Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44575
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高振宏
dc.contributor.authorHsiu-Hui Wangen
dc.contributor.author王秀慧zh_TW
dc.date.accessioned2021-06-15T03:51:17Z-
dc.date.available2010-07-20
dc.date.copyright2010-07-20
dc.date.issued2010
dc.date.submitted2010-07-13
dc.identifier.citationHaldane, J. B. S. (1919), “The combination of linkage values, and the calculation of distances between the loci of linked factors”, Journal of Genetics, 8, 299–309. Haldane, J. B. S. andWaddington, C. H. (1931), “Inbreeding and linkage”, Genetics, 16, 357–374.
Haley, C. S. and Knott, S. A. (1992), “A simple regression method for mapping quantitative trait loci in line crosses using flanking markers”, Heredity, 69, 315– 324.
Jiang, C. and Zeng, Z. B. (1997), “Mapping quantitative trait loci with dominant and missing markers in various crosses from two inbred lines”, Genetica, 101, 47–58.
Kao, C. H. and Zeng, M. H. (2009), “A study on the mapping of quantitative trait loci in advanced populations derived from two inbred lines”, Genet. Res., Camb, 91, 85–99.
Lander, E. S. and Bostein, D. (1989), “Mapping mendelian factors underlying quan- titative traits using rflp linkage maps”, Genetics, 121, 185–199.
Lynch, Michael and Walsh, Bruce (1998), Genetics and Analysis of Quantitative Traits, Sinauer Associates, Inc.
Martinez, O. and Curnow, R. N. (1992), “Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers”, Theor Appl Genet, 85, 480–488.
Xu, S. (1995), “A comment on the simple regression method for interval mapping”, Genetics, 141, 1657–1659.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44575-
dc.description.abstract因爲重組自交族群(RI 族群) 比F2 族群或回交族群擁有更多的重組體以 及較多的同質基因型個體, 利於QTL 的偵測, 故偵測兩相鄰的連鎖數量性狀基因座(quantitative trait loci, QTL) 時, RI 族群提供較高的檢定力。 利用區間定位(interval mapping) 來探討兩相鄰QTL 的定位問題時, 其統計模式爲混合型常態模式, 爲了計算模式中的混合比例, 故必須知道RI 族群內三個基因座的基因型分佈。因爲馬可夫性質存在於F2 族群, 推導三個基因座的基因型分佈可由成對的兩個基因座的基因型分佈獲得。然而在 RI 族群內因爲多次的減數分裂喪失了馬可夫性質, 使三個基因座的基因型 分佈較難推算。Lynch and Walsh (1998) 和Jiang and Zeng (1997) 分別提出近似的方法, Kao and Zeng (2009) 則提出確切的方法來推算三個基因座的基因型分佈。本研究藉由這三種方法計算出模式中的混和比例, 並 比較它們偵測QTL 的檢定力差異。JZ 方法假設馬可夫性質於RI 族群中 依然存在, 故削弱了兩QTL 間連鎖的強度, 使檢定力比確切方法所得之檢 定力高。LW 方法假設在RI 族群中任兩個基因座的互換率可用重組體之 比例來代替, 使檢定力比確切方法低。本研究結果顯示近似的方法於RI 族 群中可能會高估或低估偵測QTL 的檢定力, 故在RI 族群中, 利用確切的 KZ 方法推算三個基因座的基因型分佈比較恰當。zh_TW
dc.description.abstractThe statistical model for QTL mapping is generally a normal mix- ture model and is usually proposed for F2 population. Recombinant inbred (RI) populations are also popular as they can provide greater power in mapping closely linked QTL by providing different genome structures to benefit QTL detection. In F2 population, the genome structure has the Markovian property. Therefore, the mixing propor- tions in the mixture model can be easily obtained by using pairwise genotypic distributions of two loci. In RI populations, their genome structures do not have such property due to multi-meiosis cycles. The derivation of the mixing proportions is more complicated as it in- volves the use of the genotypic distribution of three loci. We use three different methods, including Kao and Zeng’s method (Kao and Zeng, 2009), Lynch andWalsh’s method (Lynch andWalsh, 1998), and Jiang and Zeng’s method (Jiang and Zeng, 1997), to obtain the genotypic distributions of three loci for computing the mixing proportions and investigating the correlation structures between two putative QTL in the RI populations. Then, the powers of separating two linked QTL detection predicted by these methods are compared under the frame- work of regression interval mapping model (Haley and Knott, 1992). As compared to the power predicted by KZ method, it is found that JZ method, which has assumption of Markovian property, overesti- mated the power, and LW method, which replaces the recombination rate with the proportion of the recombinants in RI population, under- predicted the power. Numerical analyses are provided for illustration.en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:51:17Z (GMT). No. of bitstreams: 1
ntu-99-R97621205-1.pdf: 447201 bytes, checksum: f658261a1d3ae279386502fba98055e6 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsContents
Thesis Oral Examination Committee Members Approval
Sheet i
Abstract ii
Abstract (in Chinese) iv
1 Introduction 1
2 Population Structures 4
3 Three Models of Genomic Structures for Three loci 9
3.1 Kao and Zeng’s Method . . . . . . . . . . . . . . . . . 9
3.2 Lynch and Walsh’s Method . . . . . . . . . . . . . . . 10
3.3 Jiang and Zeng’s Method . . . . . . . . . . . . . . . . . 11
4 Interval Mapping for QTL 13
4.1 One QTL Model . . . . . . . . . . . . . . . . . . . . . 13
4.1.1 ML Interval Mapping Model . . . . . . . . . . . 13
4.1.2 REG Interval Mapping Model . . . . . . . . . . 14
4.2 Two QTL Model . . . . . . . . . . . . . . . . . . . . . 15
4.2.1 REG Interval Mapping Model for Two QTL . . 16
5 Hypothesis Testing and Power 20
5.1 Power to Detect One QTL . . . . . . . . . . . . . . . . 20
5.2 Power to Detect Two Linked QTL in Neighboring In-
tervals . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6 Numerical Analysis Result 23
7 Discussion and Conclusion 30
8 R Code 32
8.1 One Interval Mapping For QTL . . . . . . . . . . . . . 32
8.2 Two Neighboring Intervals Mapping For QTL . . . . . 50
Reference 80
dc.language.isoen
dc.subject重組自交族群zh_TW
dc.subject混合型常態模式zh_TW
dc.subject馬可夫性質zh_TW
dc.subject區間定位法zh_TW
dc.subject數量性狀基因座zh_TW
dc.subjectMarkovian propertyen
dc.subjectregression interval mappingen
dc.subjectRI populationsen
dc.subjectnormal mixture modelen
dc.subjectinterval mappingen
dc.subjectQTLen
dc.title不同重組自交族群基因組結構模型下偵測兩個連鎖QTL的效力研究zh_TW
dc.titlePower Prediction of Separating Closely Linked QTL under Three Models of Genomic Structures in Recombinant Inbred Populationsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.coadvisor廖振鐸
dc.contributor.oralexamcommittee彭雲明
dc.subject.keyword數量性狀基因座,區間定位法,混合型常態模式,重組自交族群,馬可夫性質,zh_TW
dc.subject.keywordQTL,interval mapping,normal mixture model,RI populations,Markovian property,regression interval mapping,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2010-07-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
436.72 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved