請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44497
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鍾仁賜 | |
dc.contributor.author | Yen-Han Huang | en |
dc.contributor.author | 黃彥涵 | zh_TW |
dc.date.accessioned | 2021-06-15T03:01:13Z | - |
dc.date.available | 2011-08-22 | |
dc.date.copyright | 2011-08-22 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-16 | |
dc.identifier.citation | 第七章參考文獻
王雪松,鄭芸,方積年。2005。積雪草中降血糖多糖的研究。中國藥學雜誌,40:1697-1700。 王錦菊,王瑞國,王寶奎,余詳彬。2001。積雪草苷抗腫瘤作用的初步實驗研究。福建中醫藥,32:39-40。 吳宜真。2004。氮肥種類與用量對雷公根生長及生理營養的影響。國立台灣大學農業化學研究所碩士論文。台北,台灣。 李幸祥。2007。藥草圖鑑事典 (4)。天佑智訊。台北,台灣。 明志君,朱路佳,薛潔,顧振綸。2004。積雪草總苷抗實驗性大鼠乳腺增生。中國新藥與臨床雜誌,23:510-512。 明志君,孫萌。2001。積雪草總苷對小鼠鎮痛作用的實驗研究。中醫藥學報,29:53-54。 明志君,孫萌。2002。積雪草總苷抗炎作用的實驗研究。中國中醫藥科技,9:62。 明志君,劉世增,曹莉,唐麗華。2004。積雪草總苷抗 DMN 誘導大鼠肝纖維化的作用。中國中西醫結合雜誌,24:731-734。 祁少海,謝舉臨,利天增,黎志明,唐冰,賁曉松。2000。積雪草苷對燒傷增生性瘢痕作用的實驗研究。中華燒傷雜誌,16:53-56。 胡惠瑜、陳麗鄉,鍾仁賜。1986。栽培季節及氮肥用量對菸草各部位氮素吸收及利用之影響。菸試彙報,25:65-81。 孫峰,劉穎菊,蕭小華,高麗佳。2006。羥基積雪草苷對慢性鋁中毒癡呆小鼠的治療作用。中國老年學雜誌,26:1363-1365。 徐卉明。2002。有機肥料不同的施用量對溫室蔬菜生長與養分吸收的影響。國立台灣大學農業化學研究所碩士論文。台北,台灣。 秦路平,丁如賢,張衛東,鄭水慶,管陽太,胡耀銘。1998。積雪草揮發油成分分析及其抗抑鬱作用研究。第二軍醫大學學報,19:186-187。 張中啟,袁莉,羅質璞。2000。積雪草提取物抑制小鼠體外腦單胺氧化酶A的活性。軍事醫學科學院院刊,24:158。 張勝華,余蘭香,甄瑞賢,劉京芳,婁人慧,許先棟。2006。積雪草苷的抗菌作用及對小鼠實驗性泌尿系統感染的治療作用。中國新藥雜誌,15:1746-1749。 張蕾磊,王海生,姚慶強,劉擁軍,欒陽,王秀麗。2005。積雪草化學成分研究。中草藥,36:1761-1763。 張邊江,黃懷鵬,徐華洲,韓麗榮。2006。積雪草總苷對大鼠系膜細胞游離鈣的影響。中國中醫基礎醫學雜誌,12:22-23。 郭華仁。2011。http://seed.agron.ntu.edu.tw/germplasm/medi01.htm 陳志銘。2004。氮肥種類及用量對穿心蓮與艾草生長及生理營養的影響。台灣大學農業化學研究所碩士論文。台北,台灣。 陳勁君。2003。氮肥種類及用量對枸杞生長及生理營養的影響。台灣大學農業化學研究所碩士論文。台北,台灣。 陳瑤,秦路平,芮耀誠,鄭漢臣,殷明。2002。積雪草提取物抗抑鬱作用實驗研究。中國藥理學會通訊,19:70。 陳瑤,韓婷,芮耀誠,殷明,秦路平,鄭漢臣。2005。積雪草總苷對實驗性抑鬱症大鼠血清皮質酮和單胺類神經遞質的影響。中藥材,28:492-496。 陳寶雯,紀寶安,張學智,謝竹藩,賈博琦。1999。積雪草提取物對胃黏膜的保護作用及其機制探討。中國消化雜誌,19:246-248。 黃雲虹,張勝華,甄瑞賢,許先棟,甄永蘇。2004。積雪草苷誘導腫瘤細胞凋亡及增強長春新鹼的抗腫瘤作用。癌症,23:1599-1604。 趙中振,蕭培根。2007。當代藥用植物典。香港賽馬會中藥研究院。香港,中國。 鍾仁賜,鄧雯玉。2003。環境因子對藥用植物生長與有效成分之影響。藥用植物之栽培與利用研討會論文集,pp. 1-13。 鍾仁賜、葉美雲、張則周。1993。酸性土壤中施用有機物對作物生長之影響及鋁、錳之解毒作用。台灣東部問題土壤改良研討會論文集,pp. 179-197。台灣省花蓮區農業改良場。花蓮,台灣。 鍾仁賜。1987。光照對成熟期菸草生長及氮營養之影響。中國農業化學會誌,25:326-331。 Ahmad, R. U. 1993. Medicinal plants used in ISM – Their procurement, cultivation, regeneration and import/export aspects: a review. In “Govil JN, Singh VK & Hashmi S (eds) Medicinal Plants: New Vistas of Research, Part 1”, pp. 221–258. Today and Tomorrow Printers and Publishers, New Delhi, India. Ball, D. F. 1964. Loss-on ignition as estimate of organic matter and organic carbon in non-calcareous soil. J. Soil Sci. 15: 84-92. Barlog, P. 2002. Effect of magnesium and nitrogenous fertilizers on the growth and alkaloid content in Lupinus angustifolius L. Aust. J. Agric. Res. 53: 671-676. Blacquiere, T., R. Hofstra, and I. Stulen. 1987. Ammonium and nitrate nutrition in Plantago lanceolata and Plantago major L. ssp. Major. I. Aspects of growth, chemical composition and root respiration. Plant Soil 104: 129-141. Bonfill, M., S. Mangas, E. Moyano, R. M. Cusido, and J. Palazón. 2011. Production of centellosides and phytosterols in cell suspension cultures of Centella asiatica. Plant Cell Tissue Organ Cult. 104:61-67. Bontems. 1941. A new herteroside, asiaticoside, isolated from Hydrocotyle asiatica L. (Umbelliferae). Bull. Sci. Pharmcol. 49: 186-191. Bremner, J. M. 1965. Total nitrogen. In “Methods of soil analysis. Part 2” C. A. Black (ed.). pp. 1149-1178. ASA, Madison, USA. Bremner, J. M. and C. S. Mulvaney. 1982. Salicylic acid-thiosulfate modification on Kjeldahl method to include nitrate and nitrite. In “Methods of Soil Analysis Part 2 Chemical and Microbiological Properties” 2nd (ed.), A. L. Page (ed.). pp. 621-622.Academic Press, New York, USA. Broaddus, G. M., J. E. York, and J. M. Hoseley. 1965. Factors affecting the levels of nitrate nitrogen in cured tobacco leaves. Tob. Sci. 9: 149-157. Chen, S. W., W. J. Wang, W. J. Li, R. Wang. Y. L. Li, Y. N. Huang, and X. Liang. 2006. Anxiolytic-like effect of asiaticoside in mice. Pharmacol. Biochem. Behav. 85: 339-344. Chen, Y. J., Y. S. Dai, B. F. Chen, A. Chang, H. C. Chen, Y. C. Lin, K. H. Chang, Y. L. Lai, C. H. Chung, and Y. J. Lai. 1999. The effect of tetrandrine and extracts of Centella asiatica on acute radiation dermatitis in rats. Biol. Pharm. Bull. 22: 703-706. Cheng, C. L. and M. W. L. Koo. 2000. Effects of Centella asiatica on ethanol-induced gastric mucosal lesions in rats. Life Sci. 67: 2647-2653. Demeyer, K. and R. Dejaegere. 1997. Nitrogen and alkaloid accumulation and partitioning in Datura stramoniumL. J. Herbs, Spices Med. Plants 5: 15-23. Gnanapragasam, A., S. Yogeeta, R. Subhashini, K. K. Ebenezar, V. Sathish, and T. Devaki. 2007. Adriamycin induced myocardial failure in rats: protective role of Centella asiatica. Mol. Cell. Biochem. 294: 55-63. Gondola, I. 2002. Influence of crop year, N fertilization and genotype on the variability of some agronomic and chemical properties of Burley tobacco (Nicotiana tabacum L.). Novenytermeles 51: 143-159. Gupta, R. and S. J. S. Flora. 2006. Effect of Centella asiatica on arsenic induced oxidative stress and metal distribution in rats. J. Appl. Toxicol. 26: 213-222. Gupta, Y. K., M. H. Veerendra Kumar, and A. K. Srivastava. 2003. Effect of Centella asiatica on pentylenetetrazole-induced kindling, cognition and oxidative strss in rats. Pharmacol. Biochem. Behav. 74: 579-585. Hernandez-Vazquez, L., M. Bonfill, E. Moyano, R.M. Cusido, A. Navarro-Ocaña, and J. Palazon. 2010. Conversion of α-amyrin into centellosides by plant cell cultures of Centella asiatica. Biotechnology Letters 32: 315-319. Hoagland, D.R. and D.I. Arnon. 1950. The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular 347:1-32. Hornok, L. 1992. Cultivation and Processing of Medical Plants. John Wiley&Sons, New York, USA. Hussin, M., A. Abdul-Hamid, S. Mohamad, N. Saari, M. Ismail, and M. H. Bejo. 2006. Protective effect of Centella asiatica extract and powder on oxidative stress in rats. Food Chem. 100: 535-541. Jiang, Z. Y., X. M. Zhang, J. Zhou, and J. J. Chen. 2005. New triterpenoid glycosides from Centella asiatica. Helv. Chim. Acta. 88: 297-303. Keeney, D. R. and D. W. Nelson. 1982. Modified Griess-Ilosvay method. In “Methods of Soil Analysis Part 2 Chemical and Microbiological Properties” 2nd (ed.), A. L. Page (ed.). pp. 684-687. Academic Press, New York, USA. Kim, J. A., Y. S. Kim, and Y. E. Choi. 2011. Triterpenoid production and phenotypic changes in hairy roots of Codonopsis lanceolata and the plants regenerated from them. Plant Biotechnol. Rep. 5: 255-263. Kim, O. T., K. H. Bang, Y. S. Shin, M. J. Lee, S. J. Jung, D. Y. Hyun, Y. C. Kim, N. S. Seong, S. W. Cha, and B. Hwang. 2007. Enhanced production of asiaticoside from hairy root cultures of Centella asiatica (L.) Urban elicited by methyl jasmonate. Plant Cell Rep. 26:1941-1949. Kim, O. T., S. H. Kim, K. Ohyama, T. Muranaka, Y. E. Choi, H. Y. Lee, M. Y. Kim, and B. Hwang. 2010. Upregulation of phytosterol and triterpene biosynthesis in Centella asiatica hairy roots overexpressed ginseng farnesyl diphosphate synthase. Plant Cell Rep. 29: 403-411. Krishnamurthy, R. G., M.-C. Senut, D. Zemke, J. Min, M. B. Frenkel, E. J. Greenberg, S.-W. Yu, N. Ahn, J. Goudreau, M. Kassab, K. S. Panickar, and A. Majid. 2009. Asiatic acid, a pentacyclic triterpene from Centella asiatica, is neuroprotective in a mouse model of focal cerebral ischemia. J. Neurosci. Res. 87: 2541-2550. Kumar, M. H. V. and Y. K. Gupta. 2003. Effect of Centella asiatica on cognition and oxidative strss in an intercerebroventricular streptozotocin model of Alzheimers’ disease in rats. Clin. Exp. Pharmacol. Physiol. 30: 336-342. Lee, J., E. Jung, Y. Kim, J. Park, J. Park, S. Hong, J. Kim, C. Hyun, Y. S. Kim, and D. Park. 2006. Asiaticoside induces human collagen I synthesis through TGFbeta receptor I kinase (TbetaRI kinase)-independent Smad signaling. Planta. Med. 72: 324-328. Lu, L., K. Ying, S. M. Wei, Y. Fang, Y. L. Liu, H. F. Lin, L. J. Ma, and Y. M. Mao. 2004. Asiaticoside induction for cell-cycle progression, proliferation and collagen synthesis in human dermal fibroblasts. Int. J. Dermatol. 43: 801-807. Mangas, S., E. Moyano, L. Osuna, R.M. Cusido, M. Bonfill, and J. Palazón. 2008. Triterpenoid saponin content and the expression level of some related genes in calli of Centella asiatica. Biotechnol. Lett. 30: 1853-1859. Matsuda, H., T. Morikawa, H. Ueda, and M. Yoshikawa. 2001. Medicinal foodstuffs. XXVI. Inhibitors of aldose reductase and new triterpene and its oligoglycoside, centellasapogenol A and centellasaponin A, from Centella asiatica (Gotu Kola). Heterocycl. 55: 1499-1504. Matsuda, H., T. Morikawa, H. Ueda, and M. Yoshikawa. 2001. Medicinal foodstuffs. XXVII. Saponin constituents of gotu kola: structures of new ursane- and oleanane-type triterpene oligoglycosides, centellasaponins B, C, and D, from Centella asiatica cultivated in Sri Lanka. Chem. Pharm. Bull. 49: 1368-1371. McLean, E. O. 1982. Soil pH and lime requirement. In “Methods of Soil Analysis Part 2 Chemical and Microbiological Properties” 2nd (ed.), A. L. Page (ed.) pp. 199–224. Academic Press, New York, USA. Mehlich, A. 1985. Mehlich 3 soil test extractant:A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15: 1409–1416. Minija, J. and J. E. Thoppil. 2003. Antimicrobial activity of Centella asiatica (L.) Urb. essential oil. Indian Perfumer 47: 179-181. Misra, N., V. V. S. Dubey, A. K. Srivastava, R, Luthra, and S. Kumar. 2002. Modulation of growth, nitrate reductase activity and total alkaloid content in leaves of Catharanthus roseus by nitrate supplementation. J. Med. Aroma. Plant Sci. 24: 384-389. Mohandas Rao, K. G., S. Muddanna Rao, and S. Gurumadhva Rao. 2006. Centella asiatica (L.) leaf extract treatment during the growth spurt period enhances hippocampal CA3 neuronal dendritic arborization in rats. Adv. Access Public. 3: 349-357. Murphy, J., and J. P. Riley. 1962. A modified single solution for determination of phosphate in natural waters. Anal. Chem. Acta. 179: 293-302. Paramageetham, Ch., G. Prasad Babu, and J. V. S. Rao. 2004. Somatic embryogenesis in Centella asiatica L. an important medicinal and neutraceutical plant of India. Plant Cell Tissue Organ Cult. 79: 19–24. Park, B. C., K. O. Bosire, E. S. Lee, Y. S. Lee, and J. A. Kim. 2005. Asiatic acid induces apoptosis in SK-MEL-2 human melanoma cells. Cancer Lett. 218: 81–90. Prum, N., B. Illel, and J. Raynaud. 1983. Flavonoid glycosides from Centella asiatica L. (Umbelliferae). Pharmazie 38: 423. Rhoades, J. D. 1982. Soluble salts. In “Methods of Soil Analysis Part 2 Chemical and Microbiological Properties”, 2nd (ed.), A. L. Page (ed.). pp. 167-178. Academic Press, New York, USA. Sahu, N. P., S. K. Roy, and S. B. Mahato. 1989. Spectroscopic determination of structures of teiterpenoid trisaccharides from Centella asiatica. Phytochem. 28: 2852-2854. Sairam, K., C. V. Rao, and R. K. Goel. 2001. Effect of Centella asiatica Linn on physical and chemical factors induced gastric ulceration and secretion in rats. Indian J. Exp. Biol. 39: 137-142. Soumyanath, A., Y. P. Zhong, S. A. Gold, X. Yu, D. R. Koop, D. Bourdette, and B. G. Gold. 2005. Centella asiatica accelerates nerve regeneration upon oral administration and contains multiple active fractions increasing neurite elongation in vitro. J. Pharm. Pharmacol. 57: 1221-1229. Srithongkul, J., S. Kanlayanarat, V. Srilaong, A. Uthairatanakij, and P. Chalermglin. 2011. Effects of light intensity on growth and accumulation of triterpenoids in three accessions of Asiatic pennywort (Centella asiatica (L.) Urb.). J. Food Agric. Environ. 9: 360-363. Srivastava, P., V. Sisodia, and R. Chaturvedi. 2011. Effect of culture conditions on synthesis of triterpenoids in suspension cultures of Lantana camara L.. Bioprocess Biosyst. Eng. 34: 75-80. Sudha, S., S. Kumaresan, A. Amit, J. David, and B. V. Venkataraman. 2002. Anticonvulsant activity of different extracts of Centella asiatica and Bacopa monnieri in animals. J. Nat. Rem. 2: 33-41. Wang, X. S., Y. Zheng, J. P. Zuo, and J. N. Fang. 2005. Structural features of an immunoactive acidic arabinogalactan from Centella asiatica. Carbohydrate Polym. 59: 281-288. Wijeweera, P., J. T. Arnason, D. Koszycki, and Z. Merali. 2006. Evaluation of anxiolytic properties of Gotukola-(Centella asiatica) extracts and asiaticoside in rat behavioral models. Phytomed. 13: 668-676. Yoosook, C., N. Bunyapraphatsara, Y. Boonyakiat, and C. Kantasuk. 2000. Anti-herpes simplex virus activities of crude water extracts of Thai medicinal plants. Phytomed. 6: 411-419. Yoshida, M., M. Fuchigami, T. Nagao, H. Okabe, K. Matsunaga, J. Takata, Y. Karube, R. Tsuchihashi, J. Kinjo, K. Mihashi, and T. Fujioka. 2005. Antiproliferative constituents from unbelliferae plants VII. Active triterpenes and rosmarinic acid from Centella asiatica. Biol. Pharm. Bull. 28: 173-175. Yu, Q. L., H. Q. Duan, Y. Takaishi, and W. Y. Gao. 2006. A novel triterpene from Centella asiatica. Mol. 11: 661-665. Zheng, C. J. and L. P. Qin. 2007. Chemical components of Centella asiaticaand their bioactives. J. Chin. Integr. Med. 5: 348-351. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44497 | - |
dc.description.abstract | 摘要
雷公根特有的有效成分,是多種三萜類的化合物,可促進膠原蛋白的合成,可改善肌膚問題,或治療皮膚癌,也具有增強學習與記憶的效果,可做為癲癇症及中風後的治療藥物。雷公根為多年生的匍匐性草本植物,單位面積產量低,因此,如何增加其有效成分濃度與產量相當重要。本研究探討土耕與水耕氮肥用量對雷公根生長、養分吸收及有效成分產量與分布的影響,於臺灣大學農場溫室進行盆栽試驗,設計為完全逢機設計。土耕部分,以不打洞的藍色塑膠盆裝土13.5公斤,處理分為不施氮肥的對照組及化學肥料處理氮量分別為每平方公尺施用3 g、6 g、12 g、24 g氮,磷肥和鉀肥之用量均相同,每平方公尺施用磷和鉀分別為3 g和4.5 g,有機質肥料處理施用6 g氮,共六種處理,每處理四重複。植體於處理後70天採收地上部,112天採收全株並採集土壤。植體經洗淨後分根、莖與葉三部分,在70℃下烘乾,測定乾重、總氮、硝酸態氮、銨態氮、磷、鉀、鈣、鎂、鐵、錳、銅、鋅及有效成分濃度,土壤經風乾磨碎、過篩後,測定土壤pH值、EC值、有機質、總氮、硝酸態氮、銨態氮、Bray-1磷及Mehlich III可萃取性鉀、鈣、鎂、鐵、錳、銅、鋅濃度。水耕部分,試驗之水耕液以二分之一強度的Hoagland養液為基底,以硝酸銨用量調控氮濃度分別為105、161、217及329 mg L-1四種處理,每處理四重複。以二分之一強度的Hoagland養液培養14天後,以四種不同氮量處理,每14天更換養液,處理42天後採收,植體分析項目同上。土耕試驗結果顯示,化學氮肥處理會降低土壤pH值,提高EC值及硝酸態氮濃度,有機質肥料處理使土壤pH值上升;在每平方公尺施用24 g氮處理使雷公根植體Mehlich III可萃取性錳濃度上升,對雷公根的乾物產量及有效成分濃度影響並不顯著,土耕及水耕系統的有效成分皆主要分布於葉部。水耕試驗結果顯示,在氮肥處理42天後,氮濃度217 mg L-1處理有最高乾物產量,氮濃度329 mg L-1處理則最低;雷公根有效成分濃度受氮肥處理影響而降低,以莖最為敏感,葉次之,根受影響最少。四種主要有效成分中以羥基積雪草酸苷和積雪草酸苷為主要受氮肥影響的成分。雷公根全株有效成分產量以105、161及217 mg L-1處理較高,329 mg L-1處理有效成分產量最低。 | zh_TW |
dc.description.abstract | Abstract
Theactive metabolites of Centella asiatica, centelloside, could improve synthesis of collagen, treat some skin diseases and enhance learning and memory. It could be a drug used after brain attack and epilepsy. C. asiatica is a herbaceous annual plant, having creeping stolons with a low biomass yield. Therefore, high biomass yield and high concentration of centelloside are very important in order to use this plant. The study was conducted in the green house of National Taiwan University with two types of culture, i.e., soil culture and water culture. All treatments were arranged in a randomized complete design. In the soil culture, there were six treatments, including: five rates of nitrogen (N) fertilizer treatments (0, 3, 6, 12, 24 g N m-2) and an organic fertilizer treatment (6 g N m-2). The same amounts of phosphorous (P) (3 g P m-2) and potassium (K) (4.5 g K m-2) as potassium dihydrogen phosphate and potassium chloride, respectively, were applied to all treatments except for the organic one. The plants were harvested two times, 70 days and 112 days after planting (DAP). Only the shoot was sampled at 70 DAP and the whole plant was harvested at 112 DAP. The soils were also sampled at 112 DAP. In the water culture, 1/2 strength modified Hoagland’s solution was used. There were four rates of N fertilizer treatments (N 105, 161, 217, 329 mg L-1) by adding different amounts of ammonium nitrate. Treatments were initiated after preculturing for 14 days and the whole plant was harvested after treating for 42 days. The plants were separated into leaf, stem and root then oven drying at 70℃ for three days. The concentration of total N, nitrate-N, ammonium-N, P, K, calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), madecassoside, asiaticoside, madecassic acid and asiatic acid were analyzed. The pH, electric conductivity of saturation extract and the concentrations of total N, nitrate-N, ammonium-N, Bray-1 P, organic matter, Mehlich III extractable K, Ca, Mg, Fe, Mn, Cu and Zn of soil were also determined. Nitrogen fertilizer application resulted in decrease soil pH, increase EC and nitrate-N concentration. However, organic fertilizer application resulted in increase soil pH. Treatment of 24 g N m-2 resulted in the highest Mn concentration in all parts of C. asiatica. The dry matter yield of N 217 mg L-1 treatment was the highest and that of N 329 mg L-1 treatment was the lowest in water culture. The concentrations of centelloside of different parts of C. asiatica were sensitive to the N concentration applied in the nutrient solution and decreased in the order: stem > leaf > root. Madecassoside and asiaticoside were most significant affected by N fertilizer treatment in the four chemicals studied. The centelloside yield was the lowest under N 329 mg L-1 treatment. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T03:01:13Z (GMT). No. of bitstreams: 1 ntu-100-R98623017-1.pdf: 1955794 bytes, checksum: 0c762178789e1329e0b36138cbe73f23 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 目錄
謝誌------------------------------------------------------------------------------------------------I 摘要-----------------------------------------------------------------------------------------------II Abstract------------------------------------------------------------------------------------------IV 目錄----------------------------------------------------------------------------------------------VI 圖目錄------------------------------------------------------------------------------------------VII 表目錄-----------------------------------------------------------------------------------------VIII 附表目錄----------------------------------------------------------------------------------------IX 第一章前言-----------------------------------------------------------------------------------1 第二章前人研究-----------------------------------------------------------------------------2 第三章材料與方法-------------------------------------------------------------------------10 第四章結果----------------------------------------------------------------------------------26 一、 雷公根收穫後土壤基本性質----------------------------------------------------------26 二、 土耕雷公根生長、養分吸收與分佈-------------------------------------------------29 三、 土耕雷公根有效成分的產量與分佈-------------------------------------------------45 四、 水耕雷公根生長、養分吸收與分佈-------------------------------------------------48 五、 水耕雷公根有效成分的產量與分佈-------------------------------------------------63 第五章討論----------------------------------------------------------------------------------68 一、 栽培後土壤的基本性質----------------------------------------------------------------68 二、 不同量氮肥處理對雷公根的影響----------------------------------------------------70 第六章結論----------------------------------------------------------------------------------74 第七章參考文獻----------------------------------------------------------------------------75 附錄----------------------------------------------------------------------------------------------84 | |
dc.language.iso | zh-TW | |
dc.title | 氮肥用量對雷公根養分、產量及有效成分濃度的影響 | zh_TW |
dc.title | Effect of different rates of nitrogen fertilizer on the nutrient, yield and centelloside concentration of Centella asiatica | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳仁炫,黃裕銘,黃良得,陳建德 | |
dc.subject.keyword | 雷公根,施氮量,水耕栽培,積雪草酸苷,羥基積雪草酸苷, | zh_TW |
dc.subject.keyword | Centella asiatica,nitrogen fertilizer rate,water culture,madecassoside,asiaticoside, | en |
dc.relation.page | 97 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-16 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 1.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。