請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44490完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪宏基 | |
| dc.contributor.author | Li-Wei Liu | en |
| dc.contributor.author | 劉立偉 | zh_TW |
| dc.date.accessioned | 2021-06-15T03:00:48Z | - |
| dc.date.available | 2010-07-31 | |
| dc.date.copyright | 2009-07-31 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-31 | |
| dc.identifier.citation | [1] G. Anandalingam and T. L. Friesz, Hierarchical optimization: an introduction, Annals
of Operation Research, Vol.34, pp.1-11, 1992. [2] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989. [3] U. M. Ascher, R. M. M. Mattheij and R. D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations SIAM, Philadelphia, 1995. [4] V. Barbu, Mathematical Methods in Optimization of Differential Systems, Kluwer, Dordrecht, Netherlands, 1989. [5] M. Bardi and C. I. Dolcetta, Optimal Control and Viscosity Solutions of Hamilton- Jacobi-Bellman Equations, Birkh‥auser, Boston, 1997. [6] M. S. Bazaraa, J. J. Goode and C. M. Shetty, Constraint qualifications revisited, Management Science, Vol.18, pp.567-573, 1972. [7] M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming, John Wiley & Sons, New York, 1993. [8] R. Bellman, Dynamic Programming, Princeton University Press, Princeton, 1957. [9] R. Bellman and R. Kalaba, Dynamic Programming and Modern Control Theory, Academic Press, New York, 1965. [10] A. Bemporad, W. P. M. H. Heemels and B. De Schutter, On hybrid systems and closedloop MPC systems, IEEE Transactions on Automatic Control, Vol.47, pp.863-869, 2002. [11] L. D. Berkovitz, Convexity and Optimization in R^n, John Wiley & Son, New York, 2002. [12] A. M. Bloch, P. E. Crouch, J. E. Marsden and A. K. Sanyal, Optimal control and geodesics on quadratic matrix Lie groups, Foundations of Computational Mathematics, 2008. [13] S. Boyd and L. Vandenberghe Convex Optimization, Cambridge University Press, Cambridge, 2004. [14] O. T. Bruhns and D. K. Anding, On the simultaneous estimation of model parameters used in constitutive laws for inelastic material behoviour, International Journal of Plasticity, Vol.15, pp.1311-1340, 1999. [15] A. E. Bryson Jr., W. F. Denham and S. E. Dreyfus, Optimal programming problems with inequality constraints I: necessary condition for extremal solutions, AIAA Journal, Vol.1, pp.2544-2550, 1963. [16] A. E. Bryson Jr. and Y.-C. Ho, Applied Optimal Control, Taylor & Francis, 1975. [17] M. K. Camlibel, W. P. M. H. Heemels, A. J. van der Schaft and J. M. Schumacher, Switched networks and complementarity IEEE Transactions on Circuits and Systems I-Fundamental Theory and Applications, Vol.50, pp.1036-1046, 2003. [18] P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Birkh‥auser, Boston, 2004. [19] T. Cecil, J. Qian, and S. Osher, Numerical methods for high dimensional Hamilton- Jacobi equations using radial basis functions, Journal of Computational Physics, Vol.196, pp.327-347, 2004. [20] J. S. Chen, On some NCP-function based on the generalized Fischer-Burmeister function, Asia-Pacific Kournal of Operational Research, Vol.24, pp.401-420, 2007. [21] J. S. Chen, A family of NCO functions and a descent method for the nonlinear complementarity problem, Computational Optimization and Applications, Vol.40, pp.389-404, 2008. [22] D.-Y. Chiang, Modeling and identification of elastic-plastic systems using the distributed-element model, Journal of Engineering Material and Technology, Vol.119, pp.332-336, 1997. [23] E. K. P. Chong and S. H. Z˙ ak, An Introduction to Optimization, John Wiley & Son, New York, 2001. [24] I. Chryssochoos and R. B. Vinter, Optimal control problems on manifolds: a dynamic programming approach, Mathematical Analysis and Applications, Vol.287, pp.118-140, 2003. [25] B. Colson, P. Marcotte and G. Savard, An overview of bilevel optimization, A Quarterly Journal of Operation Research, Vol.3, pp.87-107, 2005. [26] B. Colson, P. Marcotte and G. Savard, An overview of bilevel optimization, Annals of Operation Research, Vol.153, pp.235-256, 2007. [27] L. Cooper and M. W. Cooper, Introduction to Dynamic Programming, Pergamon Press, Oxford, 1981. [28] J. F. Cornwell, Group Theory in Physics, Vol 2, Academic Press, London, 1984. [29] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Transactions of the American Mathematical Society, Vol.277, pp.1-42, 1983. [30] S. Dempe, V. V. Kalashinkov and N. Kalashnykova, Optimality conditions for bilevel programming problems, In S. Dempe and V. Kalashnikov (eds.) Optimization with Multivalued Mappings, pp.3-28, Springer, New York, 2006. [31] B. De Schutter, W. P. M. H. Heemels and A. Bemporad, On the equivalence of linear complementarity problems, Operations Research Letters, Vol.30, pp.211-222, 2002. [32] R. Fedele, M. Filippini and G. Maier, Constitutive model calibration for railway wheel steel through tension-torsion tests, Computers and Structures, Vol.83, pp.1005-1020, 2005. [33] W., F. Feehery and P. I. Barton, Dynamic optimization with state variable path constraints, Computers and Chemical Engineering, Vol.22, pp.1241-1256, 1998. [34] M. C. Ferris and J. S. Pang, Engineering and economic applications of complementary problems, SIAM Review, Vol.39, pp.669-713, 1997. [35] A. Fischer, An NCP-function and its use for the soution of complementarity problems, In D. Z. Du, L. Qi and R. S. Womersley (Eds.), Recent Advances in Nonsmooth Optimization, pp.88-105, World Scientific Publishing, Singapore, 1995. [36] W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, New York, 1993. [37] V. M. Guibout and A. Bloch, Discrete variational principles and Hamilton- Jacobi theory for mechanical systems and optimal control problems, http://arxiv.org/abs/math/0409296. [38] J. Gauvin, A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming, Mathematical Programming, Vol.12, pp.136-138, 1977. [39] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Springer, Berlin, 2000. [40] P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinear complementary problems: A survey of theory, algorithms and applications, Mathemtaical Programming, Vol.48, pp.161-220, 1990. [41] T. Harth, S. Schwan, J. Lehn and F. G. Kollmann, Identification of material parameters for inelastic constitutive models: statistical analysis and design of experiments, International Journal of Plasticity, Vol.20, pp.1403-1440, 2004. [42] W. F. N. H. Heemels, J. M. Schumacher and S. Weiland, Linear complementarity systems, SIAM Journal on Applied Mathematics, Vol.60, pp.1234-1269, 2000. [43] W. F. N. H. Heemels, J. M. Schumacher and S. Weiland, Projected dynamical systems in a complementarity formalism Operations Research Letters, Vol.27, pp.83-91, 2000. [44] W. F. N. H. Heemels, B. De Schutter and A. Bemporad, Equivalence of hybrid dynamical models, Automatica, Vol.37, pp.1095-1091, 2001. [45] W. F. N. H. Heemels and B. Brogliato, The complementarity class of hybrid dynamical system, European Journal of Control, Vol.9, pp.322-360, 2003. [46] H.-K. Hong and C.-S. Liu, Internal symmetry in the constitutive model of perfect elastoplasticity, Internal Journal of Non-Linear Mechanics, Vol.35, pp.447-466, 2000. [47] R. F. Hartl, S. P. Sethi and R. G. Vickson, A survey of the maximum principles for optimal control problems with state constraints, SIAM Review, Vol.37, pp.181-218, 1995. [48] C.-S. Huang, S. Wang and K. L. Teo, Solving Hamilton-Jacobi-Bellman equations by a modified method of characteristics, Nonlinear Analysis, Vol.40, pp.279-293, 2000. [49] C.-S. Huang, S. Wang and K. L. Teo, On application of an alternating direction method to Hamilton-Jacobin-Bellman equations, Journal of Computational and Applied Mathematics, Vol.166, pp.153-166, 2004. [50] D. H. Jacobson, M. M. Lele and J. L. Speyer, New necessary conditions of optimality for control problems with state variable inequality cinstraints, Journal of Mathematical Analysis and Applications, Vol.35, pp.255-284, 1971. [51] G. Johansson, G. Ahlstr‥om and M. Ekh, Parameter identification and model of large ratcheting strains in carbon steel, Computers and Structures, Vol.84, pp.1002-1011, 2006. [52] F. John, Partial Differential Equations, Springer-Verlag, New York, 1982. [53] T. Kailath, A. H. Sayed and B. Hassibi, Linear Estimation, Prentice Hall, New Jersey, 2000. [54] M. I. Kamien and N. L. Schwartz, Dynamic optimization: The Calculus of Variations and Optimal Control in Economics and Managememt, North-Holland, Amsterdam, 1991. [55] C. Kane, J. E. Marsden and M. Ortiz, Symplectic-energy-momentum preserving variational integrators, Journal of Mathematical Physics, Vol.40, pp.3353-3371, 1999. [56] C. Kane, J. E. Marsden, M. Ortiz and M. West, Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems, International Journal for Numerical Methods in Engeering, Vol.49, pp.1295-1325, 2000. [57] Kao, C. Y., Osher, S. and Qian, J., Lax-Friedrichs sweeping scheme for static Hamilton- Jacobi equations, Journal of Computational Physics, Vol.196, pp.367-391, 2004. [58] C. Kanzow, Nonlinear complementarity as unconstrained optimization, Journal of Optimization Theory and Applications, Vol.88, pp.139-155, 1996. [59] H. B. Keller, Numerical Solution of Two Point Boundary Value Problems, SIAM, Philadelphia, 1976. [60] A. Khalfallah, H. Bel Hadj Salah and A. Dogui, Anisotropic parameter identification using inhomogemous tensile test, European Journal of Mechanics A/Solids, Vol.21, pp.927-942, 2002. [61] E. Kreindler, Additional necessary conditions for optimal control with state-variable inequality constraints, Journal of Optimization Theory and Applications, Vol.38, pp.241- 250, 1982. [62] J. Kyparisis, On uniqueness of Kuhn-Tucker multipliers in nonlinear programming, Mathmatical Programming, Vol.32, pp.242-246, 1985. [63] S. Lall and M. West, Discrete variational hamiltonian mechanics, Journal of Physics A: Mathematical and General, Vol.39, pp.5509-5519, 2006. [64] R. E. Larson and J. L. Casti, Principles of Dynamic Programming Part I Basic Analytic and Computational Methods, Marcel Dekker, New York, 1978. [65] B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, Cambridge University Press, New York, 2004. [66] A. Lew, J. E. Marsden, M. Ortiz and M. West, An Overview of Variational Integrators, In L.P. Franca, T.E. Tezduyar and A. Masud (Eds.) Finite Element Methods: 1970’s and Beyond, 2004. [67] C.-S. Liu, Cone of non-linear dynamical system and group preserving schemes. Internal Journal of Non-Linear Mechanics, Vol.36, pp.1047-1068, 2001. [68] C.-S. Liu Identifying time-dependent damping and stiffness functions by a simple and yet accurate method, Journal of Sound and Vibration, Vol.318, pp.148-165, 2008. [69] C.-S. Liu, Solving an inverse Sturm-Liouville problem by a Lie-group method, Boundary Value Problems, Vol.2008, Article ID 749865, 18 pages, 2008. [70] C.-S. Liu and S. N. Atluri, A novel time integration method for solving a large system of non-linear algebraic equations, Computer Modeling in Engineering and Sciences, Vol.31, pp.71-83, 2008. [71] C.-S. Liu, L.-W. Liu and H.-K. Hong, Highly accurate computation of spatial-dependent heat conductivity and heat capacity in inverse thermal problem, Computer Modeling in Engineering and Sciences, Vol.17, pp.1-18, 2007. [72] D. G. Luenberger, Linear and Nonlinear Programming, Kluwer Academic Publisher, Boston, 2003. [73] R. Mahnken and E. Stein, The identification of parameters for visco-plastic models via finite-elements methods and gradient methods, Modelling and Simulation in Materials Science and Engineering, Vol.2, pp.597-616, 1994. [74] R. Mahnken and E. Stein, A unified approach for parameter identification of inelastic material models in the frame of the finite element method, Computer Methods in Applied Mechanics and Engineering, Vol.136, pp.225-258, 1996. [75] R. Mahnken and E. Stein, Parameter identification for viscoplastic models based on analytical derivatives of a least-squares functional and stability investigations, International Journal of Plasticity, Vol.12, pp.451-479, 1996. [76] R. Mahnken and E. Stein, Parameter identification for finite deformation elastoplasticity in principal directions, Computer Methods in Applied Mechanics and Engineering, Vol.147, pp.17-39, 1997. [77] R. Mahnken, A comprehensive study of a multiplicative elastoplasticity model coupled to damage including parameter identification, Computer and Structures, Vol.74, pp.179- 200, 2000. [78] R. Mahnken, Theoretical numerical and identification aspects of a new model class for ductile damage, International Journal of Plasticity, Vol.18, pp.801-831, 2002. [79] O. L. Mangasarian, Equivalence of the complementarity problem to a system of nonlinear equations, SIAM Journal on Applied Mathematics, Vol.31, pp.89-92, 1976. [80] O. L. Mangasarian and M. V. Solodov, Nonlinear complementarity as unconstrained and constrained minimization, Mathematical Programming, Vol.62, pp.277-297, 1993. [81] J. E. Marsden, G. W. Patrick and S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDEs, Communications in Mathematical Physics, Vol.199, pp.351-395, 1998. [82] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Springer, New York, 1999. [83] J. E. Marsden, S. Pekarsky and S. Shkoller, Symmetry reduction of discrete Lagrangian mechancs on Lie groups, Journal of Geometry and Physics, Vol.36, pp.140-151, 2000. [84] J. E. Marsden and E. West, Discrete mechanics and variational integrators, Acta numerica, Vol.10, pp.357-514, 2001. [85] H. Maurer and H. D. Mittelmann, The nonlinear beam via optimal-control with bounded state variables Optimal Control Applications and Methods, Vol.12, pp.19-31, 1991. [86] A. A. Melikyan, Generalized Characteristics of First Order PDEs, Birkh‥auser, Boston, 1998. [87] O. Nelles, Nonlinear System Identification, Springer, Berlin, 2001. [88] G. L. Nemhauser, Introduction to Dynamic Programming, John Wily & Sons, New York, 1966. [89] J. V. Outrata, Optimality conditions for a class of mathematical programs with equilibrium constraints, Mathematics of Operations Research, Vol.24, pp.627-644, 1999. [90] G. W. Reddien, Projection Methods for Two-Point Boundary Value Problems, SIAM Review, Vol.22, pp.156-171, 1980. [91] D. W. Peterson, A review of constraint qualifications in finite-dimensional spaces, SIAM Review, Vol.15, pp.639-654, 1973. [92] R. T. Rockafellar, Convex Analysis, Princeton University Press, New Jersey, 1970. [93] F. Scheck, Mechanics, Springer, Berlin, 1999. [94] H. Scheel and S. Scholtes, Mathematical programs with complementarity constraints: stationary, optimality, and sensitivity, Mathematics of Operations Research, Vol.25, pp.1-22, 2000. [95] S. F. Singer, Symmetry in Mechanics, Birkh‥auser, Boston, 2001. [96] E. D. Sontag, Mathematical Control Theory, Springer, New York, 1998. [97] J. L. Speyer and A. E. Bryson Jr., Optimal programming with a bounded state space, AIAA Journal Vol.6, pp.1488-1491, 1968. [98] A. I. Subbotin, Generalized Solutions of First-Order PDEs, Birkh‥auser, Boston, 1995. [99] V. V. Toropov, A. A. Filatov and A. A. Polynkin, Multiparameter structural optimization using FEM and multipoint explicit approximations, Structural Optimization, Vol.6, pp.7-14, 1993. [100] T. D. Van, M. Tsuji and D. T. S. Nguyen, The characteristic method and its generalizations for first-order nonlinear partial differential equations, Chapman & Hall/CRC, New York, 2000. [101] A. P. Veselov, Integrable discrete-time systems and difference operators, Functional Analysis and Its Applications, Vol.22, pp.8-93, 1988. [102] G. Vilasi, Hamiltonian Dynamics, World Scientific, Singapore, 2001. [103] R. Vinter, Optimal Control, Birkh‥auser, Boston, 2000. [104] A. Viswanath and D. Roy, Multi-step transversal and tangential linearization methods applied to a class of nonlinear beam equations, International Journal of Solids and Structures, Vol.44, pp.4872-4891, 2007. [105] J. M. Wendlandt and J. E. Marsden, Mechanical integrators derived from a discrete variational principle, Physica D, Vol.106, pp.223-246, 1997. [106] N. Yamashita and M. Fukushima, Modified newton methods for solving a semismooth reformulation of monotone complementarity problems, Mathematical Programming, Vol.79, pp.469-491, 1997. [107] J. J. Ye, D. L. Zhu and Q. J. Zhu, Exact penalization and necessary optimality conditions for generalized bilevel programming problems, SIAM Journal on Optimization, Vol.7, pp.481-507, 1997. [108] J. J. Ye, Optimality conditions for optimization problems with complementarity constraints, SIAM Journal on Optimization, Vol.9, pp.374-387, 1999. [109] J. J. Ye, Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints, Journal of Mathematical Analysis and Applications, Vol.307, pp.350-369, 2005. [110] J. J. Ye, Constraint qualifications and KKT conditions for bilevel programming problems, Mathematics of Operations Research, Vol.31, pp.811-824, 2006. [111] F. Yoshida, M. Urabe and V. V. Toropov, Identification of material parameters in constitutive model for sheet metals from cyclic bending tests, International Journal of Mechanical Sciences, Vol.40, pp.237-249, 1998. [112] F. Yoshida, M. Urabe, R. Hino and V. V. Toropov, Inverse approach to identification of material parameters of cyclic elasto-plasticity for component layers of a bimetallic sheet, International Journal of Plasticity, Vol.19, pp.2149-2170, 2003. [113] J. Zabczyk, Mathematical control theory, Birkh‥auser, Boston 1992. [114] S. H. Z˙ ak, Systems and control, Oxford University Press, New York, 2003. [115] E. Zeidler, Nonlinear Functional Analysis and its Application III: Variational Methods and Optimization, Spring-Verlag, New York, 1985. [116] K. M. Zhao and J. K. Lee, Inverse estimation of material properties for sheet mteals, Communications in Numerical Methods in Engineering, Vol.20, pp.105-115, 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44490 | - |
| dc.description.abstract | 本論文旨在研究彈塑性模式的識別問題,並且提出一致的方法來估測模式參數與初始狀態。本文特別注意實際收到的材料、既存的結構物,其內變數事實上不能假設初值為零。首先,提出一個廣泛的彈塑性模式。根據此模式,建立其彈塑性識別的動態最佳化架構。對於這個包含等式約束、不等式約束與互補約束的最佳化問題,本文獲得其正確的最佳化條件。文中所得結果之特色在於呈現凸與辛之特性。
鑒於現代實驗資料擷取朝向離散數位化之趨勢,本文除了處理識別之連續時間最佳化問題外,也考慮識別之離散時間最佳化問題,所得離散解條件也保有辛群之特性。依據實務的狀況,本文提出一個估測模式參數與初始狀態的演算法並且實際以實驗資料來識別模式之參數與初始狀態。 | zh_TW |
| dc.description.abstract | The identification problem of elastoplastic models are addressed and a unified way to estimate the optimal values of model parameters and initial states is proposed. Special attention is drawn to materials as received and structures as existing for which initial values of internal state variables could no longer be assumed to vanish. A comprehensive model of elastoplasticity is formulated first and then a dynamic optimization framework for the identification problem of the elastoplastic model is established. A correct optimality condition of the dynamic optimization problem subjected to constraints in the forms of equalities, inequalities, and complementarity constraints is obtained. The important feature of our results is that they are convex and symplectic. In view of modern trends of digital data acquisition in experiments,
we further consider the discrete-time version in addition to the continuous-time optimization problem, and obtain discrete conditions of solution which are proved to preserve the structure of a symplectic group. The algorithm of finding the optimal values of parameters and initial states is proposed. Experimental data were used to identify them in several testing and real cases. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T03:00:48Z (GMT). No. of bitstreams: 1 ntu-98-D91521017-1.pdf: 2129643 bytes, checksum: 9f136389e5572cd93cbfa5915fe61684 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Contents
口試委員審定書 I 誌謝 III 摘要 IV Notation convention VI 1 Introduction 1 2 Dynamic optimization 4 2.1 Dynamic programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Variational method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Relation between dynamic programming and variational method . . . . . . . 6 2.4 Treatment of equality and inequality constraints . . . . . . . . . . . . . . . . 8 2.5 Treatment of complementarity constraints and the mathematical programs with complementarity constraints . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Dynamic optimization study of elastoplastic model identification 13 3.1 A comprehensive model of elastoplasticity . . . . . . . . . . . . . . . . . . . . 13 3.2 The elastoplastic models included in the comprehensive model of elastoplasticity 14 3.3 Optimization framework of parameter identification problems . . . . . . . . . 16 3.4 Necessary and sufficient conditions in identification of elastoplastic model . . 18 3.5 Two point boundary value problem in identification of elastoplastic model . . 22 3.6 The role of costate variables in identification problem . . . . . . . . . . . . . 23 4 Group preserving scheme in identification of elastoplastic model 26 4.1 The symmetry property in dynamic optimization . . . . . . . . . . . . . . . . 26 4.2 Discrete symplectic formulation for identification of elastoplastic model . . . 27 4.3 Lie group preserving scheme in ordinary differential equations . . . . . . . . . 30 5 Numerical method for solving two point boundary value problem in identification of elastoplastic model 33 5.1 Fictitious time integration method and its modified approach . . . . . . . . . 33 5.2 Numerical method for solving two point boundary value problem . . . . . . . 34 5.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.3.1 Perfect elastoplasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.3.2 Prandtl-Reuss model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.3.3 Bilinear elastoplasticity . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3.4 Material model consisting of bilinear elastoplasticity and linear elasticity 45 5.3.5 Material model consisting of Armstrong-Frederick elastoplasticity and linear elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3.6 Material model consisting of M perfectly elastoplastic elements in parallel and linear elastic element . . . . . . . . . . . . . . . . . . . . . . 47 6 Conclusion 49 References 51 A Dynamic programming 60 B Derivation from Eq.(20) to Eq.(21) 65 List of Figures 1 Stress-strain curves of pseudo-experimental data and simulation with perfectly elastoplastic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2 Experiment of axial-torsional test on SS316 . . . . . . . . . . . . . . . . . . . 67 3 Stress-strain curves of axial-torsional test on SS316 and simulation with Prandtl- Reuss model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4 Stress-strain curves of pseudo-experimental data and simulation with bilinearly elastoplastic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5 Stress-strain curves of axial-torsional test on SS316 and simulation with material model BL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6 Stress-strain curves of axial-torsional test on SS316 and simulation with material model AF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 IX 7 Comparison between Prandtl-Reuss model, material model BL, material model AF in stress history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 8 Stress-strain curves of axial-torsional test on SS316 and simulation with material model PEIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 | |
| dc.language.iso | en | |
| dc.subject | 識別 | zh_TW |
| dc.subject | 辛性 | zh_TW |
| dc.subject | 凸性 | zh_TW |
| dc.subject | 互補約束 | zh_TW |
| dc.subject | 動態最佳化 | zh_TW |
| dc.subject | 彈塑性 | zh_TW |
| dc.subject | 參數與初始狀態 | zh_TW |
| dc.subject | identification | en |
| dc.subject | complementarity constraints | en |
| dc.subject | dynamic optimization | en |
| dc.subject | parameters and initial states | en |
| dc.subject | elastoplasticity | en |
| dc.subject | symplecticity | en |
| dc.subject | convexity | en |
| dc.title | 彈塑性力學參數識別最佳化架構 | zh_TW |
| dc.title | The optimization framework of identification for elastoplasticity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張國鎮,田堯彰,吳漢津,江達雲,劉進賢 | |
| dc.subject.keyword | 彈塑性,識別,參數與初始狀態,動態最佳化,互補約束,凸性,辛性, | zh_TW |
| dc.subject.keyword | elastoplasticity,identification,parameters and initial states,dynamic optimization,complementarity constraints,convexity,symplecticity, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
