法 193 5-4 實驗用藥品 194 5-5 實驗結果與討論 194 5-6 結論 200 第六章 結論 214 符號說明 216 參考文獻 219 附錄 236 作者簡介 252 | |
dc.language.iso | zh-TW | |
dc.title | 應用超臨界二氧化碳於藥物分子溶解度與微粒化之研究 | zh_TW |
dc.title | Application of Supercritical Carbon Dioxide on Solubility and Micronization of Pharmaceutical Compounds | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林河木,陳立仁,李夢輝,林祥泰 | |
dc.subject.keyword | 超臨界流體,溶解度,微粒化, | zh_TW |
dc.subject.keyword | supercritical fluid,solubility,micronization, | en |
dc.relation.page | 254 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-13 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 4.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。