請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44507完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 闕玲玲 | |
| dc.contributor.author | Huei-Chu Chuang | en |
| dc.contributor.author | 莊惠菊 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:01:50Z | - |
| dc.date.available | 2009-08-04 | |
| dc.date.copyright | 2009-08-04 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-30 | |
| dc.identifier.citation | Bandai, C., Ishiguro, S., Masuya, N., Hohdatsu, T., and Mochizuki, M. (1999). Canine coronavirus infections in Japan: virological and epidemiological aspects. J Vet Med Sci 61(7), 731-6.
Banner, L. R., Keck, J. G., and Lai, M. M. (1990). A clustering of RNA recombination sites adjacent to a hypervariable region of the peplomer gene of murine coronavirus. Virology 175(2), 548-55. Benbacer, L., Kut, E., Besnardeau, L., Laude, H., and Delmas, B. (1997). Interspecies aminopeptidase-N chimeras reveal species-specific receptor recognition by canine coronavirus, feline infectious peritonitis virus, and transmissible gastroenteritis virus. J Virol 71(1), 734-7. Binn, L. N., Lazar, E. C., Keenan, K. P., Huxsoll, D. L., Marchwicki, R. H., and Strano, A. J. (1974). Recovery and characterization of a coronavirus from military dogs with diarrhea. Proc Annu Meet U S Anim Health Assoc(78), 359-66. Brian, D. A., and Spaan, W. J. M. (1997). Recombination and coronavirus defective interfering RNAs. Seminars in virology 8, 101-111. Brian, D. A., and Baric, R. S. (2005). Coronavirus genome structure and replication. In 'Coronavirus replication and reverse genetics' (R. W. Compans, M. D. Cooper, T. Honjo, H. Koprowski, F. Melchers, M. B. A. Oldstone, S. Olsnes, M. Potter, P. K. Vogt, and H. Wagner, Eds.), Vol. 287, pp. 1-30. Springer, Canada. Buonavoglia, C., Decaro, N., Martella, V., Elia, G., Campolo, M., Desario, C., Castagnaro, M., and Tempesta, M. (2006). Canine coronavirus highly pathogenic for dogs. Emerg Infect Dis 12(3), 492-4. Carmichael, L. E. (1978). Infectious Canine Enteritis Caused by a Corona-Like Virus. Canine Practice 5(4), 25-27. Carrington, C. V., Foster, J. E., Zhu, H. C., Zhang, J. X., Smith, G. J., Thompson, N., Auguste, A. J., Ramkissoon, V., Adesiyun, A. A., and Guan, Y. (2008). Detection and phylogenetic analysis of group 1 coronaviruses in South American bats. Emerg Infect Dis 14(12), 1890-3. Chu, D. K., Peiris, J. S., Chen, H., Guan, Y., and Poon, L. L. (2008). Genomic characterizations of bat coronaviruses (1A, 1B and HKU8) and evidence for co-infections in Miniopterus bats. J Gen Virol 89(Pt 5), 1282-7. Cui, J., Han, N., Streicker, D., Li, G., Tang, X., Shi, Z., Hu, Z., Zhao, G., Fontanet, A., Guan, Y., Wang, L., Jones, G., Field, H. E., Daszak, P., and Zhang, S. (2007). Evolutionary relationships between bat coronaviruses and their hosts. Emerg Infect Dis 13(10), 1526-32. de Groot, R. J., Maduro, J., Lenstra, J. A., Horzinek, M. C., van der Zeijst, B. A., and Spaan, W. J. (1987). cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. J Gen Virol 68 ( Pt 10), 2639-46. de Groot, R. J., Van Leen, R. W., Dalderup, M. J., Vennema, H., Horzinek, M. C., and Spaan, W. J. (1989). Stably expressed FIPV peplomer protein induces cell fusion and elicits neutralizing antibodies in mice. Virology 171(2), 493-502. Decaro, N., Camero, M., Greco, G., Zizzo, N., Tinelli, A., Campolo, M., Pratelli, A., and Buonavoglia, C. (2004). Canine distemper and related diseases: report of a severe outbreak in a kennel. New Microbiol 27(2), 177-81. Decaro, N., Martella, V., Ricci, D., Elia, G., Desario, C., Campolo, M., Cavaliere, N., Di Trani, L., Tempesta, M., and Buonavoglia, C. (2005). Genotype-specific fluorogenic RT-PCR assays for the detection and quantitation of canine coronavirus type I and type II RNA in faecal samples of dogs. J Virol Methods 130(1-2), 72-8. Decaro, N., Martella, V., Desario, C., Bellacicco, A. L., Camero, M., Manna, L., d'Aloja, D., and Buonavoglia, C. (2006). First detection of canine parvovirus type 2c in pups with haemorrhagic enteritis in Spain. J Vet Med B Infect Dis Vet Public Health 53(10), 468-72. Decaro, N., Campolo, M., Elia, G., Buonavoglia, D., Colaianni, M. L., Lorusso, A., Mari, V., and Buonavoglia, C. (2007a). Infectious canine hepatitis: an 'old' disease reemerging in Italy. Res Vet Sci 83(2), 269-73. Decaro, N., Martella, V., Elia, G., Campolo, M., Desario, C., Cirone, F., Tempesta, M., and Buonavoglia, C. (2007b). Molecular characterisation of the virulent canine coronavirus CB/05 strain. Virus Res 125(1), 54-60. Decaro, N., Campolo, M., Lorusso, A., Desario, C., Mari, V., Colaianni, M. L., Elia, G., Martella, V., and Buonavoglia, C. (2008). Experimental infection of dogs with a novel strain of canine coronavirus causing systemic disease and lymphopenia. Vet Microbiol 128(3-4), 253-60. Decaro, N., and Buonavoglia, C. (2008). An update on canine coronaviruses: viral evolution and pathobiology. Vet Microbiol 132(3-4), 221-34. Decaro, N., Mari, V., Campolo, M., Lorusso, A., Camero, M., Elia, G., Martella, V., Cordioli, P., Enjuanes, L., and Buonavoglia, C. (2009). Recombinant canine coronaviruses related to transmissible gastroenteritis virus of Swine are circulating in dogs. J Virol 83(3), 1532-7. Delmas, B., Gelfi, J., L'Haridon, R., Vogel, L. K., Sjostrom, H., Noren, O., and Laude, H. (1992). Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357(6377), 417-20. Dominguez, S. R., O'Shea, T. J., Oko, L. M., and Holmes, K. V. (2007). Detection of group 1 coronaviruses in bats in North America. Emerg Infect Dis 13(9), 1295-300. Dye, C., Temperton, N., and Siddell, S. G. (2007). Type I feline coronavirus spike glycoprotein fails to recognize aminopeptidase N as a functional receptor on feline cell lines. J Gen Virol 88(Pt 6), 1753-60. Eleouet, J. F., Rasschaert, D., Lambert, P., Levy, L., Vende, P., and Laude, H. (1995). Complete sequence (20 kilobases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus. Virology 206(2), 817-22. Enjuanes, L., Sola, I., Alonso, S., Escors, D., and Zuniga, S. (2005). Coronavirus reverse genetics and development of vectors for gene expression. Curr Top Microbiol Immunol 287, 161-97. Erles, K., and Brownlie, J. (2009). Sequence analysis of divergent canine coronavirus strains present in a UK dog population. Virus Res 141(1), 21-5. Evermann, J. F., Abbott, J. R., and Han, S. (2005). Canine coronavirus-associated puppy mortality without evidence of concurrent canine parvovirus infection. J Vet Diagn Invest 17(6), 610-4. Helfer-Baker, C., Evermann, J. F., McKeirnan, A. J., and Morrison, W. B. (1980). Serological studies on the incidence of canine enteritis viruses. cainine practice 7, 37-42. Herrewegh, A. A., de Groot, R. J., Cepica, A., Egberink, H. F., Horzinek, M. C., and Rottier, P. J. (1995a). Detection of feline coronavirus RNA in feces, tissues, and body fluids of naturally infected cats by reverse transcriptase PCR. J Clin Microbiol 33(3), 684-9. Herrewegh, A. A., Vennema, H., Horzinek, M. C., Rottier, P. J., and de Groot, R. J. (1995b). The molecular genetics of feline coronaviruses: comparative sequence analysis of the ORF7a/7b transcription unit of different biotypes. Virology 212(2), 622-31. Herrewegh, A. A., Smeenk, I., Horzinek, M. C., Rottier, P. J., and de Groot, R. J. (1998). Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol 72(5), 4508-14. Hong, C., Decaro, N., Desario, C., Tanner, P., Pardo, M. C., Sanchez, S., Buonavoglia, C., and Saliki, J. T. (2007). Occurrence of canine parvovirus type 2c in the United States. J Vet Diagn Invest 19(5), 535-9. Horsburgh, B. C., Brierley, I., and Brown, T. D. (1992). Analysis of a 9.6 kb sequence from the 3' end of canine coronavirus genomic RNA. J Gen Virol 73 ( Pt 11), 2849-62. Ivanov, K. A., and Ziebuhr, J. (2004). Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5'-triphosphatase activities. J Virol 78(14), 7833-8. Jia, W., Karaca, K., Parrish, C. R., and Naqi, S. A. (1995). A novel variant of avian infectious bronchitis virus resulting from recombination among three different strains. Arch Virol 140(2), 259-71. Keck, J. G., Soe, L. H., Makino, S., Stohlman, S. A., and Lai, M. M. (1988). RNA recombination of murine coronaviruses: recombination between fusion-positive mouse hepatitis virus A59 and fusion-negative mouse hepatitis virus 2. J Virol 62(6), 1989-98. Keenan, K. P., Jervis, H. R., Marchwicki, R. H., and Binn, L. N. (1976). Intestinal infection of neonatal dogs with canine coronavirus 1-71: studies by virologic, histologic, histochemical, and immunofluorescent techniques. Am J Vet Res 37(3), 247-56. Kim, L., Hayes, J., Lewis, P., Parwani, A. V., Chang, K. O., and Saif, L. J. (2000). Molecular characterization and pathogenesis of transmissible gastroenteritis coronavirus (TGEV) and porcine respiratory coronavirus (PRCV) field isolates co-circulating in a swine herd. Arch Virol 145(6), 1133-47. Kusters, J. G., Jager, E. J., Niesters, H. G., and van der Zeijst, B. A. (1990). Sequence evidence for RNA recombination in field isolates of avian coronavirus infectious bronchitis virus. Vaccine 8(6), 605-8. Lachance, C., Arbour, N., Cashman, N. R., and Talbot, P. J. (1998). Involvement of aminopeptidase N (CD13) in infection of human neural cells by human coronavirus 229E. J Virol 72(8), 6511-9. Lai, M. M. (1992). RNA recombination in animal and plant viruses. Microbiol Rev 56(1), 61-79. Lai, M. M. (1996). Recombination in large RNA viruses: Coronaviruses. seminars in virology 7, 381-388. Lai, M. M. (1997). RNA-protein interactions in the regulation of coronavirus RNA replication and transcription. Biol Chem 378(6), 477-81. Lai, M. M., Perlman, S., and Anderson, L. J. (2007). Coronaviridae. In 'Virology' (D. M. Knipe, and P. M. Howley, Eds.), Vol. 1, pp. 1305-35. Lippincott Williams & Wilkins, Philadelphia. Lau, S. K., Woo, P. C., Li, K. S., Huang, Y., Wang, M., Lam, C. S., Xu, H., Guo, R., Chan, K. H., Zheng, B. J., and Yuen, K. Y. (2007). Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome. Virology 367(2), 428-39. Li, B. X., Ge, J. W., and Li, Y. J. (2007). Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus. Virology 365(1), 166-72. Lorusso, A., Decaro, N., Schellen, P., Rottier, P. J., Buonavoglia, C., Haijema, B. J., and de Groot, R. J. (2008). Gain, preservation, and loss of a group 1a coronavirus accessory glycoprotein. J Virol 82(20), 10312-7. Ma, G., Wang, Y., and Lu, C. (2008). Molecular characterization of the 9.36 kb C-terminal region of canine coronavirus 1-71 strain. Virus Genes 36(3), 491-7. Ma, G., and Lu, C. (2005). Two genotypes of Canine coronavirus simultaneously detected in the fecal samples of healthy foxes and raccoon dogs. Wei Sheng Wu Xue Bao 45(2), 305-8. Maeda, J., Repass, J. F., Maeda, A., and Makino, S. (2001). Membrane topology of coronavirus E protein. Virology 281(2), 163-9. Nagy, P. D., and Bujarski, J. J. (1997). Engineering of homologous recombination hotspots with AU-rich sequences in brome mosaic virus. J Virol 71(5), 3799-810. Naylor, M. J., Harrison, G. A., Monckton, R. P., McOrist, S., Lehrbach, P. R., and Deane, E. M. (2001a). Identification of canine coronavirus strains from feces by S gene nested PCR and molecular characterization of a new Australian isolate. J Clin Microbiol 39(3), 1036-41. Naylor, M. J., Monckton, R. P., Lehrbach, P. R., and Deane, E. M. (2001b). Canine coronavirus in Australian dogs. Aust Vet J 79(2), 116-9. Perlman, S., and Netland, J. (2009). Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 7(6), 439-50. Pratelli, A., Buonavoglia, D., Martella, V., Tempesta, M., Lavazza, A., and Buonavoglia, C. (2000). Diagnosis of canine coronavirus infection using nested-PCR. J Virol Methods 84(1), 91-4. Pratelli, A., Martella, V., Elia, G., Decaro, N., Aliberti, A., Buonavoglia, D., Tempesta, M., and Buonavoglia, C. (2001). Variation of the sequence in the gene encoding for transmembrane protein M of canine coronavirus (CCV). Mol Cell Probes 15(4), 229-33. Pratelli, A., Elia, G., Martella, V., Palmieri, A., Cirone, F., Tinelli, A., Corrente, M., and Buonavoglia, C. (2002a). Prevalence of canine coronavirus antibodies by an enzyme-linked immunosorbent assay in dogs in the south of Italy. J Virol Methods 102(1-2), 67-71. Pratelli, A., Elia, G., Martella, V., Tinelli, A., Decaro, N., Marsilio, F., Buonavoglia, D., Tempesta, M., and Buonavoglia, C. (2002b). M gene evolution of canine coronavirus in naturally infected dogs. Vet Rec 151(25), 758-61. Pratelli, A., Martella, V., Decaro, N., Tinelli, A., Camero, M., Cirone, F., Elia, G., Cavalli, A., Corrente, M., Greco, G., Buonavoglia, D., Gentile, M., Tempesta, M., and Buonavoglia, C. (2003a). Genetic diversity of a canine coronavirus detected in pups with diarrhoea in Italy. J Virol Methods 110(1), 9-17. Pratelli, A., Martella, V., Pistello, M., Elia, G., Decaro, N., Buonavoglia, D., Camero, M., Tempesta, M., and Buonavoglia, C. (2003b). Identification of coronaviruses in dogs that segregate separately from the canine coronavirus genotype. J Virol Methods 107(2), 213-22. Pratelli, A., Decaro, N., Tinelli, A., Martella, V., Elia, G., Tempesta, M., Cirone, F., and Buonavoglia, C. (2004a). Two genotypes of canine coronavirus simultaneously detected in the fecal samples of dogs with diarrhea. J Clin Microbiol 42(4), 1797-9. Pratelli, A., Elia, G., Decaro, N., Tola, S., Tinelli, A., Martella, V., Rocca, S., Tempesta, M., and Buonavoglia, C. (2004b). Cloning and expression of two fragments of the S gene of canine coronavirus type I. J Virol Methods 117(1), 61-5. Pratelli, A. (2006). Genetic evolution of canine coronavirus and recent advances in prophylaxis. Vet Res 37(2), 191-200. Pyrc, K., Dijkman, R., Deng, L., Jebbink, M. F., Ross, H. A., Berkhout, B., and van der Hoek, L. (2006). Mosaic structure of human coronavirus NL63, one thousand years of evolution. J Mol Biol 364(5), 964-73. Sawicki, S. G., and Sawicki, D. L. (2005). 'Coronavirus replication and reverse genetics.' Coronavirus transcription: A perspective (C. R. W., C. M. D., H. T., K. H., M. F., O. M. B. A., O. S., P. M., V. P. K., and W. H., Eds.), 287 Springer, Canada. Sawicki, S. G., Sawicki, D. L., and Siddell, S. G. (2007). A contemporary view of coronavirus transcription. J Virol 81(1), 20-9. Schulz, B. S., Strauch, C., Mueller, R. S., Eichhorn, W., and Hartmann, K. (2008). Comparison of the prevalence of enteric viruses in healthy dogs and those with acute haemorrhagic diarrhoea by electron microscopy. J Small Anim Pract 49(2), 84-8. Somogyi, P., Jenner, A. J., Brierley, I., and Inglis, S. C. (1993). Ribosomal pausing during translation of an RNA pseudoknot. Mol Cell Biol 13(11), 6931-40. Spaan, W., Cavanagh, D., and Horzinek, M. C. (1988). Coronaviruses: structure and genome expression. J Gen Virol 69 ( Pt 12), 2939-52. Takeuchi, A., Binn, L. N., Jervis, H. R., Keenan, K. P., Hildebrandt, P. K., Valas, R. B., and Bland, F. F., 3rd (1976). Electron microscope study of experimental enteric infection in neonatal dogs with a canine coronavirus. Lab Invest 34(6), 539-49. Tennant, B. J., Gaskell, R. M., Kelly, D. F., Carter, S. D., and Gaskell, C. J. (1991). Canine coronavirus infection in the dog following oronasal inoculation. Res Vet Sci 51(1), 11-8. Tennant, B. J., Gaskell, R. M., Jones, R. C., and Gaskell, C. J. (1993). Studies on the epizootiology of canine coronavirus. Vet Rec 132(1), 7-11. Tennant, B. J., Gaskell, R. M., and Gaskell, C. J. (1994). Studies on the survival of canine coronavirus under different environmental conditions. Vet Microbiol 42(2-3), 255-9. Tohya, Y., Narayanan, K., Kamitani, W., Huang, C., Lokugamage, K., and Makino, S. (2009). Suppression of host gene expression by nsp1 proteins of group 2 bat coronaviruses. J Virol 83(10), 5282-8. Tresnan, D. B., and Holmes, K. V. (1998). Feline aminopeptidase N is a receptor for all group I coronaviruses. Adv Exp Med Biol 440, 69-75. van der Most, R. G., Heijnen, L., Spaan, W. J., and de Groot, R. J. (1992). Homologous RNA recombination allows efficient introduction of site-specific mutations into the genome of coronavirus MHV-A59 via synthetic co-replicating RNAs. Nucleic Acids Res 20(13), 3375-81. Vennema, H., Heijnen, L., Rottier, P. J., Horzinek, M. C., and Spaan, W. J. (1992a). A novel glycoprotein of feline infectious peritonitis coronavirus contains a KDEL-like endoplasmic reticulum retention signal. J Virol 66(8), 4951-6. Vennema, H., Rossen, J. W., Wesseling, J., Horzinek, M. C., and Rottier, P. J. (1992b). Genomic organization and expression of the 3' end of the canine and feline enteric coronaviruses. Virology 191(1), 134-40. Vennema, H., Godeke, G. J., Rossen, J. W., Voorhout, W. F., Horzinek, M. C., Opstelten, D. J., and Rottier, P. J. (1996). Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J 15(8), 2020-8. Vennema, H., Poland, A., Foley, J., and Pedersen, N. C. (1998). Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology 243(1), 150-7. Wang, L. F., Shi, Z., Zhang, S., Field, H., Daszak, P., and Eaton, B. T. (2006a). Review of bats and SARS. Emerg Infect Dis 12(12), 1834-40. Wang, Y., Ma, G., Lu, C., and Wen, H. (2006b). Detection of canine coronaviruses genotype I and II in raised Canidae animals in China. Berl Munch Tierarztl Wochenschr 119(1-2), 35-9. Wesley, R. D. (1999). The S gene of canine coronavirus, strain UCD-1, is more closely related to the S gene of transmissible gastroenteritis virus than to that of feline infectious peritonitis virus. Virus Res 61(2), 145-52. Woods, R. D., Cheville, N. F., and Gallegher, J. E. (1981). Lesions in the small intestine of newborn pigs inoculated with porcine, feline, and canine coronaviruses. Am. J. Vet. Res. 42, 1163-1169. Woods, R. D., and Wesley, R. D. (1986). Immune response in sows given transmissible gastroenteritis virus or canine coronavirus. Am J Vet Res 47(6), 1239-42. Worobey, M., and Holmes, E. C. (1999). Evolutionary aspects of recombination in RNA viruses. J Gen Virol 80 ( Pt 10), 2535-43. Xu, X., Liu, Y., Weiss, S., Arnold, E., Sarafianos, S. G., and Ding, J. (2003). Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design. Nucleic Acids Res 31(24), 7117-30. Yeager, C. L., Ashmun, R. A., Williams, R. K., Cardellichio, C. B., Shapiro, L. H., Look, A. T., and Holmes, K. V. (1992). Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357(6377), 420-2. Yesilbag, K., Yilmaz, Z., Torun, S., and Pratelli, A. (2004). Canine coronavirus infection in Turkish dog population. J Vet Med B Infect Dis Vet Public Health 51(7), 353-5. Zhang, X., Hasoksuz, M., Spiro, D., Halpin, R., Wang, S., Stollar, S., Janies, D., Hadya, N., Tang, Y., Ghedin, E., and Saif, L. (2007). Complete genomic sequences, a key residue in the spike protein and deletions in nonstructural protein 3b of US strains of the virulent and attenuated coronaviruses, transmissible gastroenteritis virus and porcine respiratory coronavirus. Virology 358(2), 424-35. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44507 | - |
| dc.description.abstract | 冠狀病毒可以感染許多種動物並且造成不同的臨床症狀。犬冠狀病毒屬於第一群冠狀病毒中的A亞群,依據基因型別又可將之分成第一型犬冠狀病毒與第二型犬冠狀病毒。自從1970年代初期確診第一隻犬之下痢症狀為犬冠狀病毒所導致之後,此病毒一直被認為只會造成犬隻輕微下痢;但近年來發現具有強毒力的第二型犬冠狀病毒,會造成犬隻全身性臨床症狀且具有致命性。在台灣,本實驗室曾針對犬瘟熱疑似病例做犬冠狀病毒之調查,發現有47.5%之陽性率;本實驗將其中30 隻犬冠狀病毒陽性病例進行基因分型,結果發現其中有3隻為第一型犬冠狀病毒感染、8隻為第二型犬冠狀病毒感染與3隻混合兩型感染的病例,其它病例無法分型。
本實驗進一步使用犬纖維瘤細胞株(A-72)嘗試從兩隻病犬之糞材中分離第二型犬冠狀病毒,接種病毒後可以觀察到細胞皺縮與圓形化等細胞病變;其中一隻在盲目繼代七代後免疫螢光染色與RT-nPCR雖為陽性,但病毒仍無法大量的在此細胞株中被增殖出來。 由於冠狀病毒容易藉由重組交換大片段的基因形成新病毒株,造成新的疾病出現;而完整病毒基因體序列可提供重組病毒演化分析時之正確資訊。犬冠狀病毒發現至今已有將近40年歷史,全世界至今尚未有全長的序列被報告。因此本研究自下痢病犬之糞材利用反轉錄聚合酶鏈鎖反應增幅基因體核酸片段,同時使用末端快速增殖技術確立基因體末端,將產物經由反覆定序分析連接後確立其基因序列,結果得到全長為 29,226 nt (尚不包含 5’ end)之序列,將之命名為CCoVII/NTU336/F/2008,簡稱為NTU336。經由軟體分析後,發現NTU336與TGEV-like CCoV type II最為相似,且可在ORF 1b基因下游與S基因的上游發現TGEV與CCoV type II重組之位置。NTU336在S基因之後亦保留了ORF 3部份序列,此序列存在於CCoV type II、TGEV-like CCoV type II、FCoV type II與TGEV這些病毒基因中,此為上述這些病毒是由CCoV type I演化而來的證據;在比較第一群A亞群冠狀病毒,發現NTU336之M基因多了15-21 nt,為最大的M基因。另外 NTU336之ORF 1a到ORF 1b上游與ORF 1b下游到S基因上游與TGEV具有演化上共同祖先,而ORF 1b中游與S基因下游之後則與台灣CCoV type II有共同演化來源;此結果顯示NTU336與TGEV在演化上有相關性,而部份基因片段與台灣貓冠狀病毒NTU156之間亦存有地緣相關性。 | zh_TW |
| dc.description.abstract | Coronaviruses (CoVs) cause a variety of different clinical forms of disease in a wide range of animal species. Group 1a Canine coronaviruses (CCoVs) can be divided into two genotypes, CCoV type I and CCoV type II. The viruses are known to be mild enteropathogen of dogs since their first recognition in early 1970s. Recently, CCoV type II strains with uncommon virulence, including a pantropic variant causing systemic disease in puppies, have been reported. In this study, 80 samples collected from canine distemper suspected dogs were tested for CCoV, and 47.5% were found positive by RT-nPCR. Among 30 CCoV positive dogs, 3 dogs were positive for CCoV type I, 8 dogs for CCoV type II and 3 dogs for both genotypes.
We further tried to use a canine fibroma (A-72) cell line to isolate CCoV type II from two fecal samples. After co-incubation, cytopathy effects with the characteristic of shrinking and rounding up of cells can be observed. One of the sample was immunofluorescence assay (IFA) and RT-nPCR tests positive after 7 passages. However, active multiplication of the viruses were unable to be observed on the cell line. High frequency of recombination of CoVs have been the reason of emerging of new disease. Full length of genomic sequence can provide the correct informations for the analysis of the evolution of recombined virus. Up to present, none of a whole genomic data concerning CCoV has been reported in the world. Here we reported the whole genomic RNA sequence of a field strain CCoV II. A consensus sequence of the feces-derived genomic RNA (CCoV II/NTU336/F/2008, NTU336) was determined from overlapping cDNA fragments produced by reverse transcriptase polymerase chain reaction (RT-PCR) amplification. RT-PCR products were sequenced by a reiterative sequencing strategy and the genomic RNA termini were determined using a rapid amplification of cDNA ends PCR strategy. The full length of NTU336 is 29226 nt, excluded poly-A tail and 5’ end. This local virus shows a higher genetic relatedness to TGEV-like CCoV type II bearing a recombination site in downstream of ORF 1b and upstream of S gene. Like other CCoV type II related viruses, CCoV type II, FCoV type II, TGEV and TGEV-like CCoV type II, which had ORF 3 residues after S gene. This is a evidence of CCoV type II related viruses are evolutionary from CCoV type I. Among group 1a CoVs, NTU336 has the largest M gene resulted from a 15-21 nt insertion. SimPlot and DNAstar analyses of the NTU336, TGEV, and FCoV type II, reveal NTU336 and TGEV sharing common ancestor on ORF 1a, downstream of ORF 1b, upstream of S gene. On the other parts, NTU336 is closely related to CCoV type II, and some parts are close related to NTU156, a FCoV type II virus of Taiwan. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:01:50Z (GMT). No. of bitstreams: 1 ntu-98-R96629028-1.pdf: 2489264 bytes, checksum: 6469b51f081cf7e9a9f5d6b1ab8fd03d (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 中文摘要................................................................................................................. vi
英文摘要................................................................................................................. viii 第一章 序言........................................................................................................... 1 第二章 文獻回顧................................................................................................. 2 第一節 犬冠狀病毒之歷史背景........................................................... 2 第二節 犬冠狀病毒之特徵.................................................................... 3 病毒分類........................................................................................ 3 基因體結構與病毒蛋白功能................................................. 4 犬冠狀病毒的接受器................................................................ 6 冠狀病毒之轉錄及轉譯模式................................................. 7 冠狀病毒之重組......................................................................... 8 犬冠狀病毒之基因型別與演化關係................................... 8 致病機制與臨床症狀................................................................ 10 犬冠狀病毒之分離與分離病毒株之簡介......................... 11 流行病學調查.............................................................................. 12 第三節 診斷................................................................................................. 13 實驗室診斷................................................................................... 13 病理學診斷................................................................................... 13 第四節 預防及控制................................................................................... 14 第三章 實驗策略................................................................................................. 15 第四章 實驗材料與方法................................................................................... 16 第一節 臨床檢體之 CCoV 基因型別鑑定....................................... 16 檢體來源........................................................................................ 16 RNA之萃取 (RNA extraction)....................................... 16 基因型別之引子設計及反轉錄聚合酶鏈鎖反應........... 17 第二節 本土CCoV之分離....................................................................... 17 檢體來源........................................................................................ 17 檢體之處理................................................................................... 17 細胞之來源................................................................................... 18 細胞繼代........................................................................................ 18 病毒分離與繼代培養................................................................ 19 免疫螢光染色.............................................................................. 19 第三節 本土第二型犬冠狀病毒之基因序列全長分析............... 20 檢體來源........................................................................................ 20 檢體之處理................................................................................... 20 引子之設計................................................................................... 20 反轉錄反應 (Reverse transcription)............................... 21 聚合酶鏈鎖反應(Polymerase chain reaction, PCR)...... 21 3’ cDNA 末端快速增幅 (Rapid amplification of cDNA Ends, RACE)............................................ 22 22 電泳分析 (Electrophoresis) 及洋菜膠體內 DNA 萃取........................................................................................ 23 DNA 定序...................................................................................... 23 序列分析........................................................................................ 23 第五章 結果........................................................................................................... 24 第一節 臨床檢體之 CCoV 基因型別鑑定....................................... 24 第二節 本土 CCoV 之分離.................................................................... 24 第三節 本土第二型犬冠狀病毒之基因序列全長分析............... 25 本土 CCoV type II 之基因分析............................................. 25 NTU336 之基因重組點分析.................................................. 27 NTU336之ORF 3 residues 基因分析................................... 28 第六章 討論........................................................................................................... 29 第七章 參考文獻................................................................................................. 34 | |
| dc.language.iso | zh-TW | |
| dc.subject | 序列分析 | zh_TW |
| dc.subject | 犬冠狀病毒 | zh_TW |
| dc.subject | 基因分型 | zh_TW |
| dc.subject | 病毒分離 | zh_TW |
| dc.subject | sequence analysis | en |
| dc.subject | canine coronavirus | en |
| dc.subject | virus isolation | en |
| dc.subject | genotyping | en |
| dc.title | 犬冠狀病毒之基因分型、病毒分離與序列分析 | zh_TW |
| dc.title | Group 1 Canine Coronavirus: Genotyping, Virus Isolation, and Sequence Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張瑞宜,張明富,王金和 | |
| dc.subject.keyword | 犬冠狀病毒,基因分型,序列分析,病毒分離, | zh_TW |
| dc.subject.keyword | canine coronavirus,genotyping,sequence analysis,virus isolation, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-30 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
