請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44515
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴喜美 | |
dc.contributor.author | Wan-Yuan Kuo | en |
dc.contributor.author | 郭琬媛 | zh_TW |
dc.date.accessioned | 2021-06-15T03:02:20Z | - |
dc.date.available | 2019-07-30 | |
dc.date.copyright | 2009-08-03 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-30 | |
dc.identifier.citation | 中華民國行政院衛生署。(2009)。食品添加物使用範圍及限量暨規格標準。http://food.doh.gov.tw/foodnew/MenuThird.aspx?LanguageType=1&SecondMenuID=5&ThirdMenuID=181
許樹恩、吳泰伯。1993。第十五章 繞射峰形分析。X光繞射原理與材料結構分析pp. 422-427。中國材料科學學會,新竹縣,中華民國。 Addai-Mensah, J., Prestidge, C. A., & Ralston, J. (1999). Interparticle forces, interfacial structure development and agglomeration of gibbsite particles in synthetic Bayer liquors. Minerals Engineering, 12(6), 655-669. Alakhov, V. Y., & Kabanov, A. V. (1998). Block copolymeric biotransport carriers as versatile vehicles for drug delivery. Expert Opinion on Investigational Drugs, 7(9), 1453-1473. Alexandridis, P., Holzwarth, J. F., & Hatton, T. A. (1994). Micellization of poly (ethylene oxide)-poly(propylene oxide)-poly (ethylene oxide) triblock copolymers in aqueous-solutions - thermodynamics of copolymer association. Macromolecules, 27(9), 2414-2425. Allcock, H. R., Lampe, F. W., & Mark, J. E. (2003). Polymerization of cyclic organic compounds. In N. Folchetti (Ed.), Contemporary polymer chemistry (pp. 152-153). Upper Saddle River, NJ: Pearson Education Inc. Araki, J., & Ito, K. (2007a). Recent advances in the preparation of cyclodextrin-based polyrotaxanes and their applications to soft materials. Soft Matter, 3(12), 1456-1473. Araki, J., & Ito, K. (2007b). Strongly thixotropic viscosity behavior of dimethylsulfoxide solution of polyrotaxane comprising alpha-cyclodextrin and low molecular weight poly(ethylene glycol). Polymer, 48(24), 7139-7144. Araki, J., Zhao, C. M., & Kohzo, I. (2005). Efficient production of polyrotaxanes from alpha-cyclodextrin and poly(ethylene glycol). Macromolecules, 38(17), 7524-7527. Bar, R., & Ulitzur, S. (1994). Bacterial toxicity of cyclodextrins - Luminous Escherichia-Coli as a model. Applied Microbiology and Biotechnology, 41(5), 574-577. Baroli, B. (2007). Hydrogels for tissue engineering and delivery of tissue-inducing substances. Journal of Pharmaceutical Sciences, 96, 2197-2223. Baruch, L., & Machluf, M. (2006). Alginate-chitosan complex coacervation for cell encapsulation: Effect on mechanical properties and on long-term viability. Biopolymers, 82(6), 570-579. Blanchard, P. H. and Katz, F. R.. (2006). Starch hydrolysates. In A. M. Stephen, G. O. Phillips, & P. A. Williams (Eds.). Food polysaccharides and their applications, second edition (Chp. 4, pp. 136-137). Boca Raton, FL: CRC Press. Bromberg, L. E., & Ron, E. S. (1998). Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Advanced Drug Delivery Reviews, 31(3), 197-221. Bullions, T. A., Wei, M., Porbeni, F. E., Gerber, M. J., Peet, J., Balik, M., White, J. L., & Tonelli, A. E. (2002). Reorganization of the structures, morphologies, and conformations of bulk polymers via coalescence from polymer-cyclodextrin inclusion compounds. Journal of Polymer Science Part B-Polymer Physics, 40(10), 992-1012. Ceccato, M., LoNostro, P., & Baglioni, P. (1997). Alpha-Cyclodextrin/polyethylene glycolpolyrotaxane: A study of the threading process. Langmuir, 13(9), 2436-2439. Celli, J. P., Turner, B. S., Afdhal, N. H., Ewoldt, R. H., McKinley, G. H., Bansil, R., & Erramilli, S. (2007). Rheology of gastric mucin exhibits a pH-dependent sol-gel transition. Biomacromolecules, 8(5), 1580-1586. Chatjifakis, A. K., Donze, C., Coleman, A. W., & Cardot, P. (1992). Solubility behavior of beta-cyclodextrin in water/cosolvent mixtures. Analytical Chemistry, 64, 1632. Cho, J. Y., Heuzey, M. C., Begin, A., & Carreau, P. J. (2005). Physical gelation of chitosan in the presence of beta-glycerophosphate: The effect of temperature. Biomacromolecules, 6(6), 3267-3275. Choi, H. S., Kontani, K., Huh, K. M., Sasaki, S., Ooya, T., Lee, W. K., & Yui, N. (2002). Rapid induction of thermoreversible hydrogel formation based on poly(propylene glycol)-grafted dextran inclusion complexes. Macromolecular Bioscience, 2(6), 298-303. Chung, H. J., Lee, Y. H., & Park, T. G. (2008). Thermo-sensitive and biodegradable hydrogels based on stereocomplexed Pluronic multi-block copolymers for controlled protein delivery. Journal of Controlled Release, 127(1), 22-30. Chung, J. W., Kang, T. J., & Kwak, S. Y. (2007). Supramolecular self-assembly of architecturally variant alpha-cyclodextrin inclusion complexes as building blocks of hexagonally aligned microfibrils. Macromolecules, 40(12), 4225-4234. Davis, M. E., & Brewster, M. E. (2004). Cyclodextrin-based pharmaceutics: Past, present and future. Nature Reviews Drug Discovery, 3(12), 1023-1035. Determan, M. D., Guo, L., Thiyagarajan, P., & Mallapragada, S. K. (2006). Supramolecular self-assembly of multiblock copolymers in aqueous solution. Langmuir, 22(4), 1469-1473. Dormidontova, E. E. (2002). Role of competitive PEO-water and water-water hydrogen bonding in aqueous solution PEO behavior. Macromolecules, 35, 987-1001. Dreiss, C. A., Cosgrove, T., Newby, F. N., & Sabadini, E. (2004). Formation of a supramolecular gel between alpha-cyclodextrin and free and adsorbed PEO on the surface of colloidal silica: Effect of temperature, solvent, and particle size. Langmuir, 20(21), 9124-9129. Dunn, S. E., Coombes, A. G. A., Garnett, M. C., Davis, S. S., Davies, M. C., & Illum, L. (1997). In vitro cell interaction and in vivo biodistribution of poly(lactide-co-glycolide) nanospheres surface modified by poloxamer and poloxamine copolymers. Journal of Controlled Release, 44(1), 65-76. Ejchart, A. & Kozminski, W. (2006). NMR of cyclodextrins and their complexes. In: H. Dodziuk (Ed.), Cyclodextrins and their complexes. Chemistry, analytical methods applications (pp. 231-232). Weinheim, Baden-Württemberg: Wiley-VCH Verlag GmbH & Co. KGaA. Frisch, H. L., & Wasserman, E. (1961). Chemical topology. Journal of the American Chemical Society, 83(18), 3789. Fruijtier- Pölloth, C. (2005). Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicology, 214(1-2), 1-38. Funami, T., Yada, H., & Nakao, Y. (1998). Curdlan properties for application in fat mimetics for meat products. Journal of Food Science, 63(2), 283-287. Gao, Y. A., Li, Z. H., Du, J. M., Han, B. X., Li, G. Z., Hou, W. G., Shen, D., Zheng, L. Q., & Zhang, G. Y. (2005). Preparation and characterization of inclusion complexes of beta-cyclodextrin with ionic liquid. Chemistry-a European Journal, 11(20), 5875-5880. Garti, N., & Aserin, A. (2007). Nanoscale liquid self-assembled dispersions in foods and the delivery of functional ingredients. In D. J. McClements (Ed.), Understanding and controlling the microstructure of complex foods (pp. 9-19). Great Abington, Cambridge: Woodhead Publishing Ltd. Gilbert, J. C., Hadgraft, J., Bye, A., & Brookes, L. G. (1986). Drug Release from Pluronic F-127 Gels. International Journal of Pharmaceutics, 32(2-3), 223-228. Gomaa, E. A. (1991). Hydrogen bonding of O-nitroaniline in water mixtures. Science, 3, 79-85. Grant, C. D., DeRitter, M. R., Steege, K. E., Fadeeva, T. A., & Castner, E. W. (2005). Fluorescence probing of interior, interfacial, and exterior regions in solution aggregates of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers. Langmuir, 21(5), 1745-1752. Halmos, A. L., & Tiu, C. (1981). Liquid foodstuffs exhibiting yield stress and shear-degradability. Journal of Texture Studies, 12(1), 39-46. Harada, A. (1996). Preparation and structures of supramolecules between cyclodextrins and polymers. Coordination Chemistry Reviews, 148, 115-133. Harada, A. (1997). Construction of supramolecular structures from cyclodextrins and polymers. Carbohydrate Polymers, 34(3), 183-188. Harada, A., & Kamachi, M. (1990). Complex-formation between poly(ethylene glycol) and alpha-cyclodextrin. Macromolecules, 23(10), 2821-2823. Harada, A., Hashidzume, A., & Takashima, Y.. (2006). Cyclodextrin-based supramolecular polymers. In B. Donnio (Ed.). Supramolecular polymers/polymeric betains/oligomers (pp. 1-43). New York, NY: Springer. Harada, A., Okada, M., Li, J., & Kamachi, M. (1995). Preparation and characterization of inclusion complexes of poly(propylene glycol) with cyclodextrins. Macromolecules, 28(24), 8406-8411. Harrison, I. T., & Harrison, S. (1967). Synthesis of a stable complex of a macrocycle and a threaded chain. Journal of the American Chemical Society, 89(22), 5723. Hashimoto, H. (1996). Cyclodextrins in foods, cosmetics, and toiletries. In J. M. Lehn (Ed.). Comprehensive supramolecular chemistry (vol. 3, pp. 483-502). Oxford, UK: Pergamon. He, C. L., Kim, S. W., & Lee, D. S. (2008). In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. Journal of Controlled Release, 127(3), 189-207. Hernandez, R., Rusa, M., Rusa, C. C., Lopez, D., Mijangos, C., & Tonelli, A. E. (2004). Controlling PVA hydrogels with gamma-cyclodextrin. Macromolecules, 37(25), 9620-9625. Hinze, W. L., Dai, F., Frankewich, R. P., & Thimaiah, K. N.(1996). Cyclodextrins as reagents in analytical chemistry and diagnostics. In J. M. Lehn (Ed.). Comprehensive supramolecular chemistry (vol. 3, pp. 587-602). Oxford, UK: Pergamon. Hirokawa, Y. (2001). Structure of gels, characterization techniques. In Y. Osada & K. Kajiwara (Eds.), Gels hand book 1 The fundamentals (pp. 224-225). San Diego, CA: Academic Press. Hirst, A. R., Escuder, B., Miravet, J. F., & Smith, D. K. (2008). High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: From regenerative medicine to electronic devices. Angewandte Chemie-International Edition, 47(42), 8002-8018. Hoare, T. R., & Kohane, D. S. (2008). Hydrogels in drug delivery: Progress and challenges. Polymer, 49(8), 1993-2007. Huang, L., Allen, E., & Tonelli, A. E. (1999). Inclusion compounds formed between cyclodextrins and nylon 6. Polymer, 40(11), 3211-3221. Huang, Y., Cai, H. Q., Yu, T., Zhang, F. Q., Zhang, F., Meng, Y., Gu, D., Wan, Y., Sun, X. L., Tu, B., & Zhao, D. Y. (2007). Formation of mesoporous carbon with a face-centered-cubic Fd(3)over-barm structure and bimodal architectural pores from the reverse amphiphilic triblock copolymer PPO-PEO-PPO. Angewandte Chemie-International Edition, 46(7), 1089-1093. Huh, K. M., Cho, Y. W., Chung, H., Kwon, I. C., Jeong, S. Y., Ooya, T., Lee, W. K., Sasaki, S., & Yui, N. (2004). Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and alpha-cyclodextrin. Macromolecular Bioscience, 4(2), 92-99. Huh, K. M., Ooya, T., Lee, W. K., Sasaki, S., Kwon, I. C., Jeong, S. Y., & Yui, N. (2001a). Supramolecular-structured hydrogels showing a reversible phase transition by inclusion complexation between poly(ethylene glycol) grafted dextran and alpha-cyclodextrin. Macromolecules, 34(25), 8657-8662. Huh, K. M., Ooya, T., Sasaki, S., & Yui, N. (2001b). Polymer inclusion complex consisting of Poly(epsilon-lysine) and alpha-cyclodextrin. Macromolecules, 34(8), 2402-2404. Hwang, M. J., Bae, H. S., Kim, S. J., & Jeong, B. (2004). Polyrotaxane hexagonal microfiber. Macromolecules, 37(24), 8820-8822. Illum, L., Jacobsen, L. O., Muller, R. H., Mak, E., & Davis, S. S. (1987). Surface characteristics and the interaction of colloidal particles with mouse peritoneal-macrophages. Biomaterials, 8(2), 113-117. Jadhav, G.S. & Vavia, P.R. (2008). Physicochemical, in silico and in vivo evaluation of a danazol–beta-cyclodextrin complex. International Journal of Pharmaceutics, 352, 5–16. Jing, B., Chen, X., Hao, J. C., Qiu, H. Y., Chai, Y. C., & Zhang, G. D. (2007). Supramolecular self-assembly of polypseudorotaxanes in ionic liquid. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 292(1), 51-55. Jones, D. S., Woolfson, A. D., & Brown, A. F. (1997). Textural, viscoelastic and mucoadhesive properties of pharmaceutical gels composed of cellulose polymers. International Journal of Pharmaceutics, 151(2), 223-233. Joung, Y. K., Ooya, T., Yamaguchi, M., & Yui, N. (2007). Modulating rheological properties of supramolecular networks by pH-responsive double-axle intrusion into gamma-cyclodextrin. Advanced Materials, 19(3), 396. Juszczak, L. J. (2004). Comparative vibrational spectroscopy of intracellular tau and extracellular collagen I reveals parallels of gelation and fibrillar structure. Journal of Biological Chemistry, 279(9), 7395-7404. Kabanov, A. V., Vinogradov, S. V., Suzdaltseva, Y. G., & Alakhov, V. Y. (1995). Water-soluble block polycations as carriers for oligonucleotide delivery. Bioconjugate Chemistry, 6(6), 639-643. Kang, J., Li, W., Wang, X., Lin, Y., Xiao, X., & Fang, S. (2003). Polymer electrolytes from PEO and novel quaternary ammonium iodides for dye-sensitized solar cells. Electrochimica Acta, 48, 2487-2491. Kim, T. J., Kim, B. C., & Lee, H. S. (1997). Production of cyclodextrin using raw corn starch without a pretreatment. Enzyme and Microbial Technology, 20(7), 506-509. Kimura, M., Fukumoto, K., Watanabe, J., & Ishihara, K. (2004). Hydrogen-bonding-driven spontaneous gelation of water-soluble phospholipid polymers in aqueous medium. Journal of Biomaterials Science-Polymer Edition, 15(5), 631-644. Kiyonaka, S., Shinkai, S., & Hamachi, H. (2003). Combinatorial library of low molecular-weight organo- and hydrogelators based on glycosylated amino acid derivatives by solid-phase synthesis. Chemistry-a European Journal, 9(4), 976-983. Kohler, K., Forster, G., Hauser, A., Dobner, B., Heiser, U. F., Ziethe, F., Richter, W., Steiniger, F., Drechsler, M., Stettin, H., & Blume, A. (2004). Temperature-dependent behavior of a symmetric long-chain bolaamphiphile with phosphocholine headgroups in water; from hydrogel to nanoparticles. Journal of the American Chemical Society, 126(51), 16804-16813. Langford, J. I., & Wilson, A. J. C. (1978). Scherrer after 60 Years - Survey and Some New Results in Determination of Crystallite Size. Journal of Applied Crystallography, 11(Apr), 102-113. Li, J., & Loh, X. J. (2008). Cyclodextrin-based supramolecular architectures: Syntheses, structures, and applications for drug and gene delivery. Advanced Drug Delivery Reviews, 60(9), 1000-1017. Li, J., Chen, B., Wang, X., & Goh, S. H. (2004). Preparation and characterization of inclusion complexes formed by biodegradable poly(epsilon-caprolactone)- poly(tetrahydrofuran)- poly(epsilon-caprolactone) triblock copolymer and cyclodextrins. Polymer, 45(6), 1777-1785. Li, J., Harada, A., & Kamachi, M. (1994). Sol-gel transition during inclusion complex-formation between alpha-cyclodextrin and high-molecular-weight poly(ethylene glycol)s in aqueous- solution. Polymer Journal, 26(9), 1019-1026. Li, J., Li, X., Ni, X. P., Wang, X., Li, H. Z., & Leong, K. W. (2006). Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and alpha-cyclodextrin for controlled drug delivery. Biomaterials, 27(22), 4132-4140. Li, J., Li, X., Zhou, Z. H., Ni, X. P., & Leong, K. W. (2001). Formation of supramolecular hydrogels induced by inclusion complexation between Pluronics and alpha-cyclodextrin. Macromolecules, 34(21), 7236-7237. Li, J., Ni, X. P., & Leong, K. W. (2003). Injectable drug-delivery systems based on supramolecular hydrogels formed by poly(ethylene oxide) and alpha-cyclodextrin. Journal of Biomedical Materials Research Part A, 65A(2), 196-202. Li, N., Liu, J., Zhao, X. Y., Gao, Y. A., Zheng, L. Q., Zhang, J., & Yu, L. (2007). Complex formation of ionic liquid surfactant and beta-cyclodextrin. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 292(2-3), 196-201. Li, X., & Li, J. (2008). Supramolecular hydrogels based on inclusion complexation between poly(ethylene oxide)-b-poly (epsilon-caprolactone) diblock copolymer and alpha-cyclodextrin and their controlled release property. Journal of Biomedical Materials Research Part A, 86A(4), 1055-1061. Lin, S.Y. & Kawashima, Y. (1987). Pluronic surfactants affecting diazepam solubility, compatibility, and adsorption from i.v. admixture solutions. Journal of Parenteral Science, 41, 83. Liu, C. S., Shao, H. F., Chen, F. Y., & Zheng, H. Y. (2006). Rheological properties of concentrated aqueous injectable calcium phosphate cement slurry. Biomaterials, 27(29), 5003-5013. Loh, X. J., Goh, S. H., & Li, J. (2007). New biodegradable thermogelling copolymers having very low gelation concentrations. Biomacromolecules, 8(2), 585-593. Ma, W. D., Xu, H., Wang, C., Nie, S. F., & Pan, W. S. (2008). Pluronic F127-g-poly(acrylic acid) copolymers as in situ gelling vehicle for ophthalmic drug delivery system. International Journal of Pharmaceutics, 350(1-2), 247-256. Matsumura, Y., Yokoyama, M., Kataoka, K. Z., Okano, T., Sakurai, Y., Kawaguchi, T., & Kakizoe, T. (1999). Reduction of the side effects of an antitumor agent, KRN5500, by incorporation of the drug into polymeric micelles. Japanese Journal of Cancer Research, 90(1), 122-128. Mawson, S., Yates, M. Z., ONeill, M. L., & Johnston, K. P. (1997). Stabilized polymer microparticles by precipitation with a compressed fluid antisolvent .2. Poly(propylene oxide)- and poly(butylene oxide)-based copolymers. Langmuir, 13(6), 1519-1528. McCoy, M. (1999). Cyclodextrins: Great product seeks a market. Chemical & Engineering News, 77(9), 25-27. Michishita, T., Okada, M., & Harada, A. (2001). Complex formation of polybutadiene with cyclodextrins. Macromolecular Rapid Communications, 22(10), 764-767. Nan, A., & Ghandehari, H. (2005). Structure, properties, and characterization of polymeric biomaterials. In R. I. Mahato (Ed.), Biomaterials for delivery and targeting of proteins and nucleic acids (pp. 11-12). Boca Raton, FL: CRC Press. Narayan, R., & Raju, K. V. S. N. (2000). The use of calcined clay as part replacement of titanium dioxide in latex paint formulations. Journal of Applied Polymer Science, 77(5), 1029-1036. Newby, G. E., Hamley, I. W., King, S. M., Martin, C. M., & Terrill, N. J. (2009). Structure, rheology and shear alignment of Pluronic block copolymer mixtures. Journal of Colloid and Interface Science, 329(1), 54-61. Ni, X. P., Cheng, A., & Li, J. (2008). Supramolecular hydrogels based on self assembly between PEO–PPO–PEO triblock copolymers and alpha-cyclodextrin. Journal of Biomedical Material Research Part A (in press). Nowak, A. P., Breedveld, V., Pakstis, L., Ozbas, B., Pine, D. J., Pochan, D., & Deming, T. J. (2002). Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature, 417(6887), 424-428. Nystrom, B., & Walderhaug, H. (1996). Dynamic viscoelasticity of an aqueous system of a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer during gelation. Journal of Physical Chemistry, 100(13), 5433-5439. Okada, M., Kamachi, M., & Harada, A. (1999). Preparation and characterization of inclusion complexes of poly(propylene glycol) with methylated cyclodextrins. Journal of Physical Chemistry B, 103(14), 2607-2613. Okumura, H., Kawaguchi, Y., & Harada, A. (2001). Preparation and characterization of inclusion complexes of poly(dimethylsiloxane)s with cyclodextrins. Macromolecules, 34(18), 6338-6343. Okumura, H., Okada, M., Kawauchi, Y., & Harada, A. (2000). Complex formation between poly(dimethylsiloxane) and cyclodextrins: New pseudo-polyrotaxanes containing inorganic polymers. Macromolecules, 33(12), 4297-4298. Panariello, G., Favaloro, R., Forbicioni, M., Caputo, E., & Barbucci, R. (2008). Synthesis of a new hydrogel, based on guar gum, for controlled drug release. Macromolecular Symposia, 266(1), 68-73. Pei, L. H., Kurumada, K., Tanigaki, M., Hiro, M., & Susa, K. (2005). Effect of drying on the mesoporous structure of sol-gel derived silica with PPO-PEO-PPO template block copolymer. Journal of Colloid and Interface Science, 284(1), 222-227. Percec, V., Bera, T. K., & Butera, R. J. (2002). A new strategy for the preparation of supramolecular neutral hydrogels. Biomacromolecules, 3(2), 272-279. Porbeni, F. E., Shin, I. D., Shuai, X. T., Wang, X. W., White, J. L., Jia, X., & Tonelli, A. E. (2005). Morphology and dynamics of the poly(epsilon-caprolactone) -b-poly(L-lactide) diblock copolymer and its inclusion compound with alpha-cyclodextrin: A solid-state C-13 NMR study. Journal of Polymer Science Part B-Polymer Physics, 43(15), 2086-2096. Rajagopal, K., Ozbas, B., Pochan, D. J., & Schneider, J. P. (2006). Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators. European Biophysics Journal with Biophysics Letters, 35(2), 162-169. Rusa, C. C., & Tonelli, A. E. (2000). Polymer/polymer inclusion compounds as a novel approach to obtaining a PLLA/PCL intimately compatible blend. Macromolecules, 33(15), 5321-5324. Rusa, C. C., Bridges, C., Ha, S. W., & Tonelli, A. E. (2005). Conformational changes induced in Bombyx mori silk fibroin by cyclodextrin inclusion complexation. Macromolecules, 38(13), 5640-5646. Rusa, C. C., Uyar, T., Rusa, M., Hunt, M. A., Wang, X. W., & Tonelli, A. E. (2004). An intimate polycarbonate/poly(methyl methacrylate)/poly(vinyl acetate) ternary blend via coalescence from their common inclusion compound with gamma-cyclodextrin. Journal of Polymer Science Part B-Polymer Physics, 42(22), 4182-4194. Santipanichwong, R., & Suphantharika, M. (2009). Influence of different beta-glucans on the physical and rheological properties of egg yolk stabilized oil-in-water emulsions. Food Hydrocolloids, 23(5), 1279-1287. Shimomura, T., Yoshida, K., Ito, K., & Hayakawa, R. (2000). Insulation effect of an inclusion complex formed by polyaniline and beta-cyclodextrin in solution. Polymers for Advanced Technologies, 11(8-12), 837-839. Sigma Aldrich website http://www.sigmaaldrich.com/sigma-aldrich/asia-pacific-rim/taiwan.htm Stenekes, R. J. H., Talsma, H., & Hennink, W. E. (2001). Formation of dextran hydrogels by crystallization. Biomaterials, 22(13), 1891-1898. Su, C. S., & Yang, C. P. (1990). A novel method for continuous production of cyclodextrins using an immobilized enzyme-system. Journal of Chemical Technology and Biotechnology, 48(3), 313-323. Suri, S., & Schmidt, C. E. (2009). Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels. Acta Biomaterialia, In Press, Corrected Proof. Szejtli, J. (1998). Introduction and general overview of cyclodextrin chemistry. Chemical Reviews, 98(5), 1743-1753. Szejtli, J.. (1996). Chemistry, physical and biological properties of cyclodextrins. In J. M. Lehn (Ed.). Comprehensive supramolecular chemistry (vol. 3, pp. 13-17). Oxford, UK: Pergamon. Szejtli, J.. (2004). Cyclodextrins. In P. Tomasik (Ed.). Chemical and functional properties of food saccharides (Chp. 17). Boca Raton, FL: CRC Press. Szente, L. & Szejtli, J. (1996). Cyclodextrins in pesticides. In J. M. Lehn (Ed.). Comprehensive supramolecular chemistry (vol. 3, pp. 503-514). Oxford, UK: Pergamon. Tadros, T. F. (1999). Polymeric surfactants. In E. D. Goddard & J. V. Gruber (Eds.), Principles of polymer science and technology in cosmetic and personal care (pp. 4-5). Newbury, Berks: Marcel Dekker Inc. Taghvaei, M., & Stewart, G. H. (1991). Beta-cyclodextrin solubility in reversed-phase high-performance liquid-chromatographic eluents. Analytical Chemistry, 63(17), 1902-1904. Thakkar, A. L., & Demarco, P. V. (1971). Cycloheptaamylose inclusion complexes of Barbiturates - correlation between proton magnetic resonance and solubility studies. Journal of Pharmaceutical Sciences, 60(4), 652. Thiemann, V., Donges, C., Prowe, S. G., Sterner, R., & Antranikian, G. (2004). Characterisation of a thermoalkali-stable cyclodextrin glycosyltransferase from the anaerobic thermoalkaliphilic bacterium Anaerobranca gottschalkii. Archives of Microbiology, 182(2-3), 226-235. Todd, C. W., Balusubramanian, M., & Newman, M. J. (1998). Development of adjuvant-active nonionic block copolymers. Advanced Drug Delivery Review, 32(3), 199-223. Toma, H. E. (2008). Supramolecular nanotechnology: from molecules to devices. Current Science, 95(9), 1202-1225. Trong, L. C. P., Djabourov, M., & Ponton, A. (2008). Mechanisms of micellization and rheology of PEO-PPO-PEO triblock copolymers with various architectures. Journal of Colloid and Interface Science, 328(2), 278-287. Udachin, K. A., Wilson, L. D., & Ripmeester, J. A. (2000). Solid polyrotaxanes of polyethylene glycol and cyclodextrins: The single crystal X-ray structure of PEG-beta-cyclodextrin. Journal of the American Chemical Society, 122(49), 12375-12376. Uludag, H., De Vos, P., & Tresco, P. A. (2000). Technology of mammalian cell encapsulation. Advanced Drug Delivery Reviews, 42(1-2), 29-64. US FDA (Food and Drug Administration). (2009). EAFUS: A food additive database. http://www.foodsafety.gov/~dms/eafus.html Uyar, T., Rusa, C. C., Wang, X. W., Rusa, M., Hacaloglu, J., & Tonelli, A. E. (2005). Intimate blending of binary polymer systems from their common cyclodextrin inclusion compounds. Journal of Polymer Science Part B-Polymer Physics, 43(18), 2578-2593. Vadnere, M., Amidon, G., Lindenbaum, S., & Haslam, J. L. (1984). Thermodynamic studies on the gel sol transition of some Pluronic polyols. International Journal of Pharmaceutics, 22(2-3), 207-218. Van Tomme, S. R., Storm, G., & Hennink, W. E. (2008). In situ gelling hydrogels for pharmaceutical and biomedical applications. International Journal of Pharmaceutics, 355(1-2), 1-18. Van Tomme, S. R., van Steenbergen, M. J., De Smedt, S. C., van Nostrum, C. F., & Hennink, W. E. (2005). Self-gelling hydrogels based on oppositely charged dextran microspheres. Biomaterials, 26(14), 2129-2135. Wang, Y. P., Zhou, L., Sun, G. M., Xue, J., Jia, Z. F., Zhu, X. Y., & Yan, D. Y. (2008). Construction of different supramolecular polymer systems by combining the host-guest and hydrogen-bonding interactions. Journal of Polymer Science Part B-Polymer Physics, 46(12), 1114-1120. Wei, M., Bullions, T. A., Rusa, C. C., Wang, X. W., & Tonelli, A. E. (2004). Unique morphological and thermal behaviors of reorganized poly(ethylene terephthalates). Journal of Polymer Science Part B-Polymer Physics, 42(3), 386-394. Wright, E. R., Conticello, V. P., & Apkarian, R. P. (2003). Morphological characterization of elastin-mimetic block copolymers utilizing cryo- and cryoetch-HRSEM. Microscopy and Microanalysis, 9(3), 171-182. Wróblewska, B., & Jędrychowski, L. (2002). Effect of conjugation of cow milk whey protein with polyethylene glycol on changes in their immunoreactive and allergic properties. Food and Agricultural Immunology, 14(2), 155-162. Yang, C., Ni, X. P., & Li, J. (2009). Synthesis of polyrotaxanes consisting of multiple alpha-cyclodextrin rings threaded on reverse Pluronic PPO-PEO-PPO triblock copolymers based on block-selected inclusion complexation. European Polymer Journal, 45(5), 1570-1579. Yang, L., Alexandridis, P., Steytler, D. C., Kositza, M. J., & Holzwarth, J. F. (2000). Small-angle neutron scattering investigation of the temperature-dependent aggregation behavior of the block copolymer Pluronic L64 in aqueous solution. Langmuir, 16(23), 8555-8561. Yang, X. M., Zhu, Z. Y., Liu, Q., Chen, X. L., & Ma, M. W. (2008). Effects of PVA, agar contents, and irradiation doses on properties of PVA/ws-chitosan/glycerol hydrogels made by gamma-irradiation followed by freeze-thawing. Radiation Physics and Chemistry, 77(8), 954-960. Yokoyama, M., Fukushima, S., Uehara, R., Okamoto, K., Kataoka, K., Sakurai, Y., & Okano, T. (1998). Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. Journal of Controlled Release, 50(1-3), 79-92. Yokoyama, M., Okano, T., Sakurai, Y., & Kataoka, K. (1994). Improved synthesis of adriamycin-conjugated poly (ethylene oxide) poly (aspartic acid) block-copolymer and formation of unimodal micellar structure with controlled amount of physically entrapped adriamycin. Journal of Controlled Release, 32(3), 269-277. Yoshida, K., Shimomura, T., Ito, K., & Hayakawa, R. (1999). Inclusion complex formation of cyclodextrin and polyaniline. Langmuir, 15(4), 910-913. Yuan, R. X., & Shuai, X. T. (2008). Supramolecular micellization and pH-inducible gelation of a hydrophilic block copolymer by block-specific threading of alpha-cyclodextrin. Journal of Polymer Science Part B-Polymer Physics, 46(8), 782-790. Zhou, Y. B., Wang, S. F., Zhang, Y., Zhang, Y. X., Jiang, X. H., & Yi, D. F. (2006). Rheological properties of PDMS filled with CaCO3: The effect of filler particle size and concentration. Journal of Applied Polymer Science, 101(5), 3395-3401. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44515 | - |
dc.description.abstract | 本研究利用beta-環狀糊精(beta-cyclodextrin, beta-CD)與聚醚(polyether)之間連續形成包藏錯合物(inclusion complexes, ICs)的機制,製備準聚輪烷(polypseudorotaxane, PPR)超分子自組裝(supramolecular self-assembling)膠體。研究的第一部分在不同反應條件下嘗試製做PPR膠體,透過產物結晶結構之鑑定及內部組織形態之觀察,篩選出成功形成PPR膠體的樣品,並探討影響PPR膠體生成與否的因素。反應的操控變因包括:聚醚分子的種類(聚乙二醇(polyethylene glycol, PEG)或PEG與聚丙二醇(polyprolyene glycol, PPG)之共聚物PPG-PEG-PPG, reverse Pluronic®)、溶劑種類(水、30及60% (v/v) DMSO水溶液或140 mg/mL檸檬酸水溶液)以及反應溫度(25或65℃)。第二部分則針對前段實驗所篩選出之PPR膠體,進一步分析其流變性質及內部的PPR結晶粒子大小,以連結膠體之配方製程、內部結構與流變性質三者間的關係。根據第一部分的實驗結果,可形成PPR膠體的條件有三種:beta-CD與reverse Pluronic®在水或在檸檬酸水溶液中於25℃反應(beta-CD/RPL-W-25、beta-CD/RPL-C-25),或在水中於65℃反應(beta-CD/RPL-W-65)。所形成的三種PPR膠體皆具有通道型(channel-type)結晶結構及網狀組織,但beta-CD/RPL-W-25內部含有許多未溶解的beta-CD顆粒,不如另二種膠體般均勻。而網狀組織的緻密程度以beta-CD/RPL-C-25最高。以PEG為高分子所製備的樣品,雖然都無法形成穩定明顯的通道型結晶結構,但beta-CD與PEG在65℃的水中反應可錯合形成PPR超分子。第二部分的實驗結果在流變性質方面,三種PPR膠體皆具有搖變減黏(thixotropic)性質,但在結構強度和搖變減黏呈度上相異,以beta-CD/RPL-C-25最高,此膠體經過攪動並長時間靜置後的穩定性也最高。在結晶粒子大小方面,beta-CD/RPL-W-65及beta-CD/RPL-C-25雖同屬結構均勻的膠體,但前者製程經過高溫反應,所生成PPR結晶粒子較大,因而結晶聚集區較大,整體結構較疏鬆,此結構上的差異說明了beta-CD/RPL-W-65何以在強度、搖變減黏性或長時間儲存的穩定度都低於beta-CD/RPL-C-25的原因。 | zh_TW |
dc.description.abstract | Supramolecular self-assembling gels of polypseudorotaxane (PPR) were made through sequential host-guest inclusion complexations between beta-cyclodextrin (beta-CD) and polyethers. In the first part of this study, beta-CD and the polyethers were mixed and allowed to react under different conditions. The controlled variables included polyether species (PEG or a copolymer PPG-PEG-PPG named reverse Pluronic®, where PEG and PPG were polyethylene glycol and polyprolyene glycol, respectively), solvent types (water, 30 or 60% (v/v) DMSO(aq) or 140 mg/mL citric acid(aq)), and reaction temperatures (25 or 65℃). Crystal morphologies and internal micro-structures of the resulting products were observed to identify the formation of PPR gels. Effects of reaction conditions on the gel formation were discussed. In the second part of this study, PPR gels were prepared according to the proper conditions obtained from the first part. Rheological properties and size of PPR crystallites in the gels were analyzed to connect the relationships between preparation conditions, internal structures and gel rheology. The proper conditions for PPR gel formation were: beta -CD/reverse Pluronic® reacted in water or in citric acid(aq) at 25℃ (beta-CD/RPL-W-25、beta-CD/RPL-C-25) or in water at 65℃ (beta-CD/RPL-W-65). The three PPR gels all had channel-type crystalline and net-like structures, while beta -CD/RPL-W-25 contained insolubilized beta-CD particles thus was less homogeneous then the other two. Beta-CD/RPL-C-25 showed the finest net-like structures. Samples prepared from PEG were unable to form evident and stable PPR crystalline. However, reaction in water at 65℃ promoted the formation of PPR supramolecules from beta-CD and PEG。The three PPR gels prepared in this study were all thixotropic, while the gel strength and thixotropy varied among samples, in which beta-CD/RPL-C-25 had the highest value. This gel also showed the highest stability after stirring and long-time storage. As compared with beta-CD/RPL-C-25, the size of PPR crystallites in the high-temperature derived beta-CD/RPL-W-65 was larger, leading to larger domains of crystallite aggregation. This explained why beta-CD/RPL-C-25 and beta-CD/RPL-W-65 were both homogeneous while the latter had lower gel strength, thixotropy and stability after long-time storage. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T03:02:20Z (GMT). No. of bitstreams: 1 ntu-98-R96623010-1.pdf: 4073963 bytes, checksum: 27d27f05f5c9a26ed37bc8d937f8108f (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 中文摘要 III 英文摘要 IV 第一章 前言 1 第二章 文獻整理 2 第一節 環狀糊精 3 第二節 聚醚 7 (一) PEG 7 (二) PEG/PPG共聚物 8 第三節 CD/高分子準聚輪烷系統 9 (一) CD/高分子準聚輪烷超分子 9 (二) CD/同元聚合物準聚輪烷膠 11 (三) CD/共聚物準聚輪烷膠 14 1、CD/接枝共聚物準聚輪烷膠 14 2、CD/嵌段共聚物準聚輪烷膠 15 第三章 材料與方法 19 第一節 材料與試劑 19 第二節 成膠試驗 19 第三節 凍乾樣品之廣角度X-ray繞射分析 23 第四節 顯微結構觀察 23 (一) 掃描式電子顯微鏡觀察 23 (二) 雷射掃描共軛焦顯微鏡觀察 24 第五節 1H-NMR分析 24 第六節 流變性質測定 25 第七節 結晶粒子大小測定 26 第八節 統計分析 27 第四章 結果與討論 27 第一節 成膠試驗結果 27 第二節 凍乾樣品之廣角度X-ray繞射分析結果 33 第三節 膠體之顯微結構 35 (一) 掃描式電子顯微鏡觀察結果 35 (二) 雷射掃描共軛焦顯微鏡觀察結果 37 第四節 1H-NMR分析結果暨綜合討論 40 第五節 膠體之流變性質 49 第六節 PPR膠體中PPR結晶粒子大小 58 第五章 結論 61 第六章 參考文獻 63 附錄 75 專有名詞之中英文對照及英文縮寫 75 實驗所用高分子之商品資料 79 | |
dc.language.iso | zh-TW | |
dc.title | 利用beta-環狀糊精/聚醚分子間的
超分子自組裝製備準聚輪烷膠體 | zh_TW |
dc.title | Preparation of polypseudorotaxane gels through
supramolecular self-assembling between beta-cyclodextrin and polyethers | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李敏雄,徐駿森,葉安義,謝國煌 | |
dc.subject.keyword | beta-環狀糊精,reverse Pluronic,超分子自組裝,準聚輪烷膠體,搖變減黏性,結晶粒子大小, | zh_TW |
dc.subject.keyword | beta-cyclodextrin,reverse Pluronic,supramolecular self-assembling,polypseudorotaxane gel,thixotropy,crystallite size, | en |
dc.relation.page | 79 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-30 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 3.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。