Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4447
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾賢忠(Shiang-Jong Tzeng)
dc.contributor.authorJyun-Pei Jhouen
dc.contributor.author周峻霈zh_TW
dc.date.accessioned2021-05-14T17:42:19Z-
dc.date.available2020-09-24
dc.date.available2021-05-14T17:42:19Z-
dc.date.copyright2015-09-24
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citationAbbas AK, Urioste S, Collins TL, Boom WH. Heterogeneity of helper/inducer T lymphocytes. IV. Stimulation of resting and activated B cells by Th1 and Th2 clones. J. Immunol. 1990, 144(6): 2031-2037.
Allen CD, Ansel KM, Low C, Lesley R, Tamamura H, Fujii N, Cyster JG. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat. Immunol. 2004, 5(9): 943-952.
Allen CD, Cyster JG. Follicular dendritic cell networks of primary follicles and germinal centers: phenotype and function. Semin. Immunol. 2008, 20(1): 14-25.
Amezcua Vesely MC, Schwartz M, Bermejo DA, Montes CL, Cautivo KM, Kalergis AM, Rawlings DJ, Acosta-Rodriguez EV, Gruppi A. FcγRIIB and BAFF differentially regulate peritoneal B1 cell survival. J. Immunol. 2012, 188(10): 4792-4800.
Baerenwaldt A, Lux A, Danzer H, Spriewald BM, Ullrich E, Heidkamp G, Dudziak D, Nimmerjahn F. Fcγ receptor IIB (FcγRIIB) maintains humoral tolerance in the human immune system in vivo. Proc. Natl. Acad. Sci. USA 2011, 108(46): 18772-18777.
Bannard O, Horton RM, Allen CD, An J, Nagasawa T, Cyster JG. Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection. Immunity 2013, 39(5): 912-924.
Baumgarth N, Tung JW, Herzenberg LA. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin. Immunopathol. 2005, 26(4): 347-362.
Blank MC, Stefanescu RN, Masuda E, Marti F, King PD, Redecha PB, Wurzburger RJ, Peterson MG, Tanaka S, Pricop L. Decreased transcription of the human FCGR2B gene mediated by the -343 G/C promoter polymorphism and association with systemic lupus erythematosus. Hum. Genet. 2005, 117(2-3): 220-227.
Bolland S, Ravetch JV. Inhibitory pathways triggered by ITIM-containing receptors. Adv. Immunol. 1999, 72: 149-177.
Bolland S, Ravetch JV. Spontaneous autoimmune disease in FcγRIIB-deficient mice results from strain-specific epistasis. Immunity 2000, 13(2): 277-285.
Boulianne B, Rojas OL, Haddad D, Zaheen A, Kapelnikov A, Nguyen T, Li C, Hakem R, Gommerman JL, Martin A. AID and caspase 8 shape the germinal center response through apoptosis. J. Immunol. 2013, 191(12): 5840-5847.
Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, Forster R. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 2000, 192(11): 1545-1552.
Brooks DG, Qiu WQ, Luster AD, Ravetch JV. Structure and expression of human IgG FcRII(CD32). Functional heterogeneity is encoded by the alternatively spliced products of multiple genes. J. Exp. Med. 1989, 170(4): 1369-1385.
Brownlie RJ, Lawlor KE, Niederer HA, Cutler AJ, Xiang Z, Clatworthy MR, Floto RA, Greaves DR, Lyons PA, Smith KG. Distinct cell-specific control of autoimmunity and infection by FcγRIIb. J. Exp. Med. 2008, 205(4): 883-895.
Chang YK, Yang W, Zhao M, Mok CC, Chan TM, Wong RW, Lee KW, Mok MY, Wong SN, Ng IO, Lee TL, Ho MH, Lee PP, Wong WH, Lau CS, Sham PC, Lau YL. Association of BANK1 and TNFSF4 with systemic lupus erythematosus in Hong Kong Chinese. Genes. Immun. 2009, 10(5): 414-420.
Chen JY, Wang CM, Ma CC, Luo SF, Edberg JC, Kimberly RP, Wu J. Association of a transmembrane polymorphism of Fcγ receptor IIb (FCGR2B) with systemic lupus erythematosus in Taiwanese patients. Arthritis Rheum. 2006, 54(12): 3908-3917.
Clatworthy MR, Smith KG. FcγRIIb balances efficient pathogen clearance and the cytokine-mediated consequences of sepsis. J. Exp. Med. 2004, 199(5): 717-723.
Clatworthy MR, Willcocks L, Urban B, Langhorne J, Williams TN, Peshu N, Watkins NA, Floto RA, Smith KG. Systemic lupus erythematosus-associated defects in the inhibitory receptor FcγRIIb reduce susceptibility to malaria. Proc. Natl. Acad. Sci. USA 2007, 104(17): 7169-7174.
Clynes R, Maizes JS, Guinamard R, Ono M, Takai T, Ravetch JV. Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J. Exp. Med. 1999, 189(1): 179-185.
Daeron M, Malbec O, Latour S, Arock M, Fridman WH. Regulation of high-affinity IgE receptor-mediated mast cell activation by murine low-affinity IgG receptors. J. Clin. Invest. 1995, 95(2): 577-585.
Dal Porto JM. Very low affinity B cells form germinal centers, become memory B cells, and participate in secondary immune responses when higher affinity competition is reduced. J. Exp. Med. 2002, 195(9): 1215-1221.
Dauphinee M, Tovar Z, Talal N. B cells expressing CD5 are increased in Sj ouml;gren's syndrome. Arthritis Rheum. 1988, 31(5): 642-647.
Davidson A, Shefner R, Livneh A, Diamond B. The role of somatic mutation of immunoglobulin genes in autoimmunity. Annu. Rev. Immunol. 1987, 5: 85-108.
De Silva NS, Klein U. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 2015, 15(3): 137-148.
Dhodapkar KM, Banerjee D, Connolly J, Kukreja A, Matayeva E, Veri MC, Ravetch JV, Steinman RM, Dhodapkar MV. Selective blockade of the inhibitory Fcγ receptor (FcγRIIB) in human dendritic cells and monocytes induces a type I interferon response program. J. Exp. Med. 2007, 204(6): 1359-1369.
Dhodapkar KM, Kaufman JL, Ehlers M, Banerjee DK, Bonvini E, Koenig S, Steinman RM, Ravetch JV, Dhodapkar MV. Selective blockade of inhibitory Fcγ receptor enables human dendritic cell maturation with IL-12p70 production and immunity to antibody-coated tumor cells. Proc. Natl. Acad. Sci. USA 2005, 102(8): 2910-2915.
Dijstelbloem HM, van de Winkel JG, Kallenberg CG. Inflammation in autoimmunity: receptors for IgG revisited. Trends Immunol. 2001, 22(9): 510-516.
Ferguson SE, Han SH, Kelsoe G, Thompson CB. CD28 is required for germinal center formation. J. Immunol. 1996, 156(12): 4576-4581.
Floto RA, Clatworthy MR, Heilbronn KR, Rosner DR, MacAry PA, Rankin A, Lehner PJ, Ouwehand WH, Allen JM, Watkins NA, Smith KG. Loss of function of a lupus-associated FcγRIIb polymorphism through exclusion from lipid rafts. Nat. Med. 2005, 11(10): 1056-1058.
Futterer A, Mink K, Luz A, Kosco-Vilbois MH, Pfeffer K. The lymphotoxin β receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 1998, 9(1): 59-70.
Gao F, Yang Y, Wang Z, Gao X, Zheng B. BRAD4 plays a critical role in germinal center response by regulating Bcl-6 and NF-κB activation. Cell Immunol. 2015, 294(1): 1-8.
Gitlin AD, Shulman Z, Nussenzweig MC. Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 2014, 509(7502): 637-640.
Guo L, Deshmukh H, Lu R, Vidal GS, Kelly JA, Kaufman KM, Dominguez N, Klein W, Kim-Howard X, Bruner GR, Scofield RH, Moser KL, Gaffney PM, Dozmorov IM, Gilkeson GS, Wakeland EK, Li QZ, Langefeld CD, Marion MC, Williams AH, Divers J, Alarcon GS, Brown EE, Kimberly RP, Edberg JC, Ramsey-Goldman R, Reveille JD, McGwin G, Jr., Vila LM, Petri MA, Vyse TJ, Merrill JT, James JA, Nath SK, Harley JB, Guthridge JM. Replication of the BANK1 genetic association with systemic lupus erythematosus in a European-derived population. Genes Immun. 2009, 10(5): 531-538.
Haberman AM, Shlomchik MJ. Reassessing the function of immune-complex retention by follicular dendritic cells. Nat. Rev. Immunol. 2003, 3(9): 757-764.
Hannum LG, Haberman AM, Anderson SM, Shlomchik MJ. Germinal center initiation, variable gene region hypermutation, and mutant B cell selection without detectable immune complexes on follicular dendritic cells. J. Exp. Med. 2000, 192(7): 931-942.
Hayakawa K, Hardy RR, Parks DR, Herzenberg LA. The 'Ly-1 B' cell subpopulation in normal immunodefective, and autoimmune mice. J. Exp. Med. 1983, 157(1): 202-218.
Hibbs ML, Hogarth PM, McKenzie IF. The mouse Ly-17 locus identifies a polymorphism of the Fc receptor. Immunogenetics 1985, 22(4): 335-348.
Hogarth PM, Witort E, Hulett MD, Bonnerot C, Even J, Fridman WH, McKenzie IF. Structure of the mouse βFcγ receptor II gene. J. Immunol. 1991, 146(1): 369-376.
Holmdahl R. Estrogen exaggerates lupus but suppresses T-cell-dependent autoimmune-disease. J. Autoimmun. 1989, 2(5): 651-656.
Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S, Lee AT, Chung SA, Ferreira RC, Pant PV, Ballinger DG, Kosoy R, Demirci FY, Kamboh MI, Kao AH, Tian C, Gunnarsson I, Bengtsson AA, Rantapaa-Dahlqvist S, Petri M, Manzi S, Seldin MF, Ronnblom L, Syvanen AC, Criswell LA, Gregersen PK, Behrens TW. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N. Engl. J. Med. 2008, 358(9): 900-909.
Imanishi T, Makela O. Strain differences in the fine specificity of mouse anti-hapten antibodies. Eur. J. Immunol. 1973, 3(6): 323-330.
Iruretagoyena MI, Riedel CA, Leiva ED, Gutierrez MA, Jacobelli SH, Kalergis AM. Activating and inhibitory Fcγ receptors can differentially modulate T cell-mediated autoimmunity. Eur. J. Immunol. 2008, 38(8): 2241-2250.
Ito I, Kawasaki A, Ito S, Hayashi T, Goto D, Matsumoto I, Tsutsumi A, Hom G, Graham RR, Takasaki Y, Hashimoto H, Ohashi J, Behrens TW, Sumida T, Tsuchiya N. Replication of the association between the C8orf13-BLK region and systemic lupus erythematosus in a Japanese population. Arthritis Rheum. 2009, 60(2): 553-558.
Jacob J, Kelsoe G, Rajewsky K, Weiss U. Intraclonal generation of antibody mutants in germinal centres. Nature 1991, 354(6352): 389-392.
Jiang Y, Hirose S, Abe M, Sanokawa-Akakura R, Ohtsuji M, Mi X, Li N, Xiu Y, Zhang D, Shirai J, Hamano Y, Fujii H, Shirai T. Polymorphisms in IgG Fc receptor IIB regulatory regions associated with autoimmune susceptibility. Immunogenetics 2000, 51(6): 429-435.
Jiang Y, Hirose S, Sanokawa-Akakura R, Abe M, Mi X, Li N, Miura Y, Shirai J, Zhang D, Hamano Y, Shirai T. Genetically determined aberrant down-regulation of FcγRIIB1 in germinal center B cells associated with hyper-IgG and IgG autoantibodies in murine systemic lupus erythematosus. Int. Immunol. 1999, 11(10): 1685-1691.
Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, Barnett B, Dent AL, Craft J, Crotty S. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 2009, 325(5943): 1006-1010.
Joshi T, Ganesan LP, Cao X, Tridandapani S. Molecular analysis of expression and function of hFcγRIIb1 and b2 isoforms in myeloid cells. Mol. Immunol. 2006, 43(7): 839-850.
Jungers P, Dougados M, Pelissier C, Kuttenn F, Tron F, Lesavre P, Bach JF. Influence of oral-contraceptive therapy on the activity of systemic lupus-erythematosus. Arthritis Rheum. 1982, 25(6): 618-623.
Kalergis AM, Ravetch JV. Inducing tumor immunity through the selective engagement of activating Fcγ receptors on dendritic cells. J. Exp. Med. 2002, 195(12): 1653-1659.
Kepley CL, Cambier JC, Morel PA, Lujan D, Ortega E, Wilson BS, Oliver JM. Negative regulation of FcεRI signaling by FcγRII costimulation in human blood basophils. J. Allergy Clin. Immunol. 2000, 106(2): 337-348.
Kim CH, Rott LS, Clark-Lewis I, Campbell DJ, Wu L, Butcher EC. Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J. Exp. Med. 2001, 193(12): 1373-1381.
Kitabatake M, Toda T, Kuwahara K, Igarashi H, Ohtsuji M, Tsurui H, Hirose S, Sakaguchi N. Transgenic overexpression of G5PR that is normally augmented in centrocytes impairs the enrichment of high-affinity antigen-specific B cells, increases peritoneal B-1a cells, and induces autoimmunity in aged female mice. J. Immunol. 2012, 189(3): 1193-1201.
Kono H, Kyogoku C, Suzuki T, Tsuchiya N, Honda H, Yamamoto K, Tokunaga K, Honda Z. FcγRIIB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. Hum. Mol. Genet. 2005, 14(19): 2881-2892.
Kosco-Vilbois MH. Are follicular dendritic cells really good for nothing? Nat. Rev. Immunol. 2003, 3(9): 764-769.
Kozyrev SV, Abelson AK, Wojcik J, Zaghlool A, Linga Reddy MV, Sanchez E, Gunnarsson I, Svenungsson E, Sturfelt G, Jonsen A, Truedsson L, Pons-Estel BA, Witte T, D'Alfonso S, Barizzone N, Danieli MG, Gutierrez C, Suarez A, Junker P, Laustrup H, Gonzalez-Escribano MF, Martin J, Abderrahim H, Alarcon-Riquelme ME. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat. Genet. 2008, 40(2): 211-216.
Kyogoku C, Dijstelbloem HM, Tsuchiya N, Hatta Y, Kato H, Yamaguchi A, Fukazawa T, Jansen MD, Hashimoto H, van de Winkel JG, Kallenberg CG, Tokunaga K. Fcγ receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: Contribution of FCGR2B to genetic susceptibility. Arthritis Rheum. 2002, 46(5): 1242-1254.
Lanzavecchia A. Antigen-specific interaction between T and B cells. Nature 1985, 314(6011): 537-539.
Leung WH, Tarasenko T, Biesova Z, Kole H, Walsh ER, Bolland S. Aberrant antibody affinity selection in SHIP-deficient B cells. Eur. J. Immunol. 2013, 43(2): 371-381.
Linterman MA, Beaton L, Yu D, Ramiscal RR, Srivastava M, Hogan JJ, Verma NK, Smyth MJ, Rigby RJ, Vinuesa CG. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J. Exp. Med. 2010, 207(2): 353-363.
Lu R, Vidal GS, Kelly JA, Delgado-Vega AM, Howard XK, Macwana SR, Dominguez N, Klein W, Burrell C, Harley IT, Kaufman KM, Bruner GR, Moser KL, Gaffney PM, Gilkeson GS, Wakeland EK, Li QZ, Langefeld CD, Marion MC, Divers J, Alarcon GS, Brown EE, Kimberly RP, Edberg JC, Ramsey-Goldman R, Reveille JD, McGwin G, Jr., Vila LM, Petri MA, Bae SC, Cho SK, Bang SY, Kim I, Choi CB, Martin J, Vyse TJ, Merrill JT, Harley JB, Alarcon-Riquelme ME, Biolupus, Collaborations GM, Nath SK, James JA, Guthridge JM. Genetic associations of LYN with systemic lupus erythematosus. Genes Immun. 2009, 10(5): 397-403.
Mackay M, Stanevsky A, Wang T, Aranow C, Li M, Koenig S, Ravetch JV, Diamond B. Selective dysregulation of the FcγIIB receptor on memory B cells in SLE. J. Exp. Med. 2006, 203(9): 2157-2164.
MacLennan IC. Germinal Centers. Annu. Rev. Immunol. 1994, 12: 117-139.
Malbec O, Fong DC, Turner M, Tybulewicz VL, Cambier JC, Fridman WH, Daeron M. Fcεreceptor I-associated lyn-dependent phosphorylation of Fcγ receptor IIB during negative regulation of mast cell activation. J. Immunol. 1998, 160(4): 1647-1658.
Mandel TE, Phipps RP, Abbot A, Tew JG. The follicular dendritic cell: long term antigen retention during immunity. Immunol. Rev. 1980, 53(1): 29-59.
McGaha TL, Karlsson MC, Ravetch JV. FcγRIIB deficiency leads to autoimmunity and a defective response to apoptosis in Mrl-MpJ mice. J. Immunol. 2008, 180(8): 5670-5679.
McGaha TL, Sorrentino B, Ravetch JV. Restoration of tolerance in lupus by targeted inhibitory receptor expression. Science 2005, 307(5709): 590-593.
Mercolino TJ, Arnold LW, Hawkins LA, Haughton G. Normal mouse peritoneum contains a large population of Ly-1+ (CD5) B cells that recognize phosphatidyl choline. Relationship to cells that secrete hemolytic antibody specific for autologous erythrocytes. J. Exp. Med. 1988, 168(2): 687-698.
Meyer-Hermann M, Mohr E, Pelletier N, Zhang Y, Victora GD, Toellner KM. A theory of germinal center B cell selection, division, and exit. Cell Rep. 2012, 2(1): 162-174.
Miettinen HM, Matter K, Hunziker W, Rose JK, Mellman I. Fc receptor endocytosis is controlled by a cytoplasmic domain determinant that actively prevents coated pit localization. J. Cell Biol. 1992, 116(4): 875-888.
Mohan C, Putterman C. Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. Nat. Rev. Nephrol. 2015, 11(6): 329-341.
Moll T, Nitschke L, Carroll M, Ravetch JV, Izui S. A critical role for FcγRIIB in the induction of rheumatoid factors. J. Immunol. 2004, 173(7): 4724-4728.
Murakami M, Honjo T. Involvement of B-1 cells in mucosal immunity and autoimmunity. Immunol. Today 1995, 16(11): 534-539.
Nimmerjahn F, Bruhns P, Horiuchi K, Ravetch JV. FcγRIV: a novel FcR with distinct IgG subclass specificity. Immunity 2005, 23(1): 41-51.
Nimmerjahn F, Ravetch JV. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 2008, 8(1): 34-47.
Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S, Matskevitch TD, Wang YH, Dong C. Bcl6 mediates the development of T follicular helper cells. Science 2009, 325(5943): 1001-1005.
Ono M, Bolland S, Tempst P, Ravetch JV. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor FcγRIIB. Nature 1996, 383(6597): 263-266.
Ono M, Okada H, Bolland S, Yanagi S, Kurosaki T, Ravetch JV. Deletion of SHIP or SHP-1 reveals two distinct pathways for inhibitory signaling. Cell 1997, 90(2): 293-301.
Paul E, Nelde A, Verschoor A, Carroll MC. Follicular exclusion of autoreactive B cells requires FcγRIIb. Int. Immunol. 2007, 19(4): 365-373.
Pearse RN, Kawabe T, Bolland S, Guinamard R, Kurosaki T, Ravetch JV. SHIP recruitment attenuates FcγRIIB-induced B cell apoptosis. Immunity 1999, 10(6): 753-760.
Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 2006, 312(5780): 1669-1672.
Pritchard NR, Cutler AJ, Uribe S, Chadban SJ, Morley BJ, Smith KGC. Autoimmune-prone mice share a promoter haplotype associated with reduced expression and function of the Fc receptor FcγRII. Curr. Biol. 2000, 10(4): 227-230.
Pulendran B, Kannourakis G, Nouri S, Smith KGC, Nossal GJV. Soluble antigen can cause enhanced apoptosis of germinal-centre B cells. Nature 1995, 375(6529): 331-334.
Qin D, Wu J, Vora KA, Ravetch JV, Szakal AK, Manser T, Tew JG. Fcγ receptor IIB on follicular dendritic cells regulates the B cell recall response. J. Immunol. 2000, 164(12): 6268-6275.
Rajewsky K. Clonal selection and learning in the antibody system. Nature 1996, 381(6585): 751-758.
Ravetch JV, Kinet JP. Fc receptors. Annu. Rev. Immunol. 1991, 9: 457-492.
Ravetch JV, Luster AD, Weinshank R, Kochan J, Pavlovec A, Portnoy DA, Hulmes J, Pan YC, Unkeless JC. Structural heterogeneity and functional domains of murine immunoglobulin G Fc receptors. Science 1986, 234(4777): 718-725.
Roubinian JR, Talal N, Greenspan JS, Goodman JR, Siiteri PK. Effect of castration and sex hormone treatment on survival, anti-nucleic acid antibodies, and glomerulonephritis in NZB/NZW F1 Mice. J. Exp. Med. 1978, 147(6): 1568-1583.
Rubin RL. Autoantibody specificity in drug-induced lupus and neutrophil-mediated metabolism of lupus-inducing drugs. Clin. Biochem. 1992, 25(3): 223-234.
Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 2000, 192(11): 1553-1562.
Schwickert TA, Victora GD, Fooksman DR, Kamphorst AO, Mugnier MR, Gitlin AD, Dustin ML, Nussenzweig MC. A dynamic T cell-limited checkpoint regulates affinity-dependent B cell entry into the germinal center. J. Exp. Med. 2011, 208(6): 1243-1252.
Shih TA, Meffre E, Roederer M, Nussenzweig MC. Role of BCR affinity in T cell dependent antibody responses in vivo. Nat. Immunol. 2002, 3(6): 570-575.
Shokat KM, Goodnow CC. Antigen-induced B-cell death and elimination during germinal-centre immune responses. Nature 1995, 375(6529): 334-338.
Siriboonrit U, Tsuchiya N, Sirikong M, Kyogoku C, Bejrachandra S, Suthipinittharm P, Luangtrakool K, Srinak D, Thongpradit R, Fujiwara K, Chandanayingyong D, Tokunaga K. Association of Fcγ receptor IIb and IIIb polymorphisms with susceptibility to systemic lupus erythematosus in Thais. Tissue Antigens 2003, 61(5): 374-383.
Smith KG, Clatworthy MR. FcγRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat. Rev. Immunol. 2010, 10(5): 328-343.
Stall AM, Wells SM, Lam KP. B-1 cells: unique origins and functions. Semin. Immunol. 1996, 8(1): 45-59.
Stuart SG, Simister NE, Clarkson SB, Kacinski BM, Shapiro M, Mellman I. Human IgG Fc receptor (hFcRII; CD32) exists as multiple isoforms in macrophages, lymphocytes and IgG-transporting placental epithelium. EMBO J. 1989, 8(12): 3657-3666.
Su K, Li X, Edberg JC, Wu J, Ferguson P, Kimberly RP. A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcγRIIb alters receptor expression and associates with autoimmunity. II. Differential binding of GATA4 and Yin-Yang1 transcription factors and correlated receptor expression and function. J. Immunol. 2004a, 172(11): 7192-7199.
Su K, Wu J, Edberg JC, Li X, Ferguson P, Cooper GS, Langefeld CD, Kimberly RP. A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcγRIIb alters receptor expression and associates with autoimmunity. I. Regulatory FCGR2B polymorphisms and their association with systemic lupus erythematosus. J. Immunol. 2004b, 172(11): 7186-7191.
Takahashi Y, Cerasoli DM, Dal Porto JM, Shimoda M, Freund R, Fang W, Telander DG, Malvey EN, Mueller DL, Behrens TW, Kelsoe G. Relaxed negative selection in germinal centers and impaired affinity maturation in Bcl-xL transgenic mice. J. Exp. Med. 1999, 190(3): 399-410.
Takahashi Y, Dutta PR, Cerasoli DM, Kelsoe G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. V. Affinity maturation develops in two stages of clonal selection. J. Exp. Med. 1998, 187(6): 885-895.
Takai T, Ono M, Hikida M, Ohmori H, Ravetch JV. Augmented humoral and anaphylactic responses in FcγRII-deficient mice. Nature 1996, 379(6563): 346-349.
Tartour E, de la Salle H, de la Salle C, Teillaud C, Camoin L, Galinha A, Latour S, Hanau D, Fridman WH, Sautes C. Identification, in mouse macrophages and in serum, of a soluble receptor for the Fc portion of IgG (FcγR) encoded by an alternatively spliced transcript of the FcgRII gene. Int. Immunol. 1993, 5(8): 859-868.
Tchorbanov AI, Voynova EN, Mihaylova NM, Todorov TA, Nikolova M, Yomtova VM, Chiang BL, Vassilev TL. Selective silencing of DNA-specific B lymphocytes delays lupus activity in MRL/lpr mice. Eur. J. Immunol. 2007, 37(12): 3587-3596.
Tew JG, Phipps RP, Mandel TE. The maintenance and regulation of the humoral immune response: persisting antigen and the role of follicular antigen-binding dendritic cells as accessory cells. Immunol. Rev. 1980, 53(1): 175-201.
Tiller T, Kofer J, Kreschel C, Busse CE, Riebel S, Wickert S, Oden F, Mertes MM, Ehlers M, Wardemann H. Development of self-reactive germinal center B cells and plasma cells in autoimmune FcγRIIB-deficient mice. J. Exp. Med. 2010, 207(12): 2767-2778.
Todo K, Koga O, Nishikawa M, Hikida M. Modulation of Igβ is essential for the B cell selection in germinal center. Sci. Rep. 2015, 5: 10303.
Tzeng SJ, Bolland S, Inabe K, Kurosaki T, Pierce SK. The B cell inhibitory Fc receptor triggers apoptosis by a novel c-Abl family kinase-dependent pathway. J. Biol. Chem. 2005, 280(42): 35247-35254.
Vaughn SE, Kottyan LC, Munroe ME, Harley JB. Genetic susceptibility to lupus: the biological basis of genetic risk found in B cell signaling pathways. J. Leukoc. Biol. 2012, 92(3): 577-591.
Victora GD. Snapshot: the germinal center reaction. Cell 2014, 159(3): 700-700 e701.
Victora GD, Nussenzweig MC. Germinal centers. Annu. Rev. Immunol. 2012, 30: 429-457.
Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann M, Dustin ML, Nussenzweig MC. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 2010, 143(4): 592-605.
Wensveen FM, Derks IA, van Gisbergen KP, de Bruin AM, Meijers JC, Yigittop H, Nolte MA, Eldering E, van Lier RA. BH3-only protein Noxa regulates apoptosis in activated B cells and controls high-affinity antibody formation. Blood 2012, 119(6): 1440-1449.
Wu YY, Georg I, Diaz-Barreiro A, Varela N, Lauwerys B, Kumar R, Bagavant H, Castillo-Martin M, El Salem F, Maranon C, Alarcon-Riquelme ME. Concordance of increased B1 cell subset and lupus phenotypes in mice and humans is dependent on BLK expression levels. J. Immunol. 2015, 194(12): 5692-5702.
Xiang Z, Cutler AJ, Brownlie RJ, Fairfax K, Lawlor KE, Severinson E, Walker EU, Manz RA, Tarlinton DM, Smith KG. FcγRIIb controls bone marrow plasma cell persistence and apoptosis. Nat. Immunol. 2007, 8(4): 419-429.
Xing Y, Igarashi H, Wang X, Sakaguchi N. Protein phosphatase subunit G5PR is needed for inhibition of B cell receptor-induced apoptosis. J. Exp. Med. 2005, 202(5): 707-719.
Xiu Y, Nakamura K, Abe M, Li N, Wen XS, Jiang Y, Zhang D, Tsurui H, Matsuoka S, Hamano Y, Fujii H, Ono M, Takai T, Shimokawa T, Ra C, Shirai T, Hirose S. Transcriptional regulation of Fcgr2b gene by polymorphic promoter region and its contribution to humoral immune responses. J. Immunol. 2002, 169(8): 4340-4346.
Yang W, Ng P, Zhao M, Hirankarn N, Lau CS, Mok CC, Chan TM, Wong RW, Lee KW, Mok MY, Wong SN, Avihingsanon Y, Lee TL, Ho MH, Lee PP, Wong WH, Lau YL. Population differences in SLE susceptibility genes: STAT4 and BLK, but not PXK, are associated with systemic lupus erythematosus in Hong Kong Chinese. Genes Immun. 2009, 10(3): 219-226.
Youinou P, Mackenzie L, Katsikis P, Merdrignac G, Isenberg DA, Tuaillon N, Lamour A, Le Goff P, Jouquan J, Drogou A, et al. The relationship between CD5-expressing B lymphocytes and serologic abnormalities in rheumatoid arthritis patients and their relatives. Arthritis Rheum. 1990, 33(3): 339-348.
Yu D, Rao S, Tsai LM, Lee SK, He Y, Sutcliffe EL, Srivastava M, Linterman M, Zheng L, Simpson N, Ellyard JI, Parish IA, Ma CS, Li QJ, Parish CR, Mackay CR, Vinuesa CG. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 2009, 31(3): 457-468.
Yuasa T, Kubo S, Yoshino T, Ujike A, Matsumura K, Ono M, Ravetch JV, Takai T. Deletion of Fcγ receptor IIB renders H-2(b) mice susceptible to collagen-induced arthritis. J. Exp. Med. 1999, 189(1): 187-194.
Zhang Y, Liu S, Liu J, Zhang T, Shen Q, Yu Y, Cao X. Immune complex/Ig negatively regulate TLR4-triggered inflammatory response in macrophages through FcγRIIb-dependent PGE2 production. J. Immunol. 2009, 182(1): 554-562.
Zotos D, Coquet JM, Zhang Y, Light A, D'Costa K, Kallies A, Corcoran LM, Godfrey DI, Toellner KM, Smyth MJ, Nutt SL, Tarlinton DM. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J. Exp. Med. 2010, 207(2): 365-378.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4447-
dc.description.abstract後天免疫系統包含體液性和細胞性兩種,主要由淋巴球負責。體液性免疫最重要的目的在產生具抗原專一性的高親和性抗體。而抗體的製造則必須透過脾臟和淋巴結的生發中心(germinal center)對B細胞進行挑選和使之分化成漿細胞,專司抗體分泌的漿細胞則經由血流定居骨髓。在疫苗反應時,生發中心B細胞須經歷體細胞高突變(somatic hypermutation)、親和力成熟(affinity maturation)和免疫球蛋白轉換(class switching)。B細胞抗原受器(B-cell antigen receptor, BCR)在體細胞高突變反應後,使生發中心B細胞對抗原具有各式不同親和力,接著抗原針對這些B細胞進行抗原親和力成熟反應,最重要的作用是去除低抗原親和性的生發中心B細胞,以確保產生高效價的高抗原親和性抗體。FcγRIIB是B細胞上抑制BCR最重要的受器,負責調節體內抗體製造量。此外,它也能夠單獨活化使B細胞凋亡。由於研究指出生發中心B細胞的FcγRIIB表現在疫苗反應會上升,而FcγRIIB基因剔除鼠脾臟的生發中心會自發性地增加和變大,導致自體免疫抗體產生,終致紅斑性狼瘡。因此,我們推論FcγRIIB在生發中心進行親和力成熟反應時,可能扮演促使低抗原親和性生發中心B細胞凋亡的角色。我們採用功能低下的人類FcγRIIB-T232基因多型性突變鼠來研究這個問題。FcγRIIB-I232T突變是FcγRIIB的第232個胺基酸位置由蘇胺酸(threonine)取代原本的異白胺酸(isoleucine),這種多型性變異在亞洲人紅斑性狼瘡佔高比例。我們採用4-hydroxy-3-nitrophenylacetyl (NP) hapten-chicken gamma globulin (CGG)做為疫苗原來探討FcγRIIB-T232突變鼠是否比正常鼠殘留較多的低抗原親和性生發中心B細胞?結果顯示在單次疫苗接種時,FcγRIIB-T232突變鼠血液中的低抗原親和性B細胞和漿細胞的數量均增加和伴隨著血清中低抗原親和性抗體的增加。當再次疫苗接種,FcγRIIB-T232突變鼠脾臟和骨髓中分泌低抗原親和性IgG的B細胞和低抗原親和性抗體均顯著增加。脾臟生發中心在FcγRIIB-T232突變鼠也是變大和B細胞數量增加,尤以位在執行親和力成熟的亮區(light zone)最顯著。此外,我們更發現FcγRIIB-T232突變鼠的低抗原親和性B細胞和抗體的增加確實是因為亮區的低抗原親和性生發中心B細胞的細胞凋亡(apoptosis)減少,未能被清除所致。有趣的是,FcγRIIB-T232突變鼠的低抗原親和性抗體對於同源類似抗原NIP (4-hydroxy-3-iodo-5-nitrophenylacetyl)的交互反應性(cross-reactivity)亦比正常鼠增加。總結來說,本研究提供多項證據顯示FcγRIIB在生發中心進行親和力成熟反應時,扮演積極去除低抗原親和性B細胞的關鍵角色。在臨床應用上,則建議在疫苗接種時,應可藉由調控FcγRIIB的表達使產生的抗體對同源相近的病原菌具有交叉中和的保護效果。zh_TW
dc.description.abstractGerminal center (GC) reaction, which undergoes somatic hypermutation, affinity maturation and class switching, is the hallmark of humoral immunity. One important function of it is to eliminate GC B cells that secrete low-affinity antibody (Ab) to the antigen (Ag) to ensure successful generation of effective neutralizing Abs through affinity maturation. FcγRIIB, a critical inhibitory Fcγ receptor (FcγR) that can mediate apoptosis in B cells, has been found to up-regulate on the GC B cells. Interestingly FcγRIIB-deficient mice spontaneously develop lupus accompanied by retention of somatic mutated BCRs as well as increased number and increased size of GCs in the spleen, indicative of a failure in negative selection of GC B cells. Moreover, people carrying a functionally impaired variant of FcγRIIB, of which isoleucine at position 232 was replaced by threonine, are susceptible to lupus particularly in Asians. Here, we generated FcγRIIB-T232 mutant mice to investigate the functional role of FcγRIIB in GC reaction. We hypothesized that to some extent the GC phenotype of FcγRIIB-T232 mice should recapitulate that of FcγRIIB knockout mice after immunization. To address this, we immunized FcγRIIB-I232 (wild-type) and FcγRIIB-T232 mice respectively with 4-hydroxy-3-nitrophenylacetyl (NP) hapten-chicken gamma globulin (CGG), a model Ag that allows distinction of low vs. high affinity Ag-specific B cells. Indeed, we found an increase of low-affinity NP-specific IgG-expressing B cells and plasma cells in circulation and a concomitant increase of serum Abs in FcγRIIB-T232 mice than those of FcγRIIB-I232 mice after primary immunization. After secondary immunization, we detected a significant increase of NP-specific B cells and plasma cells in the blood, spleen and bone marrow of FcγRIIB-T232 mice compared to that of FcγRIIB-I232 mice, accompanying an accumulation of low-affinity NP-specific IgG-secreting B cells in the spleen and bone marrow of FcγRIIB-T232 mice. Furthermore, FcγRIIB-T232 mice increased the formation of low-affinity NP-specific IgG in the circulation. Consistent with these findings, the spleen of FcγRIIB-T232 mice displayed an increased size of the GC of lymphoid follicles and had a concomitant increase of the number of GC B cells, especially the light zone GC B cells. Moreover, a decrease of apoptosis of GC B cells in the light zone of FcγRIIB-T232 mice correlated with their increased levels of low-affinity NP-specific B cells and Abs, supporting an active and essential role of FcγRIIB in GC reaction. Finally, we also found that the increased low-affinity antibodies in FcγRIIB-T232 mice resulted in the increase of cross-reactive antibodies. Taken together, these results support the notion that FcγRIIB plays an important role in negative selection of GC B cells. In addition, FcγRIIB may be considered as an ideal target for immunomodulation if the expression level of FcγRIIB on GC B cells holds the key to determine the stringency of Ab affinity as well as Ab repertoire to be generated during vaccination.en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:42:19Z (GMT). No. of bitstreams: 1
ntu-104-R02443015-1.pdf: 6559410 bytes, checksum: c2d625ce4ea395c80476051ec743333e (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書………………………………………………………i
誌謝………………………………………………………………………ii
中文摘要………………………………………………………………iii
ABSTRACT…………………………………………………………………v
CONTENTS………………………………………………………………vii
LIST of FIGURES…………………………………………………………x
LIST of TABLES…………………………………………………………xi
LIST of ABBREVIATIONS………………………………………………xii

Chapter 1 Introduction………………………………………………1
1.1 Fcγ receptors……………………………………………2
1.2 Fcγ receptor IIB (FcγRIIB)……………………………5
1.3 FcγRIIB triggers inhibitory signaling pathways to block B-cell function……………………………………6
1.4 Functions of FcγRIIB in innate immunity…………8
1.5 FcγRIIB and autoimmunity………………………………9
1.6 Polymorphisms of FCGR2B…………………………………11
1.6.1 Mouse fcgr2b polymorphisms……………………………11
1.6.1.1 Polymorphisms in the promoter and intron……………11
1.6.1.2 Polymorphisms in the coding region……………………12
1.6.2 Human FCGR2B polymorphisms………………………………12
1.6.2.1 Polymorphisms in the promoter…………………………12
1.6.2.2 Polymorphisms in the coding region……………………13
1.7 Germinal centers (GCs)…………………………………14
1.7.1 Somatic hypermutation (SHM)……………………………16
1.7.2 Affinity maturation………………………………………17
1.8 Motivation…………………………………………………20
Chapter 2 Materials and Methods…………………………………25
2.1 Mice……………………………………………………………26
2.2 Immunization………………………………………………27
2.2.1 Primary immunization……………………………………27
2.2.2 Secondary immunization…………………………………27
2.3 Flow cytometry to analyze cell populations in the blood, spleen, and bone marrow…………………………………28
2.3.1 Blood………………………………………………………28
2.3.2 Spleen…………………………………………………………29
2.3.3 Bone marrow…………………………………………………30
2.4 ELISPOT assay (Enzyme-linked immunosorbent spot)……………………………………………31
2.5 Detection of serum total and antigen-specific antibodies by ELISA…………………33
2.5.1 Blood collection and serum separation………………33
2.5.2 Detection of serum total or antigen-specific IgG and IgM………………33
2.6 Detection of the cross-reactivity of low-affinity antigen-specific antibodies by sequential ELISA……………34
2.7 Tissue preparation…………………………………………37
2.7.1 Tissue fixation and paraffin block trimming………37
2.7.2 Dewaxing and rehydration…………………………………37
2.7.3 H E staining…………………………………………………37
2.7.4 Immunohistochemistry (IHC)……………………………38
2.8 Statistics…………………………………………………39
Chapter 3 Results……………………………………………………41
3.1 FcγRIIB-T232 mice exhibit more Ag-specific B cells and plasma cells in the spleen and bone marrow during GC reaction………………………………42
3.2 FcγRIIB-T232 mice produce more low-affinity Ag-specific IgG-secreting cells in the spleen and bone marrow during GC reaction……………………………44
3.3 FcγRIIB-T232 mice increase the generation of low-affinity Ag-specific IgG in the circulation during GC reaction……………………………………………46
3.4 A functionally impaired FcγRIIB increases the number of GC B cells with a concomitant increase of the size of GCs…………………………………………47
3.5 TFH cells do not contribute to the increase of low-affinity Ag-specific B cells and antibodies in FcγRIIB-T232 mice……………………………………………49
3.6 The increased low-affinity Ag-specific B cells and antibodies in FcγRIIB-T232 mice are caused by a decrease of apoptosis of GC B cells……………50
3.7 The increased low-affinity Ag-specific antibodies in FcγRIIB-T232 mice have an increased cross-reactivity to homologous antigen……………………………51
Chapter 4 Discussion………………………………………………………………55
4.1 Using FcγRIIB-T232 mice as a model to investigate the role of FcγRIIB in the negative selection during GC reaction……………………………………56
4.2 Does FcγRIIB-T232 have a haploinsufficient effect or a dominant-negative role in the negative regulation of GC B cells?………………………………61
4.3 Potential strategies to induce SLE in FcγRIIB-T232 mice……………62
4.4 Potential strategies to treat SLE carrying FcγRIIB-I232T polymorphism…………64
4.5 Peritoneal B-1a cells express high level of FcγRIIB and are highly associated with autoimmune diseases……………………………………………65
4.6 TFH cells involve in the affinity maturation of GC B cells……………………67
4.7 FcγRIIB-T232 on FDCs seems to have no effect on the ICs trapping………………68
4.8 The effect of co-ligation of FcγRIIB-T232 and BCR on the increase of low-affinity Ag-specific antibodies………………………………………………69
4.9 Additional genes or molecules that are related to morphological change of GCs and involved in the affinity maturation………………………………………70
4.10 Reassessing the strategies to detect cross-reactivity of low-affinity Ag-specific antibodies…………73
Figures…………………………………………………………………75
Tables…………………………………………………………………119
References……………………………………………………………125
Supplementary Figures………………………………………………139
dc.language.isoen
dc.subject疫苗接種zh_TW
dc.subjectFcγRIIBzh_TW
dc.subject基因多型性zh_TW
dc.subject生發中心zh_TW
dc.subject低親和性抗體zh_TW
dc.subject親和力成熟zh_TW
dc.subjectlow-affinity antibodyen
dc.subjectimmunizationen
dc.subjectaffinity maturationen
dc.subjectFcγRIIBen
dc.subjectFcγRIIB-I232T polymorphismen
dc.subjectgerminal centeren
dc.titleFcγRIIB功能缺損導致生發中心反應異常使低抗原親和性抗體增加之研究zh_TW
dc.titleA functionally impaired FcγRIIB variant contributes to aberrant accumulation of low-affinity antibody-secreting cells as a result of defective germinal center reactionen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江伯倫(Bor-Luen Chiang),林淑華(Shu-Wha Lin),陳基益(Ji-Yih Chen)
dc.subject.keywordFcγRIIB,基因多型性,生發中心,低親和性抗體,親和力成熟,疫苗接種,zh_TW
dc.subject.keywordFcγRIIB,FcγRIIB-I232T polymorphism,germinal center,low-affinity antibody,affinity maturation,immunization,en
dc.relation.page142
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-08-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf6.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved