Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 職業醫學與工業衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44523
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭尊仁
dc.contributor.authorMeng Hoen
dc.contributor.author賀萌zh_TW
dc.date.accessioned2021-06-15T03:02:50Z-
dc.date.available2011-09-16
dc.date.copyright2009-09-16
dc.date.issued2009
dc.date.submitted2009-07-30
dc.identifier.citation[1] Seaton A, Donaldson K. Nanoscience, nanotoxicology, and the need to think small. Lancet. 2005;365:923-4.
[2] Maynard AD, Aitken RJ, Butz T, et al. Safe handling of nanotechnology. Nature. 2006;444:267-9.
[3] Maynard AD. Nanotechnology: the next big thing, or much ado about nothing? Ann Occup Hyg. 2007;51:1-12.
[4] NIOSH. About Nanotechnology: Background. National Institute for Occupational Safety and Health 2006.
[5] Gordon T, Chen LC, Fine JM, et al. Pulmonary effects of inhaled zinc oxide in human subjects, guinea pigs, rats, and rabbits. Am Ind Hyg Assoc J. 1992;53:503-9.
[6] Kuschner WG, D'Alessandro A, Wong H, Blanc PD. Early pulmonary cytokine responses to zinc oxide fume inhalation. Environ Res. 1997;75:7-11.
[7] Fine JM, Gordon T, Chen LC, et al. Characterization of clinical tolerance to inhaled zinc oxide in naive subjects and sheet metal workers. J Occup Environ Med. 2000;42:1085-91.
[8] Fine JM, Gordon T, Chen LC, Kinney P, Falcone G, Beckett WS. Metal fume fever: Characterization of clinical and plasma IL-6 responses in controlled human exposures to zinc oxide fume at and below the threshold limit value. Journal of Occupational and Environmental Medicine. 1997;39:722-6.
[9] Stoeger T, Reinhard C, Takenaka S, et al. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environmental Health Perspectives. 2006;114:328-33.
[10] Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823-39.
[11] Oberdorster G, Finkelstein JN, Johnston C, et al. Acute pulmonary effects of ultrafine particles in rats and mice. Res Rep Health Eff Inst. 2000:5-74; disc 5-86.
[12] Oberdorster G, Finkelstein J, Ferin J, et al. Ultrafine particles as a potential environmental health hazard. Studies with model particles. Chest. 1996;109:68S-9S.
[13] Duffin R, Tran L, Brown D, Stone V, Donaldson K. Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: Highlighting the role of particle surface area and surface reactivity. Inhalation Toxicology. 2007;19:849-56.
[14] Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ. Nanotoxicology. Occup Environ Med. 2004;61:727-8.
[15] Xia T, Li N, Nel AE. Potential Health Impact of Nanoparticles. Annu Rev Public Health. 2009.
[16] Dreher KL. Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci. 2004;77:3-5.
[17] Yezhelyev MV, Gao, X., Xing, Y., Al Hajj, A., Nie, S. M. and O’Regan, R. M. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncology. 2006;7:657 – 67.
[18] Borm P, Klaessig FC, Landry TD, et al. Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci. 2006;90:23-32.
[19] Dankovic D, Kuempel E, Wheeler M. An approach to risk assessment for TiO2. Inhal Toxicol. 2007;19 Suppl 1:205-12.
[20] Grassian VH, O'Shaughnessy P T, Adamcakova-Dodd A, Pettibone JM, Thorne PS. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect. 2007;115:397-402.
[21] Oberdorster G, Stone V, Donaldson K. Toxicology of nanoparticles: A historical perspective. Nanotoxicology. 2007;1:2-25.
[22] Rohrs LC. Metal-fume fever from inhaling zinc oxide. AMA Arch Ind Health. 1957;16:42-7.
[23] Frampton MW. Does inhalation of ultrafine particles cause pulmonary vascular effects in humans? Inhal Toxicol. 2007;19 Suppl 1:75-9.
[24] Oberdorster G. Lung particle overload: implications for occupational exposures to particles. Regul Toxicol Pharmacol. 1995;21:123-35.
[25] Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K. Inhalation of poorly soluble particles. II. Influence Of particle surface area on inflammation and clearance. Inhal Toxicol. 2000;12:1113-26.
[26] Oberdorster G, Sharp Z, Atudorei V, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004;16:437-45.
[27] Elder A, Gelein R, Silva V, et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 2006;114:1172-8.
[28] Bermudez E, Mangum JB, Wong BA, et al. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci. 2004;77:347-57.
[29] Driscoll KE, Carter JM, Howard BW, et al. Pulmonary inflammatory, chemokine, and mutagenic responses in rats after subchronic inhalation of carbon black. Toxicol Appl Pharmacol. 1996;136:372-80.
[30] Monteiller C, Tran L, MacNee W, et al. The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occupational and Environmental Medicine. 2007;64:609-15.
[31] ICRP. Human respiratory tract model for radiological protection. A report of a Task Group of the International Commission on Radiological Protection. Ann ICRP. 1994;24:1-482.
[32] Oberdorster G, Ferin J, Lehnert BE. Correlation between particle size, in vivo particle persistence, and lung injury. Environmental Health Perspectives. 1994;102:173-9.
[33] Oberdorster G. Toxicology of Ultrafine Particles: In vivo Studies. Philosophical Transactions: Mathematical, Physical and Engineering Sciences. 2000;358:2719-40.
[34] Donaldson K, Stone V, Clouter A, Renwick L, MacNee W. Ultrafine particles. Occup Environ Med. 2001;58:211-6, 199.
[35] Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area. Toxicological Sciences. 2006;91:227-36.
[36] Wittmaack K. In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: Particle number, surface area, or what? Environmental Health Perspectives. 2007;115:187-94.
[37] Beckett WS, Chalupa DF, Pauly-Brown A, et al. Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults - A human inhalation study. American Journal of Respiratory and Critical Care Medicine. 2005;171:1129-35.
[38] Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett. 2009;185:211-8.
[39] Lin WS, Xu Y, Huang CC, et al. Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. Journal of Nanoparticle Research. 2009;11:25-39.
[40] Wesselkamper SC, Chen LC, Gordon T. Development of pulmonary tolerance in mice exposed to zinc oxide fumes. Toxicol Sci. 2001;60:144-51.
[41] Yu MC. Inhalation toxicity of ultrafine zinc oxide particles in spontaneously hypertensive rats. Taipei: National Taiwan University; 2008.
[42] Frank MM, Fries LF. The role of complement in inflammation and phagocytosis. Immunol Today. 1991;12:322-6.
[43] Worthen GS. Lipid Mediators, Neutrophils, and Endothelial Injury. American Review of Respiratory Disease. 1987;136:455-8.
[44] Strieter RM, Belperio JA, Keane MP. Cytokines in innate host defense in the lung. Journal of Clinical Investigation. 2002;109:699-705.
[45] Strieter RM. Inflammatory mechanisms are not a minor component of the pathogenesis of idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2002;165:1206-7.
[46] Chvapil M. Lactate-Dehydrogenase Isoenzyme Pattern and Total Ldh Activity in Lung and Liver of Rats Chronically Exposed to Low and High Oxygen Concentrations. Life Sciences. 1975;17:761-6.
[47] Denicola DB, Rebar AH, Henderson RF. Early Damage Indicators in the Lung .5. Biochemical and Cytological Response to No2 Inhalation. Toxicology and Applied Pharmacology. 1981;60:301-12.
[48] Osier M, Oberdorster G. Intratracheal inhalation vs intratracheal instillation: Differences in particle effects. Fundamental and Applied Toxicology. 1997;40:220-7.
[49] Oberdorster G, Cox C, Gelein R. Intratracheal instillation versus intratracheal inhalation of tracer particles for measuring lung clearance function. Experimental Lung Research. 1997;23:17-34.
[50] Driscoll KE, Costa DL, Hatch G, et al. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: Uses and limitations. Toxicological Sciences. 2000;55:24-35.
[51] Gurav A, Kodas T, Pluym T, Xiong Y. Aerosol Processing of Materials. Aerosol Science and Technology. 1993;19:411-52.
[52] Maciejczyk P, Zhong M, Li Q, Xiong J, Nadziejko C, Chen LC. Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice. II. The design of a CAPs exposure system for biometric telemetry monitoring. Inhal Toxicol. 2005;17:189-97.
[53] GRIMM. Ultra-fine Aerosol Minitors. Germany: GRIMM Aerosol Technik GmbH 2001.
[54] LI MC. Part I: Toxicity study of zinc oxide nanoparticles Part II: Toxicity study of carbon nanocapsules. Taipei: National Taiwan University; 2008.
[55] Oberdorster G. Pulmonary effects of inhaled ultrafine particles. International Archives of Occupational and Environmental Health. 2001;74:1-8.
[56] Donaldson K, Brown D, Clouter A, et al. The pulmonary toxicology of ultrafine particles. Journal of Aerosol Medicine-Deposition Clearance and Effects in the Lung. 2002;15:213-20.
[57] Oberdorster G. Ultrafine particles in lung injury and inflammation. Free Radical Biology and Medicine. 2006;41:S4-S.
[58] Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society. 1938;60:309-19.
[59] Rogak SN, Flagan RC, Nguyen HV. The Mobility and Structure of Aerosol Agglomerates. Aerosol Science and Technology. 1993;18:25-47.
[60] Rogak SN, Flagan RC. Bipolar Diffusion Charging of Spheres and Agglomerate Aerosol-Particles. Journal of Aerosol Science. 1992;23:693-710.
[61] Ku BK, Maynard AD. Comparing aerosol surface-area measurements of monodisperse ultrafine silver agglomerates by mobility analysis, transmission electron microscopy and diffusion charging. Journal of Aerosol Science. 2005;36:1108-24.
[62] Ntziachristos L, Polidori A, Phuleria H, Geller MD, Sioutas C. Application of a diffusion charger for the measurement of particle surface concentration in different environments. Aerosol Science and Technology. 2007;41:571-80.
[63] Ku BK, Maynard AD. Generation and investigation of airborne silver nanoparticles with specific size and morphology by homogeneous nucleation, coagulation and sintering. Journal of Aerosol Science. 2006;37:452-70.
[64] Backman U, Jokiniemi JK, Auvinen A, Lehtinen KEJ. The effect of boundary conditions on gas-phase synthesised silver nanoparticles. Journal of Nanoparticle Research. 2002;4:325-35.
[65] Mitrakos D, Jokiniemi J, Backman U, Housiadas C. Aerosol flow in a tube furnace reactor of gas-phase synthesised silver nanoparticles. Journal of Nanoparticle Research. 2008;10:153-61.
[66] Crump PP. Bmdp Statistical Software - Dixon,Wj. Technometrics. 1984;26:416-7.
[67] OSHA. Occupational safety and health guideline for welding fumes. Washington, DC: Depart. of Labor 1989.
[68] Zhang QM, Li Y, Huang FZ, Gu ZN. Synthesis of silver nanoparticles in nonionic surfactant system. Acta Physico-Chimica Sinica. 2001;17:537-41.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44523-
dc.description.abstract奈米材料已被廣泛的運用在許多領域中,其中奈米氧化鋅在催化、光學、磁學、力學等方面展現出許多特殊功能,使其在陶瓷、化工、電子、光學、生物、醫藥等許多領域有重要的應用價值。然而奈米氧化鋅相關的毒理研究並不多,需要進一步的研究探討。
另一方面,許多研究指出奈米微粒健康效應與傳統使用的質量濃度相關較小,而與顆粒濃度或表面積濃度相關較大,但是目前研究多以氣管灌注模式暴露實驗動物。氣管灌注方式暴露動物,無法掌握奈米微粒粒徑及濃度,所以我們開發微粒產生及暴露系統,利用全身性呼吸暴露的方式,將不同粒徑以及濃度之氧化鋅微粒暴露於健康大鼠,觀察其肺部及系統性的毒性效應。除此之外我們也探討毒性效應與量度單位(dose metric)之關係,並且進一步利用基準劑量模式(bench mark dose)推估氧化鋅之基準計量。
我們以微粒產生系統產生粒徑約為35 nm及250 nm的氧化鋅微粒並以全身性暴露腔進行大鼠暴露,產生微粒的同時以掃瞄式電移動微粒分析儀自動監測儀(SMPS+C)進行微粒粒徑及濃度的監測。分別進行35nm粒徑:低、中、高濃度以及250nm:低、中、高濃度的暴露,每組暴露6隻大鼠,並以在相同暴露條件下,微粒通過高效能過濾器(HEPA)之空氣為對照組(4隻/組),共計60隻。暴露後24小時進行犧牲,並採集周邊血液樣本,測試血液中血球數目(CBC/DC),同時採集其肺泡灌洗液(BALF)進行肺部發炎及傷害指標的分析,包括總細胞數、血球分類計數、乳酸脫氫酵素(LDH)及總蛋白質(Total protein)。
實驗結果顯示微粒產生器可穩定產生粒徑約為35 nm 以及250 nm的氧化鋅微粒,35nm組低、中、高濃度所產生的奈米氧化鋅微粒,數目濃度分別約為1.5×106、2.1×106、7.9×106 #/cm3;250nm組低、中、高濃度之數目濃度分別約為6.2×104、1.5×105、4.5×105 #/cm3。
動物實驗結果發現,不論是在35 nm或250 nm粒徑下,大鼠暴露於低、中、高濃度的氧化鋅微粒後,在肺泡灌洗液中的嗜中性球百分比(Neutrophils)及總細胞數相較於對照組有顯著增加,並且呈現劑量反應關係(p<0.05)。同時,暴露於高濃度組別之乳酸脫氫酵素也顯著高於控制組(p<0.05)。另外,在周邊血液方面,暴露於兩個粒徑之高濃度組的白血球數目(WBC)相較於對照組有顯著增加(p<0.05)。
毒性效應與量度單位的結果顯示,相較於重量濃度與顆粒濃度,表面積濃度與肺部毒性效應之劑量曲線在兩種粒徑最為類似。進一步利用基準劑量模式推估得到表面積濃度之基準劑量下限為1.1×104 mm2/m3(以35nm、100nm、250nm氧化鋅換算之重量濃度分別為1.14、3.24、8.11mg/m3)。本研究發現,健康大鼠在暴露低於目前氧化鋅燻煙之容許濃度標準(PEL, 5 mg/m3)之奈米氧化鋅微粒會誘使健康大鼠發生急性肺部發炎與傷害以及系統性發炎反應,而目前法規是否能妥善維護勞工之安全,仍有待進一步研究。
zh_TW
dc.description.abstractNano-sized zinc oxide (ZnO) was widely applied in industrial field. However, there are literatures indicating that nano-size particles may induce inflammation, thrombosis and cardiovascular diseases, or even penetrate into systemic circulation. Previous studies have shown that total surface area of nanoparticles (NPs) is the best dose metric for particle toxicity. But these studies were conducted with intratracheal instillation, in which the surface area may not be correctly estimated because of particle agglomeration. In this study, I used inhalation exposure to compare relationship of different metrics with lung inflammation induced by zinc oxide particles. I further calculated the benchmark dose to determine the reference dose of zinc oxide.
ZnO NPs were produced in a furnace system and SMPS was used to monitor particle size and number. Healthy SD rats were exposed to 35nm NPs at 1.5×106, 2.1×106, 7.9×106 particles/cm3 and filtered air for 6 hrs. Similarly, rats were exposed to 250nm ZnO at 6.2×104, 1.5×105, 4.5×105 particles/cm3 and filtered air. The total number of cells and proportion of neutrophils in bronchoalveolar lavage (BAL) were determined. The best fit model for lung inflammation with number, mass and surface area concentrations were compared. We also used the Benchmark dose software to calculate the reference dose for ZnO NPs on this effect.
The results showed that in both 35-nm and 250-nm ZnO exposed group, percentage of neutrophils, total cells and total protein in BAL fluid increased with the ZnO particles level (p<0.05, test for trend). Further, LDH and WBC in high-dose group increased significantly compared to the controls (P<0.05).
As we investigated the relationship between inflammatory markers and the particle parameters, we could find that surface area concentration had the best correlation with the inflammation markers when compared with the mass and number concentration. Significant dose-response curves were also observed in BALF total cells and percentage of neutrophils. These results indicate that total surface area of particles may play an important role in ultrafine particles related toxicity. According to our results, we choose the surface area concentration as dose to present the toxicity.
The BMDL of surface area-based dose of ZnO NPs was estimated at 1.1×104 mm2/m3, which is equal to a mass-based dose of 1.14 mg/m3 for 35 nm, 3.24 mg/m3 for 100 nm, and 8.11 mg/m3 for 250 nm ZnO particles. Our results suggest that current US OSHA standard for ZnO fume (PEL, 5 mg/m3) may not be sufficient to protect workers exposed to ZnO NPs against lung inflammation.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T03:02:50Z (GMT). No. of bitstreams: 1
ntu-98-R96841009-1.pdf: 2392413 bytes, checksum: 09fd6e07b2884ab7bfa5b1a7fdc6041a (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘要 i
Abstract iii
Contents v
List of Tables vii
List of Figures viii
Chapter 1 Introduction 1
1.1 Background and research objective 1
1.2 Experimental approaches 4
Chapter 2 Literature Review 5
2.1 Nanotechnology 5
2.1.1 Application 5
2.1.2 General hazard and toxicity of nanoparticle 5
2.1.3 Physico-chemical characteristic dependent toxicity 6
2.2 Zinc oxide nanoparticles 9
2.2.1 Application 9
2.2.2 Human epidemiological and clinical study of ZnO NPs health effect 10
2.2.3 Animal study of ZnO NPs toxicity 11
2.3 Lung inflammation markers 12
2.4 Systemic inflammation markers 13
2.5 Nanoparticle generation and exposure system 13
Chapter 3 Materials and Methods 16
3.1 Animals 16
3.2 Zinc oxide nanoparticle generation system 16
3.3 Particle characteristic measurement instruments 17
3.3.1 SMPS: mobility analysis 17
3.3.2 Collection and analysis in the TEM 18
3.4 Exposure design 19
3.5 Bronchoalveolar Lavage Analysis 22
3.6 Blood cells in peripheral blood 22
3.7 Statistical analysis 23
3.8 Benchmark dose analysis 23
Chapter 4 Results 24
4.1 Basic characteristic of animal in six group 24
4.2 Particle Size, Number, Surface Area, Mass concentration of ZnO particles 24
4.3 TEM results 25
4.4 Particle effects on lung inflammation and injury 26
4.5 Dose metric and response metric of ZnO nanoparticles exposure 27
4.6 Results of benchmark dose estimation 28
Chapter 5 Discussion 29
5.1 Toxicity of ZnO particle 29
5.2 Dose metrics of the toxicity 30
5.3 SMPS and estimation of mass and surface area concentration 31
5.3.1 SMPS and estimated mass concentration 31
5.3.2 SMPS and estimated surface area concentration 33
5.4 Particle agglomeration and sintering furnace system 34
5.5 Benchmark dose estimation 35
Chapter 6 Conclusion 37
Chapter 7 Recommendations 38
Chapter 8 References 39
Appendix: Generation system condition test 59
dc.language.isoen
dc.subject基準劑量zh_TW
dc.subject奈米氧化鋅zh_TW
dc.subject呼吸暴露zh_TW
dc.subject表面積效應zh_TW
dc.subject劑量反應關係zh_TW
dc.subjectinhalation exposureen
dc.subjectbenchmark doseen
dc.subjectdose-response relationshipen
dc.subjectsurface area effecten
dc.subjectZnO nanoparticleen
dc.title奈米氧化鋅微粒呼吸暴露誘發實驗動物肺部毒性之量度單位研究zh_TW
dc.titleDose Metrics of Lung Inflammation in Animals Exposed to Zinc Oxide Nanoparticles by Inhalationen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳焜裕,林文印,陳惠文
dc.subject.keyword奈米氧化鋅,呼吸暴露,表面積效應,劑量反應關係,基準劑量,zh_TW
dc.subject.keywordZnO nanoparticle,inhalation exposure,surface area effect,dose-response relationship,benchmark dose,en
dc.relation.page64
dc.rights.note有償授權
dc.date.accepted2009-07-30
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept職業醫學與工業衛生研究所zh_TW
顯示於系所單位:職業醫學與工業衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved