請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44538
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李雨(U. Lei) | |
dc.contributor.author | "Li, Chih-I" | en |
dc.contributor.author | 李芷儀 | zh_TW |
dc.date.accessioned | 2021-06-15T03:03:45Z | - |
dc.date.available | 2012-07-31 | |
dc.date.copyright | 2009-07-31 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-30 | |
dc.identifier.citation | [1] Castellanos A., A. Ramos, A. Gonzalez, N. G. Green and H. Morgan, “Electrohydrodynamics and dieletropherosis in microsystems: scaling laws”, J. Phys. D: Appl. Phys., vol. 36, 2584-2597, (2003).
[2] Chen D. F. and H. Du, “Simulation studies on electrothermal fluid flow induced in a dielectrophoretic microelectrode system”, J. Micromech. Microeng, vol. 16, 2411-2419, (2006). [3] Feng J. J., S. Krishnamoorthy and S. Sundaram, “Numerical analysis of mixing by electrothermal induced flow in microfluidic system”, Biomicrofluidics, vol. 1, 024012, (2007). [4] Gonzalez A., A. Ramos, H. Morgan, N. G. Green and A. Castellanos, “Electrothernal flows generated by alternating and rotating electric fields in microsystems”, J. Fluid Mech., vol. 564, 415-433, (2006). [5] Green N. G., A. Ramos and H. Morgan, “AC electrokinetics: a survey of sub-micrometre particle dynamics”, J. Phys. D: Appl. Phys., vol. 33, 632-641, (2000). [6] Green N. G. and H. Morgan, “Dielectrophoretic investigations of sub-micrometre latex spheres”, J. Phys. D: Appl. Phys., vol. 30, 2626-2633, (1997). [7] Green N. G., A. Ramos, A. Gonzalez, A. Castellanos and H. Morgan, “Electrothermally induced fluid flow on microelectrodes”, J. of Electrostatics, vol. 53, 71-87, (2001). [8] Gu Y. and D. Li, “The ζ-potential of glass surface in contact with aqueous solutions”, J. of Colloid and Interface Science, vol. 226, 328-339, (2000). [9] Jones T. B., “Electrohydrodynamically enhanced heat transfer in liquids─a review”, Advances in Heat Transfer, vol. 14, 107-143, (1978). [10] Jones T. B., “Electromechanics of particles”, Cambrige University Press, (1995). [11] Logan D. L., “A first course in the finite element method”, third edition, Brooks/Cole, (2001). [12] Moctar A. O. E., N. Aubry and J. Batton, “Electro-hydrodynamic micro-fluidic mixer”, Lab Chip, vol. 3, 273-280, (2003). [13] Potter M. C. and D. C. Wiggert, “Mechanics of fluids”, third edition, Brooks/Cole, (2001). [14] Ramos A., H. Morgan, N. G. Green and A. Castellanos, “Ac electrokinetics: a review of forces in microelectrode structures”, J. Phys. D: Appl. Phys., vol. 31, 2338-2353, (1998). [15] Raffel M., C. E. Willert and J. Kompenhans, “Particle image velocimetry ─ a particle guid”, Spring, (1998). [16] Stratton J. A., “Electromagnetic Theory ”, (1941). [17] 黃敬文(Huang, C. W.), “用以輸送血液之旅波式介電泳幫浦”, Master thesis, Institute of Applied Mechanics, National Taiwan University, (2008). [18] 蔡政村(Tsai, C. T.), “無閥門微幫浦及脈衝流場混合器的數值研究”, Master thesis, Institute of Applied Mechanics, National Taiwan University, (2006). [19] 羅卓錚(Lo, C. C), “擋體式無閥門微幫浦之數值模擬”, Master thesis, Institute of Applied Mechanics, National Taiwan University, (2004). [20] http://www.pitotech.com.tw/c/fq-01.htm | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44538 | - |
dc.description.abstract | 本文探討含特殊造型平面電極的微流道內電解質流體所產生的漩渦流動。採用流力及電熱力的理論,透過COMSOL軟體進行模擬,並加以實驗驗證。最後,利用此漩渦流動的特性設計出各式微流混合器,並分析其混合效能。
實驗裝置是採用標準微機電技術製作,其結構是一矩形截面直微流道,並在流道底壁建置一對具夾角之平面電極,電極通以10伏特的交流電,以驅動流道內的電解液運動,再將所記錄的影像以PIV方法分析,可獲得流場。經與計算結果比較,雖局部定量結果差異頗大,但定性結果相符,而初步確認可採數值模擬研究此微流裝置。 計算結果提供三維微流道內漩渦流場的詳細性質,其中重要結論含:(1)微流道內流體的最大溫度差雖然只有0.32K,但因為具有甚大的溫度梯度而能對流體的運動造成很大的影響。(2)溫度不會隨交流電的頻率變化而有所改變,但是卻會隨著流體導電率的增加而呈線性成長。而流場的速度量值會隨著交流電頻率的增加而變小,但卻隨著流體導電率的增加而變大。(3)電極夾角的角度對微流道內的溫度場與流場的整體趨勢影響不大,只會稍微改變高溫區域和流場漩渦的位置,但是對於速度量值而言,電極夾角的影響很大,夾角為 時有最大的漩渦速度。 混合器方面,本文依照流場的計算結果設計出多種不同的電極陣列,並進行了詳細的計算與分析。在平均背景流速100 及電壓30 下,其中一項交錯電極設計(二行,共六片電極)的混合器之混合效能可達89.6%。 | zh_TW |
dc.description.abstract | The goal of this thesis is to study the vortex motion of electrolyte in a micro channel with designed electrodes built on one of its walls. The problem is formulated based on fluid mechanics subjected to electro-thermal force, solved by using the CMSOL software, and validated by comparing with an experiment. The result of such a vortex motion is employed to the design of a micro-mixer, which is also analyzed in details numerically.
The apparatus of the experiment is fabricated by using the standard MEMS techniques. It is a micro-channel of rectangular cross section with a pair of electrodes on its bottom wall. The fluid motion is generated by actuated the electrodes at 10 volts (20 volts peak-to-peak), and is recorded and analyzed using the method employed in PIV. The numerical results agree qualitatively and fairly quantitatively with the experiment, with considerable discrepancies at a limited local region. The main findings of the present three-dimensional calculation are as follows. (1) Although the temperature differences are within 0.32K, its effect on fluid motion is significant because of large temperature gradient. (2) The temperature remains unchanged as the electric frequency varies but increases linearly with the medium conductivity. The velocity magnitude decreases as the frequency increases but increases as the medium conductivity increases. (3) The angle between the electrode pair does not have significant effect on the temperature and the appearance of the vortex structure, but it does affect the velocity magnitude. The velocity magnitude obtains its maximum when the angle is 180°. Various electrodes configurations for mixing enhancement are designed and simulated based on the results of vortex structures. For a background velocity at and an applied voltage at 30 volts, the mixing efficiency can reach 90% for a staggered electrode (two rows) design with six electrodes. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T03:03:45Z (GMT). No. of bitstreams: 1 ntu-98-R96543034-1.pdf: 7434842 bytes, checksum: 4e0454310dd5e011ec270d40aed207c9 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 IX 符號說明 X 第一章 導論 1 1.1 研究背景 1 1.2 研究動機和目的 2 1.3 文獻回顧 3 1.3.1 電動力學理論相關文獻 3 1.3.2 微流混合器相關文獻 4 第二章 理論基礎 6 2.1 流體運動的統御方程式 6 2.1.1 電位場的統御方程式 6 2.1.2 溫度場的統御方程式 8 2.1.3 流場的統御方程式 9 2.1.4 電熱力 9 2.1.5 濃度場的統馭方程式 11 2.1.6 統御方程式的化簡 11 2.2 粒子的運動 12 2.2.1 粒子所受的介電泳力 12 2.3 綜合表現結果 13 2.4 混合器的混合效益 14 第三章 數值方法 15 3.1 有限元素法(Finite Element Method, FEM) 15 3.1.1 有限元素法的求解步驟 15 3.1.2 嘎樂金法(Galerkin’s method) 16 3.1.3 非線性矩陣的求解 18 3.2 COMSOL軟體介紹 19 3.2.1 邊界條件 19 3.2.2 COMSOL軟體使用步驟 22 第四章 結果討論 24 4.1 基本結構的幾何尺寸與格點測試 24 4.1.1 基本結構的幾何尺寸 24 4.1.2 基本結構的網格測試 24 4.2 與實驗結果比較 26 4.2.1 實驗設備、實驗步驟與流場計算方法(PIV) 26 4.2.2 實驗結果與模擬結果比較 28 4.3 流場的相關性質 30 4.3.1 電位場溫度場流場 30 4.3.2 頻率及導電率的影響 31 4.3.3 不同電極角度的流場性質 33 4.4 混合器 34 4.4.1 混合器的幾何 34 4.4.2 混合器的混合機制與各式混合器的混合效能 34 4.4.3 電壓和入口流速對混合效能的影響 36 第五章 結論與未來工作 37 5.1 結論 37 5.2 未來工作 37 參考文獻 39 | |
dc.language.iso | zh-TW | |
dc.title | 電熱力流場混合器的數值模擬與設計 | zh_TW |
dc.title | Simulation and Design of Electrothermal Microfluidic Mixer | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳希立,楊政潁 | |
dc.subject.keyword | 流力,電熱力,微流混合器,三維流道, | zh_TW |
dc.subject.keyword | Fluid mechanics,Electro-thermal force,micro-mixer,three dimension channel, | en |
dc.relation.page | 92 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 7.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。