請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44482
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林立虹(Li-Hung Lin) | |
dc.contributor.author | Yu-Chen Ling | en |
dc.contributor.author | 凌妤甄 | zh_TW |
dc.date.accessioned | 2021-06-15T03:00:19Z | - |
dc.date.available | 2011-07-31 | |
dc.date.copyright | 2009-07-31 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-31 | |
dc.identifier.citation | References
Abramov, O. & Mojzsis, S. J. (2009) Microbial Habitability of the Hadean Earth During the Late Heavy Bombardment. Nature, 459, 419-422. Amend, J. P. & Shock, E. L. (2001) Energetics of Overall Metabolic Reactions of Thermophilic and Hyperthermophilic Archaea and Bacteria. FEMS Microbiol. Rev., 25, 175-243. Amend, J. P. & Teske, A. (2005) Expanding Frontiers in Deep Subsurface Microbiology. Palaeogeo. Palaeoclim. Palaeoecol., 219, 131-155. Balabane, M., Galimov, E., Hermann, M. & Letolle, R. (1987) Hydrogen and Carbon Isotope Fractionation During Experimental Production of Bacterial Methane. Organic Geochemistry, 11, 115-119. Belyaev, S., Wolkin, R., Kenealy, W., Deniro, M., Epstein, S. & Zeikus, J. (1983) Methanogenic Bacteria from the Bondyuzhskoe Oil Field: General Characterization and Analysis of Stable-Carbon Isotopic Fractionation. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 45, 691-697. Botz, R., Pokojski, H., Schmitt, M. & Thomm, M. (1996) Carbon Isotope Fractionation During Bacterial Methanogenesis by Co2 Reduction. Organic Geochemistry, 25, 255-262. Burdige, D. J. (2006) Geochemistry of Marine Sediments, Princeton, Princeton University Press. Bustin, R. M. & Clarkson, C. R. (1998) Geological Controls on Coalbed Methane Reservoir Capacity and Gas Content. International Journal of Coal Geology, 38, 3 – 26. Chidthaisong, A., Chin, K.-J., Valentine, D. L. & Tyler, S. C. (2002) A Comparison of Isotopic Fractionation of Carbon and Hydrogen from Paddy Field Rice Roots and Soil Bacteria Enrichments During Co2/H2 Methanogenesis. Geochim. Cosmochim. Acta, 66, 983-995. Chyba, C. F. & Hand, K. P. (2001) Life without Photosynthesis. Science, 292, 2026-2027. Conrad, R. (2005) Quantification of Methanogenic Pathways Using Stable Carbon Isotopic Signatures: A Review and a Proposal. Org. Geochem., 36, 739-752. Conrad, R. & Claus, P. (2005) Contribution of Methanol to the Production of Methane and Its 13c-Isotopic Signature in Anoxic Rice Field Soil. Biogeochem., 73, 381-393. Criss, R. E. (1999) Principles of Stable Isotope Distribution, New York, Oxford University Press. Dan, J., Kumai, T., Sugimoto, A. & Murase, J. (2004) Biotic and Abiotic Methane Releases from Lake Biwa Sediment Slurry. Limnology, 5, 149–154. Dhillon, A., Lever, M., Lloyd, K. G., Albert, D. B., Sogin, M. L. & Teske, A. (2005) Methanogen Diversity Evidenced by Molecular Characterization of Methyl Coenzyme M Reductase a (Mcra) Genes in Hydrothermal Sediments of the Guaymas Basin. Appl. Environ. Mcirobiol., 71, 4592-4601. Drake, H. L., Kusel, K. & Matthies, C. (2006) Acetogenic Prokaryotes. Prokaryotes, 2, 354–420. Finke, N., Hoehler, T. M. & Jorgensen, B. B. (2007) Hydrogen 'Leakage' During Methanogenesis from Methanol and Methylamine: Implications for Anaerobic Carbon Degradation Pathways in Aquatic Sediments. Environ. Microbiol., 9, 1060-1071. Fredrickson, J. K. & Onstott, T. C. (2001) Biogeochemical and Geological Significance of Subsurface Microbiology. IN FREDRICKSON, J. K. & FLETCHER, M. (Eds.) Subsurface Microbiology and Biogeochemistry. NY, Wiley. Fredrickson, J. K. & Phelps, T. J. (1996) Surface Drilling and Sampling. IN HURST, C. J., KNUDSEN, G. R., MCINERNEY, M. J., STETZENBACH, L. D. & WALTER, M. V. (Eds.) Manual of Environmental Microbiology. Washington DC, Amer. Soc. Microbiol. Fuchs, G., Thauer, R., Ziegler, H. & Stichler, W. (1979) Carbon Isotope Fractionation by Methanobacterium Thermoautotrophicum. Archives of Microbiology, 120, 135-139. Games, L., Hayes, J. & Gunsalus, R. (1978) Methane-Producing Bacteria- Natural Fractionations of the Stable Carbon Isotopes. Geochimica et Cosmochimica Acta, 42, 1295-1297. Gelwicks, J. T., Risatti, J. B. & Hayes, J. M. (1994) Carbon Isotope Effects Associated with Aceticlastic Methanogenesis. Appl. Environ. Mcirobiol., 60, 467-472. Goevert, D. & Conrad, R. (2009) Effect of Substrate Concentration on Carbon Isotope Fractionation During Acetoclastic Methanogenesis by Methanosarcina Barkeri and M. Acetivorans and in Rice Field Soil. Appl. Environ. Mcirobiol., 75, 2605-2612. Gold, T. (1992) The Deep, Hot Biosphere. Proc. Natl. Acad. Sci., 89, 6045-6049. Hinrich, K.-U., Hayes, J. M., Bach, W., Spivack, A. J., Hmelo, L. R., Holm, N. G., Johnson, C. G. & Sylva, S. P. (2006) Biological Formation of Ethane and Propane in the Deep Marine Subsurface Proc. Natl. Acad. Sci., 103, 14684-14689. Hoehler, T. M. (2004) Biological Energy Requirements as Quantitative Boundary Conditions for Life in the Subsurface. Geobiology, 2, 205-215. Hoehler, T. M. (2007) An Energy Balance Concept for Habitability. Astrobiology, 7, 824-838. Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. (1994) Field and Laboratory Studies of Methan Oxidation in an Anoxic Marine Sediments: Evidence for a Methanogen--Sulfate Reducer Consortium. Global Biogeochemical Cycles, 8, 451-463. Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. (1998) Thermodynamic Control on Hydrogen Concentrations in Anoxic Sediments. Geochimica et Cosmochimica Acta, 62, 1745-1756. Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. (2001) Apparent Minimum Free Energy Requirements for Methanogenic Archaea and Sulfate-Reducing Bacteria in an Anoxic Marine Sediment. FEMS Microbiol. Ecol., 38, 33-41. Holm, N. G. & Charlou, J. L. (2001) Initial Indications of Abiotic Formation of Hydrocarbons in the Rainbow Ultramafic Hydrothermal System, Mid-Atlantic Ridge. Earth Planet. Sci. Lett., 191, 1-8. Horita, J. & Berndt, M. E. (1999) Abiogenic Methane Formation and Isotopic Fractionation under Hydrothermal Conditions. Science, 285, 1055-1057. Johnson, R. E. & Quickenden, T. I. (1997) Photolysis and Radiolysis of Water Ice on Outer Solar Bodies. Jour. Geophy. Res., 102, 10985-10996. Jones, D. M., Head, I. M., Gray, N. D., Adams, J. J., Rowan, A. K., Aitken, C. M., Bennett, B., Huang, H., Brown, A., Bowler, B. F., Oldenburg, T., Erdmann, M. & Larter, S. R. (2007) Crude-Oil Biodegradation Via Methanogenesis in Subsurface Petroleum Reservoirs. Nature, 451, 176-180. Kamagata, Y., Kawasaki, H., Oyaizu, H., Nakamura, K.-I., Mikami, E., Endo, G., Koga, Y. & Yamasato, K. (1992) Characterization of Three Thermophilic Strains of Methanothrix ('Methanosaeta') Thermophila Sp. Nov. And Rejection of Methanothrix ('Methanosaeta') Thermoacetophila. Int. J. Syst. Bacteriol., 42, 463-468. Kashefi, K. & Lovley, D. R. (2003) Extending the Upper Temperature Limit for Life. Science, 301, 934. Kelley, D. S. & Frueh-Green, G. L. (1999) Abiogenic Methane in Deep-Seated Mid-Ocean Ridge Environments: Insights from Stable Isotope Analyses. J. Geophys. Res., 104, 10439-10460. Kieft, T. L. & Phelps, T. J. (1997) Life in the Slow Lane: Activities of Microorganisms in the Subsurface. IN AMY, P. S. & D, L. H. (Eds.) The Microbiology of the Terrestial Deep Subsurface. Boca Raton, CRC Press. Lin, L. H., Wang, P.-L., Rumble, D., Lippmann, J., Boice, E., Pratt, L., Sherwood Lollar, B., Brodie, E., Hazen, T., Andersen, G., Desantis, T., Moser, D. P., Kershaw, D. & Onstott, T. C. (2006) Long-Term Sustainability of a High Energy, Low Diversity Crustal Biome. Science, 314, 479-482. Londry, K. L., Dawson, K. G., Grover, H. D., Summons, R. E. & Bradley, A. S. (2008) Stable Carbon Isotope Fractionation between Substrates and Products of Methanosarcina Barkeri. Org. Geochem., 39, 608-621. Lovley, D. R. & Ferry, J. G. (1985) Production and Consumption of H2 During Growth of Methanosarcina Spp. On Acetate. Appl. Environ. Mcirobiol., 49, 247-249. Lovley, D. R. & Goodwin, S. (1988) Hydrogen Concentrations as an Indicator of the Predominant Terminal Electron-Accepting Reaction in Aquatic Sediments. GCA, 52, 2993-3003. Lu, Y. & Conrad, R. (2005) In Situ Stable Isotope Probing of Methanogenic Archaea in the Rice Rhizosphere. Science, 309, 1088-1090. Lupa, B., Hendrickson, E. L., Leigh, J. A. & Whitman, W. B. (2008) Formate-Dependent H2 Production by the Mesophilic Methanogen Methanococcus Maripaludis. Appl. Environ. Mcirobiol., 74, 6584-6590. Mccollom, T. M. & Seewald, J. S. (2001) A Reassessment of the Potential for Reduction of Dissolved Co2 to Hydrocarbons During Serpentinization of Olivine. Geochim. Cosmochim. Acta, 65, 3769-3778. Mcmahon, P. B. & Chapelle, F. H. (1991) Microbial Production of Organic Acids in Aquitard Sediments and Its Role in Aquifer Geochemistry. Nature, 349, 233-235. Milkov, A. V. & Dzou, L. (2007) Geochemical Evidence of Secondary Microbial Methane from Very Slight Biodegradation of Undersaturated Oils in a Deep Hot Reservoir. Geology, 35, 455-458. Mojzsis, S. J., Harrison, T. M. & Pidgeon, R. T. (2001) Oxygen-Isotope Evidence from Ancient Zircons for Liquid Water at the Earth's Surface 4,300 Myr Ago. Nature, 409, 178-180. Onstott, T. C., L-H, L., Davidson, M., Mislowack, B., Borcsik, M., Hall, J., Slater, G., Ward, J., Lollar, B. S., Lippmann-Pike, J., Boice, E., Pratt, L. M., Pfiffner, S., Moser, D., Gihring, T., Kieft, T. L., Phelps, T. J., Vanherden, E., Litthaur, D., Deflaun, M. & Rothmel, R. (2006) The Origin and Age of Biogeochemical Trends in Deep Fracture Water of the Witwatersrand Basin, South Africa. Geomicrobiol. J., 23, 369-414. Oremland, R. S. & Polcin, S. (1982) Methanogenesis and Sulfate Reduction: Competitive and Noncompetitive Substrates in Estuarine Sediments. Appl. Environ. Mcirobiol., 44, 1270-1276. Parkes, R. J., Cragg, B. A., Bale, S. J., Getlifff, J. M., Goodman, K., Rochelle, P. A., Fry, J. C., Weightman, A. J. & Harvey, S. M. (1994) Deep Bacterial Biosphere in Pacific Ocean Sediments. Nature, 371, 410-413. Parkes, R. J., Cragg, B. A. & Wellsbury, P. (2000) Recent Studies on Bacterial Populations and Processes in Subseafloor Sediments: A Review. Hydrogeol. J., 8, 11-28. Penning, H., Claus, P., Casper, P. & Conrad, R. (2006) Carbon Isotope Fractionation During Acetoclastic Methanogenesis by Methanosaeta Concilii in Culture and a Lake Sediment. Appl. Environ. Mcirobiol., 72, 5648-5652. Penning, H., Tyler, S. C. & Conrad, R. (2006) Determination of Isotope Fractionation Factors and Quantification of Carbon Flow by Stable Carbon Isotope Signatures in a Methanogenic Rice Root Model System. Geobiology, 4, 109-121. Quigley, T. M. & Mackenzie, A. S. (1988) The Temperature of Oil and Gas Formaton in the Subsurface. Nature, 333, 549-552. Reeburgh, W. S. (2007) Oceanic Methane Biogeochemistry. Chem. Rev., 107, 486-513. Rosenfeld, W. & Silverman, S. (1959) Carbon Isotope Fractionation in Bacterial Production of Methane. SCIENCE, 130, 1658-1659. Sander, R., Department, A. C. & Chemistry, M.-P. I. O. (1999) Compilation of Henry’s Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry (Version 3). http://www.henrys-law.org Schmidt, F., Elvert, M., Koch, B. P., Witt, M. & Hinrichs, K.-U. (2009) Molecular Characterization of Dissolved Organic Matter in Pore Water of Continental Shelf Sediments. Geochimica et Cosmochimica Acta, 73, 3337–3358. Schoell, M. (1988) Multiple Origins of Methane in the Earth. Chem. Geol., 71, 1-10. Seewald, J. S. (2001) Aqueous Geochemistry of Low Molecular Weight Hydrocarbons at Elevated Temperatures and Pressures: Constraints from Mineral Buffered Laboratory Experiments. Geochim. Cosmochim. Acta, 65, 1641-1664. Seewald, J. S. (2001) Model for the Origin of Carboyxlic Acids in Basinal Brines. Geochim. Cosmochim. Acta, 65, 3779-3789. Sharp, Z. (2007) Principles of Stable Isotope Geochemistry, Pearson Prentice Hall, U.S.A. Sherwood Lollar, B., Frape, S. K., Weise, S. M., Fritz, P., Macko, A. & Weilhan, J. A. (1993) Abiogenic Methanogenesis in Crystalline Rocks. GCA, 57, 5087-5097. Sherwood Lollar, B., Lacrampe-Couloume, G., Voglesonger, K., Onstott, T. C., Pratt, L. M. & Slater, G. F. (2008) Isotopic Signatures of Ch4 and Higer Hydrocarbon Gases from Precambrian Shield Sites: A Model for Abiogenic Polymerization of Hydrocarbon. Geochim. Cosmochim. Acta, 72, 4778-4795. Sherwood Lollar, B., Westgate, T. D., Ward, J. A., Slater, G. F. & Lacrampe-Couloume, G. (2002) Abiogenic Formation of Alkanes in the Earth's Crust as a Minor Source for Global Hydrocarbon Reservoirs. Nature, 416, 522-524. Sleep, N. & Zahnle, K. (1998) Refugia from Asteroid Impacts on Early Mars and the Early Earth. J. Geophys. Res., 103, 28529-28544. Stumm, W. & Morgan, J. J. (1996) Aquatic Chemistry, Wiley-Interscience, New York. Summons, R. E., Franzmann, P. D. & Nichols, P. D. (1998) Carbon Isotopic Fractionation Associated with Methylotrophic Methanogenesis. Org. Geochem., 28, 465-475. Sun, C.-H., Chang, S.-C., Kuo, C.-L., Wu, J.-C. & Shao, P.-H. (2009) Origins of Taiwan’s Mud Volcanoes: Evidence from Geochemistry. Journal of Asian Earth Sciences. Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T. & Horikoshi, K. (2008) Cell Profileration at 122℃ and Isotopically Heavy Ch4 Production by a Hyperthermophilic Methanogen under High-Pressure Cultivation. Proc. Natl. Acad. Sci., 105, 10949-1954. Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T. & Horikoshi, K. (2008) Cell Profileration at 122oc and Isotopically Heavy Ch4 Production by a Hyperthermophilic Methanogen under High-Pressure Cultivation. Proc. Natl. Acad. Sci., 105, 10949-1954. Thauer, R. K., Jungermann, K. & Decker, K. (1977) Energy Conservation in Chemotrophic Anaerobic Bacteria. Bacteriol. Rev., 41, 100-180. Thauer, R. K., Kaster, A.-K., Seedorf, H., Buckel, W. & Hedderich, R. (2008) Methanogenic Archaea: Ecologically Relevant Differences in Energy Conservation. Nature Rev. Microbiol., 6, 579-591. Valentine, D. L., Chidthaisong, A., Rice, A., Reeburgh, W. S. & Tyler, S. C. (2004) Carbon and Hydrogen Isotope Fractionaton by Moderately Thermophilic Methanogens. Geochim. Cosmochim. Acta, 68, 1571-1590. Valentine, D. L., Chidthaisong, A., Rice, A., Reeburgh, W. S. & Tyler, S. C. (2004) Carbon and Hydrogen Isotope Fractionation by Moderately Thermophilic Methanogens. Geochimica et Cosmochimica Acta, 68, 1571–1590. Valley, J. W. (2005) A Cool Early Earth? Scientific American. Wang, P.-L., Cheng, T.-W., Ling, Y.-C., Lyu, J.-L., Lin, Y.-T., Wu, J.-J., Gallet, S., Song, S.-R., Chen, Y.-G. & Lin, L.-H. (2009) Temperature Dependent Succession of Sulfate Reducing Communities Associated with a Muddy Hot Spring in Southwestern Taiwan. submitted to Appl. Environ. Microbiol. Whitcar, M. J. (1999) Carbon and Hydrogen Isotope Systematics of Bacterial Formation and Oxidation of Methane. Chem. Geol., 161, 391-314. Whiticar, M. J., Faber, E. & Schoell, M. (1986) Biogenic Methane Formation in Marine and Freshwater Environments. Co2 Reduction Vs. Acetate Fermentation - Isotope Evidence. Geochim. Cosmochim. Acta, 50, 693-709. Whitman, W. B., Bowen, T. L. & Boone, D. R. (2006) The Methanogenic Bacteria. Prokaryotes, 3, 165-207. Whitman, W. B., Coleman, D. C. & Wiebe, W. J. (1998) Prokaryotes: The Unseen Majority. Proc. Natl. Acad. Sci., 95, 6578-6583. Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. (2001) Evidence from Detrital Zircons for Hte Existence of Continental Crust and Oceans on the Earth 4.4 Gyr Ago. Nature, 409, 175-178. Wood, G. E., Haydock, A. K. & Leigh, J. A. (2003) Function and Regulation of the Formate Dehydrogenase Genes of the Methanogenic Archaeon Methanococcus Maripaludis. Appl. Environ. Mcirobiol., 185, 2548-2554. Zyakun, A., Bondar, V., Laurinavichus, K., Shipin, O., Belyaev, S. & Ivanov, M. (1988) Fractionation of Carbon Isotopes under the Growth of Methane-Producing Bacteria on Various Substrates. Mikrobiologichnyi Zhurnal, 50, 16-22. 王宏霖 (2006) 以反射震測法研究木屐寮斷層及其附近構造. 國立中央大學地球物理研究所碩士論文. 凌妤甄, 林立虹 & 王珮玲 (2008) 無氧沈積物中溫度效應之於氫氣的調控與甲烷合成以及在成岩作用時厭氧有機物礦化作用上的隱示. Abstract with Program for Geological Society of China Annual Meeting. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44482 | - |
dc.description.abstract | 在地下環境中,微生物催化之甲烷合成作用是有機物礦化作用的終端代謝反應,而於反應路徑最常使用之前驅物包括了氫氣(與二氧化碳)、醋酸、甲酸、甲基類化合物(如甲醇與甲胺),皆可由複雜的有機碳經過發酵作用產生。雖然過去已有許多研究針對單一甲烷菌進行甲烷合成機制上的探討,但是對於自然環境下的甲烷菌族群,其所使用的主要前驅物為何仍然尚未明瞭。除了甲烷合成的前驅物種類之外,另一個影響甲烷合成的關鍵因素為溫度的效應。這樣溫度的效應,在海洋沈積物中可能特別顯著,主要原因在於當地的地溫梯度控制於深度增加時增溫的現象,一般而言微生物甲烷合成的溫度範圍在現地溫度至90℃之間,則與大部份成岩作用的溫度區間是相符的。
為了瞭解不同的前驅物,在不同的溫度底下如何影響微生物催化甲烷的形成,本研究利用關子嶺溫泉區的沈積物,於六個溫度(25、40、50、60、70、80℃)進行孵育試驗。為了刺激甲烷合成作用,同時抑制上游的發酵作用產生適合甲烷合成作用所需之前驅物,於孵育試驗中將沈積物與基礎鹽類溶液的混合物,分別添加五種前驅物包括醋酸、甲酸、甲醇、甲胺、氫氣(與二氧化碳),於無氧條件下,觀測甲烷的產生與前驅物的消耗,並量測部份樣本中的甲烷碳同位素比值,進而推衍於現地環境中,微生物的甲烷合成作用對甲烷總儲量的貢獻。 本研究分析結果顯示所有的前驅物皆會刺激甲烷合成,然而每種前驅物在不同的溫度仍產生相異的合成速率。在加入氫氣(與二氧化碳)以及甲酸的實驗中,所有的溫度皆有快速的甲烷合成速率。而於加入醋酸的實驗,最大的甲烷合成速率發生於40~60℃,加入甲醇的實驗則在40~50℃有最大的甲烷合成速率,加入甲胺的實驗,其最大甲烷合成速率落在50℃。甲烷碳同位素值則隨時間的改變分別有增加、減少,以及持平的趨勢,顯示有特定的優勢甲烷合成途徑發生,亦有多重甲烷合成的途徑共存於試驗中。碳同位素的分化係數(ε)範圍落在-3.9至-115.0‰之間,其中加入醋酸的甲烷合成試驗有最小的分化係數(-11.9至-3.9‰)。加入醋酸的試驗所得到的碳同位素結果相當於控制組所得到的結果,顯示使用醋酸的甲烷菌較其他代謝途徑而言,在關子嶺地區更占優勢。結合了野外觀察後,最終推斷利用醋酸的甲烷合成作用可能對於關子領地區的總甲烷儲量提供了重要的貢獻。 | zh_TW |
dc.description.abstract | Methanogenesis is the terminal metabolism during mineralization of organic carbon in subsurface environments. The precursors of methanogenesis include hydrogen (carbon dioxide), acetate, formate, and methyl-group compounds (e.g. methanol and methylamine), all of which could be derived from fermentation of complex organic carbon. Although lots of studies have been investigating the mechanisms responsible for methanogenesis by pure cultures, it still remains obscure with regard to which precursors are predominantly utilized by methanogens in natural settings. Despite the precursors for methanogenesis, one of the other critical factors governing the methane production would be temperature. This is especially true for marine sediments within which the temperature increases with depth in accordance with the local geothermal. Commonly observed temperatures for methanogenesis span from ambient temperature to 90℃, a temperature range for most diagenetic reactions.
In order to address how different precursors would be activated for microbially catalytic methane formation upon different temperatures, we incubated the sediments collected from Kuan-Tzu-Ling hot spring at six different temperatures (25, 40, 50, 60, 70, 80℃). Five precursors including acetate, formate, methanol, methylamine, and hydrogen were added with the inocula to stimulate methanogenesis and inhibit the fermentation, and were monitored together with methane production through time. Results indicated that although the presence of all precursors stimulated methanogenesis, each precursor yielded various rates at different temperatures. In the experiment supplied with hydrogen (plus carbon dioxide) and formate, methanogenic rates were rapid at all temperatures. Maximum methane production rates occurred at 40~60℃ for incubations with acetate, and 40~50℃ for those with methanol and 50℃ for those with methylamine. The δ13C values of methane varied either toward greater values, less values or remained invariant through time, suggesting either a predominant methanogenic pathway or complex interactions of multiple pathways occurred during the incubations. The ε values for carbon isotope fractionation ranged from -3.9 to -115.0‰ with acetoclastic methanogenesis possessing the least negative values (-11.9 to -3.9‰). The isotopic patterns observed in incubations amended with acetate were comparable with those in positive controls, suggesting that acetoclastic methanogenesis was predominant over the other pathways in the Kuan-Tzu-Ling area. This when combined with the field observations lead to the conclusive interpretation that acetoclastic methanogenesis would constitute an essential proportion to the total methane inventory in the Kuan-Tzu-Ling area. Identification of microbial end member signature would appear to be pivotal for natural gas exploration in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T03:00:19Z (GMT). No. of bitstreams: 1 ntu-98-R96224108-1.pdf: 56137361 bytes, checksum: 11063e62788cd6410f600b5842ebb3ed (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 摘要 ⅰ
Abstract ⅱ Table of Contents ⅳ List of Figures viii List of Tables x Chapter 1 Introduction 1 1.1 The significance of subsurface ecosystem and subsurface carbon cycling 1 1.2 Methane formation processes and isotopic fingerprints in subsurface environments 10 1.3 Methanogenic precursors, pathways and habitats 14 1.4 Carbon isotope fractionation of methanogenesis 23 1.5 Rationales and objectives 29 Chapter 2 Materials and methods 32 2.1 Study Site 32 2.2 Medium design 34 2.3 Analytical methods 36 2.3.1 Gas chromatography for methane, hydrogen and methanol 36 2.3.2 Ion chromatography for precursors 38 2.3.3 Analyses of carbon isotope compositions of methane and precursors 39 Chapter 3 Results 41 Chapter 4 Discussion 60 4.1 Pathways of methanogenesis 60 4.1.1 Negative control and methane desorption from sediments 60 4.1.2 Incubations with acetate 64 4.1.3 Incubations with formate 74 4.1.4 Incubations with hydrogen and carbon dioxide 79 4.1.5 Incubations with methanol 81 4.2 Temperature dependent precursor affinity 90 4.3 Positive control and potential microbial methane production in the subsurface environment of Kuan-Tzu-Ling 95 Chapter 5 Conclusions 103 Appendix Ⅰ 104 Appandix Ⅱ 110 References 128 | |
dc.language.iso | en | |
dc.title | 實驗控制前驅物與溫度於無氧沈積物中微生物來源甲烷之動力學與同位素分化 | zh_TW |
dc.title | Laboratory controls of precursor and temperature on the kinetics and isotope fractionations of microbial methane for anoxic sediments | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王珮玲,孫智賢,黃武良 | |
dc.subject.keyword | 甲烷菌, | zh_TW |
dc.subject.keyword | methanogen, | en |
dc.relation.page | 139 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-31 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地質科學研究所 | zh_TW |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 54.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。