請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44544完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱錦洲(Chin-Chou Chu),張建成(Chien-Cheng Chang) | |
| dc.contributor.author | Yu-Sheng Lin | en |
| dc.contributor.author | 林裕昇 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:04:08Z | - |
| dc.date.available | 2012-07-31 | |
| dc.date.copyright | 2009-07-31 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-30 | |
| dc.identifier.citation | [1] A. E. H. Love, “On the small free vibrations and deformations of a thin elastic
shell”, Philosophical Transactions of the Royal Soc. Of London, Ser. A, 179, pp.491-546, 1888. [2] W. Flugge, “stresses inShells”, 2nd ed., Springer-Verlag, New Tork, 1973. [3] W. Soedel, Vibrations of Shells and Plates, Dekker, 1993. [4] H. S. Tzou, Piezoelectric Shells: Distributed Sensing and Control, Kluwer Academic Publishers, Dordrecht, Boston, London, 1993. [5] H. S Tzou, J. P. Zhong and M. Natori, “Sensor Mechanics of Distributed Shell Convolving Sensors Applied to Flexible Rings,” ASME Jof vibration & Acoustics, Vol. 115. January 1993. [6] H. S. Tzou, J. P. Zhong and J. J. Hollkamp, ”Spatially Distributed Orthogonal Piezoelectric Shell Actuators Theory and Applications.” Journal of Sound and Vibration (1994) 177(3), 363-378. [7] J. Callahan and H. Baruh, “Modal Sensing of Circular Cylindrical Shells Using Segmented Piezoelectric Elements,” Smart Materials & Structures 8(1) (1999) 125-135. [8] J. Qiu and J. Tani, “Vibration Control of a Cylindrical Shell Using Distributed Piezoelectric Sensors and Actuators,” Journal of Intelligent Material Systems and Structures 6 (4) (1995) 474-481. [9] H. H. Yue, Z.Q. Deng & H.S. Tzou, “Distributed Signal Analysis of Free-floating Paraboloidal Membrane Shells,” Journal of Sound &Vibration 304 (2007) 625-639. [10] H. S. Tzou and D.W. Wang, “Micro-Sensing Characteristics and Modal Voltages of Linear/Non-Linear Toroidal Shells,” Journal of Sound and Vibration (2002) 254 (2) 203-218. [11] J. G. DeHaven, Y. Han and H. S. Tzou, “Transition of Membrane/Bending Neural Signals on Transforming Adaptive Shells,” Journal of Sound & Vibration (2004)13 (7) 1007-1029. [12] H. S. Tzou, W. K. Chai, D. W. Wang, “Modal Voltages & Micro-Signal Analysis of Conical Shells of Revolution,” Journal of Sound & Vibration (2003) 260 589-609. [13] M. S. Tsai, K. W. Wang,1996, “Control of a Ring Structure with Multiple Active-Passive Hybrid Piezoelectrical Networks,” Smart Materials and Structures, No. 5, pp. 695-703. [14] K. Rourke, S. McWilliam and C. H. Fox, “Multi-Mode Trimming of Imperfect Rings,” Journal of Sound and Vibration (2001) 248(4) 589-609. [15] K. Rourke, S. McWilliam and C. H. Fox, “Frequency Trimming of a Vibrating Ring-Based Multi-Axis Rate Sensor,” Journal of Sound & Vibration (2005) 280 495-530. [16] W. Kim, J. Chung, “Free Non-Linear Vibration of a Rotating Thin Ring with the In-Plane and Out-of –Plane Motions,” Journal of Sound and Vibration (2002) 258(1) 167-178. [17] T. Wah, “Circular symmetric vibrations of ring-stiffened cylindrical shells”, Journal of the Society of Industrial and Applied Mathematics 12, 649-662, 1964. [18] T. Wah and W. C. L. Hu, “Vibration analysis of stiffened cylinders including inter-ring motion”, Journal of the Acoustical Society of America, Vol.43, No.5, pp.1005-1016., [19] U. Gabbert, H. S. Tzou (Eds.), “Smart Structures and Structronic Systems,” IUTAM Symposium on Smart Structures and Structronic Systems, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001. [20] H. S. Tzou, H. J. Lee and S. M. Arnold, “Arnold, Smart Materials, Precision Sensors/Actuators, Smart Structures, and Structronic Systems,” Mechanics of Advanced Materials and Structures, 367-393. [21] H. S. Tzou and G. L. Anderson, Intelligent Structural System, Kluwer Academic Publishers, Dordrecht, Boston, London, 1992. [22] Nellya N. Rogacheva, The Theory of Piezoelectric Shells And Plates, CRC Press, Boca Raton, Ann Arbor, London. [23] W.K. Chai, Micro-electromechanics and distributed control of hybrid electrostrictive/piezoelectric shell structronic systems, PhD thesis, Dept. of Mechanical Engineering, University of Kentucky, Lexington, KY, 40503 (2004). [24] H.S. Tzou, W.K. Chai, S.M. Arnold, Structronics and actuation of hybrid electrostrictive/piezoelectric thin shells, ASME Journal of Vibration and Acoustics 128 (2006) 79-87. [25] H.S. Tzou, Y.T. Zhu, I. Hagiwara, Distributed precision control of structronic shells and common shapes–A new approach, Recent Research Developments in Sound & Vibration, 1 (2002) 613-645. [26] H.S. Tzou, W.K. Chai, Design and testing of a hybrid polymeric electrostrictive/piezoelectric beam with bang-bang control, Mechanical Systems and Signal Processing 21 (1) (2007) 417-429. [27] R. Heydt, R. Kornbluh, R. Pelrine, V. Mason, Design and performance of an electrostrictive-polymer-film acoustic actuator, Journal of Sound and Vibration, 215 (2) (1998) 297-311. [28] M.I. Frecker, M. William, W.M. Aguilera, Analytical modeling of a segmented unimorph actuator using electrostrictive P(VDF-TrFE) copolymer, Smart Mater. Struct. 13(1) (2004) 82-91. [29] F. Pablo, D. Osmont, R. Ohayon, Modeling of plate structures equipped with current driven electrostrictive actuators for active vibration control, Journal of Intelligent Material Systems and Structures 14 (2003) 173-183. [30] M.L.R. Fripp, N.W. Hagood, Distributed structural actuation with electrostrictors, Journal of Sound and Vibration 203 (1) (1997) 11-40. [31] Y. Nakajima, T. Hayashi, I. Hayashi, K. Uchino, Electrostrictive properties of a PMN stacked actuator, Japanese Journal of Applied Physics 24 (2) (1985) 235-238. [32] Y. Nakajima, T. Hayashi, I. Hayashi, K. Uchino, Electrostrictive properties of a PMN stacked actuator, Japanese Journal of Applied Physics 24 (2) (1985) 235-238. [33] Yimnirm. R., Moses, P. J. and Newnham, R.E., and Mayer 2002, “Electrostrictive Strain in Low-Permitivity Dielectic,” Journal of electroceramics Vol 8, 87-98 [34] H. S. Tzou and J. H. Ding, “Optimal Feedback control of precision Paraboloidal Shell Structronic Systems”, Journal of Sound & Vibration, 276 (2004), 273-291. [35] 陳宣穆,『旋轉體薄殼之大變形分析』,國立成功大學土木研究碩士論文,台 灣,2007。 [36] 林宗賢,『具加強環之雙跨距複合圓柱薄殼之振動分析』,國立成功大學工程 科學研究碩士論文,2004。 [37] 蕭德慶,『雙跨距圓柱薄殼之振動分析』,國立成功大學碩士論文,2002。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44544 | - |
| dc.description.abstract | 對於薄殼類型之結構的分佈控制,必須要有效的致動和動態
分析。本研究是估算片段分佈的電-機械性質的壓電薄殼感測器 應用在環薄殼。由於感測器的訊號是模態決定,所以必須先學習 自然模態的特性而且特別強調於環向之模態。其次,在分佈片段 的感測器使用分割的技巧且設計不同的長度,使得藉著模態形變 而估算訊號。 因此,全部的輸出訊號總共包含了四個部份:1)環向之振動 的振幅所造成彎曲應變而感生訊號,2)徑向之振動的振幅所造成 彎曲應變而感生訊號,3)環向之振動的振幅所造成膜應變而感生 訊號,4)徑向之振動的振幅所造成膜應變而感生訊號。膜應變與 彎曲應變主要分別由環向與徑向之自然頻率伴隨而生。所以感測 器的敏感度可以在分成:1)徑向型態敏感度與2)環向型態敏感 度。 使用參數學習(例如:環的半徑、感測器的厚度、環的厚度 和片段感測器的大小)而引導計算出在自然振動之下,所產生在 環的壓電片感測器所得之訊號。所有的資料指示著,產生的總訊 號主要是由環向分量貢獻為較多,而不是徑向分量。 其次,在環薄殼上包覆致動層,藉著推導致動片之控制效 應,瞭解在徑向模式時,彎曲控制效應支配整個控制效應,反之 在環向模式時,膜控制效應會是主要控制效應的主幹。 最後,使用參數學習(例如:環的半徑、致動器的厚度、環 的厚度和片段致動器的大小與施加電壓大小)而瞭解這些幾何參 數影響控制效應之大小。 | zh_TW |
| dc.description.abstract | Distributed monitoring is essential to effective actuation and
vibration control of shell-type structures. In this thesis, electro-mechanics of the segmented distributed piezoelectric shell sensors applied to ring shells are evaluated. Since sensor signals are modal dependent, natural modal characteristics, emphasizing the circumferential mode, are studied first. Then, with the segmentation technique, distributed segmented sensors with various lengths are designed and their signal generations resulting from modal strains are evaluated. The total output signal includes four components: 1) a bending strain induced signal by the circumferential oscillatory amplitude, 2) a bending strain induced signal by the transverse oscillatory amplitude, 3) a membrane strain induced signal by the circumferential oscillatory amplitude and 4) a membrane strain induced signal by the transverse oscillatory amplitude respectively at the transverse and circumferential component frequencies. Furthermore, the sensor sensitivities are divided into: 1) the transverse modal sensitivity and 2) the circumferential modal sensitivity. Parametric studies (e.g., ring radius, sensor thickness, ring thickness and sensor segment length) are conducted to evaluate the spatial signal distributions and component signal generations of segmented ring sensors. All data indicate that ring’s circumferential, not transverse, component mode dominates the total signal generation. Then, distributed control actions induced by electrostrictive actuator segments are evaluated the total effect can be divided into two microscopic control actions: the circumferential membrane and bending control actions. The bending control action in total control action is major contribution at the transverse mode. The membrane control action in total VI control actions is major contribution at the circumferential mode. Finally, parametric studies (e.g., ring radius, actuator thickness, ring thickness, actuator segment length and applied voltage) are conducted to evaluate control effect. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:04:08Z (GMT). No. of bitstreams: 1 ntu-98-R95543031-1.pdf: 1918392 bytes, checksum: 3a4ace9ad6661ebd4f7dee98e5e98911 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 目錄
口試委員審定書........................................................................................ I 誌謝............................................................................................................II 摘要.......................................................................................................... III ABSTRACT..............................................................................................V 目錄.........................................................................................................VII 圖目錄...................................................................................................... IX 表目錄................................................................................................... XIV 第1 章 序論..............................................................................................1 1.1 引言..................................................................................................1 1.2 介紹..................................................................................................4 1.3 研究範圍..........................................................................................5 第2 章 環之結構與震動分析理論..........................................................7 2.1 樂夫(LOVE)方程式..........................................................................7 2.2 深薄殼方程式................................................................................14 2.2.1 膜作用力(Membrane Forces).................................................15 2.2.2 彎曲力距(Bending Moments)................................................16 2.3 環薄殼運動方程式........................................................................16 2.4 環薄殼之自然振動分析................................................................18 第3 章 環之感測器................................................................................21 3.1 感測器之輸出訊號........................................................................21 3.2 感測器之分割技術........................................................................24 3.3 感測器之敏感度............................................................................27 第4 章 環之致動器................................................................................29 4.1 分佈電滯性致動片之控制力........................................................30 4.2 分佈致動器控制效應....................................................................32 4.3 環薄殼之致動器............................................................................36 4.4 致動器之效應................................................................................39 第5 章 結果與討論................................................................................42 5.1 自然頻率與振幅比........................................................................45 5.2 模態型式........................................................................................48 5.3 環之壓電片感測器的輸出訊號....................................................57 5.4 敏感度分析....................................................................................72 5.5 環之電滯性致動器控制效應........................................................82 第6 章 總結..........................................................................................102 | |
| dc.language.iso | zh-TW | |
| dc.subject | 膜控制效應 | zh_TW |
| dc.subject | 徑向模態 | zh_TW |
| dc.subject | 分割技巧 | zh_TW |
| dc.subject | 彎曲應變感生訊號 | zh_TW |
| dc.subject | 膜應變感生訊號 | zh_TW |
| dc.subject | 感測器敏感度總產生訊號 | zh_TW |
| dc.subject | 彎曲控制效應 | zh_TW |
| dc.subject | 環向模態 | zh_TW |
| dc.subject | membrane control action | en |
| dc.subject | Circumferential modal | en |
| dc.subject | bending control action | en |
| dc.subject | total signal generation | en |
| dc.subject | sensor sensitivity | en |
| dc.subject | membrane strain induced signal | en |
| dc.subject | bending strain induced signal | en |
| dc.subject | transverse modal | en |
| dc.subject | segmentation technique | en |
| dc.title | 片段環感測器之模態敏感度的空間訊號分佈及片段環
致動器的控制效應 | zh_TW |
| dc.title | Modal sensitivities, spatial signal distribution and
average of segmented ring sensors and control effect of segmented ring actuators | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.advisor-orcid | ,張建成(mechang@iam.ntu.edu.tw) | |
| dc.contributor.oralexamcommittee | 張家歐(Chia-Ou Chang),鄒鴻生(Horn-Sen Tzou),郭志禹(Chih-Yu Kuo) | |
| dc.subject.keyword | 環向模態,徑向模態,分割技巧,彎曲應變感生訊號,膜應變感生訊號,感測器敏感度總產生訊號,彎曲控制效應,膜控制效應, | zh_TW |
| dc.subject.keyword | Circumferential modal,transverse modal,segmentation technique,bending strain induced signal,membrane strain induced signal,sensor sensitivity,total signal generation,bending control action,membrane control action, | en |
| dc.relation.page | 115 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
