請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44477完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡定平(Din-Ping Tsai) | |
| dc.contributor.author | Fu-Hao Chen | en |
| dc.contributor.author | 陳富豪 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:59:59Z | - |
| dc.date.available | 2014-08-03 | |
| dc.date.copyright | 2009-08-03 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-31 | |
| dc.identifier.citation | [1] http://metaphotonics.de/.
[2] http://www.nanoedu.ndhu.edu.tw/92forum/gmw.pdf. [3] http://www.zeiss.com. [4] 科儀新知. 29(6):8, 2005. [5] 李正中. 薄膜光學與鍍膜技術. 藝軒圖書出版社, 2006. [6] M.D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, SA Lyon, and S.Y. Chou. Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Applied Physics Letters, 84:5299, 2004. [7] Min. Bai. Insulator charging in electron beam lithography. PhD thesis. Thesis (Ph.D.)–Stanford University, 2004. [8] William L. Barnes, Alain Dereux, and Thomas W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424(6950):824–830, 2003. 10.1038/nature01937. [9] D. B¨auerle. Laser processing and chemistry. 2000. Springer. [10] G. Binnig, C. F. Quate, and Ch. Gerber. Atomic force microscope. Phys. Rev. Lett., 56(9):930–933, Mar 1986. [11] G.R. Brewer and JP Ballantyne. Electron-beam technology in microelectronic fabrication. Academic Pr, 1980. [12] David K. Cheng. Field and wave electromagnetics. Addison-Wesley Publishing Company, 2 edition, 1989. [13] BN Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. T¨unnermann. Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics A: Materials Science & Processing, 63(2):109–115, 1996. [14] John Crank. Free and moving boundary problems. Oxford University Press, 1984. [15] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff. Ex- traordinary optical transmission through sub-wavelength hole arrays. Nature, 391(6668):667–669, 1998. 10.1038/35570. [16] V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev. Sharp trapped-mode resonances in planar metamaterials with a broken struc- tural symmetry. Physical Review Letters, 99(14):147401, 2007. [17] D. J. Gravesteijn. Materials developments for write-once and erasable phase- change optical recording. Appl. Opt, (736), 1988. [18] M. Kuwahara, C. Mihalcea, N. Atoda, J. Tominaga, H. Fuji, and T. Kikukawa. Thermal lithography for 0.1 µm pattern fabrication. Microelectronic Engineer- ing, 61-62:415 – 421, 2002. [19] Masashi Kuwahara, Jianming LI, Christoph Mihalcea, Nobufumi Atoda, Junji Tominaga, and Lu Ping Shi. Thermal lithography for 100-nm dimensions using a nano-heat spot of a visible laser beam : instrumentation, measurement, and fabrication technology. Japanese Journal of Applied Physics. Pt. 2, Letters, 41(9):L1022–L1024, 20020915. [20] PT Leung, N. Do, L. Klees, WP Leung, F. Tong, L. Lam, W. Zapka, and A.C. Tam. Transmission studies of explosive vaporization of a transparent liquid film on an opaque solid surface induced by excimer-laser-pulsed irradiation. Journal of Applied Physics, 72:2256, 1992. [21] Chun-Ping Jen Lih-Hsin Chou and Ching-Chang Cliieiig. Application of simu- lation on the design of phase-change optical recording disks. IEEE Transactions on Magnetics, 34(2):414–416, 1998. [22] Chris Mack. Fundamental principles of optical lithography. John Wiley and Sons, Ltd., 2007. [23] Stefan A. Maier. Plasmonics: fundamentals and applications. Springer Sci- ence+Business Media LLC, 2007. [24] L. Mandel and E.Wolf. Optical coherence and quantum optics. Cambridge University Press, 1995. [25] J. Melngailis. Focused ion beam technology and applications. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 5:469, 1987. [26] A. Mendoza-Galvan and J. Gonzalez-Hernandez. Drude-like behavior of Ge: Sb: Te alloys in the infrared. Journal of Applied Physics, 87:760, 2000. [27] M. Miyamoto, A. Hirotsune, Y. Miyauchi, K. Ando, M. Terao, N. Tokusyuku, and R. Tamura. Analysis of mark-formation process for phase-change media. Selected Topics in Quantum Electronics, IEEE Journal, 4(5):826–831, Sep/Oct 1998. [28] Toshihisa Nonaka, Gentaro Ohbayashi, Yoshiharu Toriumi, Yuji Mori, and Hideki Hashimoto. Crystal structure of gete and ge2sb2te5 meta-stable phase. Thin Solid Films, 370(1-2):258 – 261, 2000. [29] Lukas Nonotny and Bert Hecht. Principles of nano-optics. Cambridge, 2006. [30] M. Necati Ozisik. Boundary value problems of heat conduction. Internetional Textbook Comapany, 1968. [31] M. Necati Ozisik. Heat conduction. John Wiley and Sons, 1980. [32] J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal. Mimicking surface plasmons with structured surfaces. Science, 305(5685):847–848, 2004. [33] C. Peng, L. Cheng, and M. Mansuripur. Experimental and theoretical inves- tigations of laser-induced crystallization and amorphization in phase-change optical recording media. Journal of Applied Physics, 82:4183–4191, November 1997. [34] Chubing Peng and Masud Mansuripur. Measurement of the thermal coefficients of rewritable phase-change optical recording media. Appl. Opt., 41(2):361–369, 2002. [35] E. Plum, VA Fedotov, AS Schwanecke, NI Zheludev, and Y. Chen. Giant optical gyrotropy due to electromagnetic coupling. Applied Physics Letters, 90:223113, 2007. [36] A. Potts, DM Bagnall, and NI Zheludev. A new model of geometric chirality for two-dimensional continuous media and planar meta-materials. Journal of Optics A Pure and Applied Optics, 6(2):193–203, 2004. [37] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314(5801):977–980, 2006. [38] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 305(5685):788–792, 2004. [39] R. Srinivasan and B. Braren. Ultraviolet laser ablation of organic polymers. Chemical Reviews, 89(6):1303–1316, 1989. [40] B. Tieke, M. Dekker, N. Pfeffer, R. Van Woudenberg, G.F. Zhou, and IPD Ubbens. High data-rate phase-change media for the digital video recording system. In SPIE proceedings series, pages 200–202. SPIE. [41] Jingsong Wei, Xinbing Jiao, Fuxin Gan, and Mufei Xiao. Laser pulse in- duced bumps in chalcogenide phase change films. Journal of Applied Physics, 103(12):124516, 2008. [42] Ewan M. Wright, Pramod K. Khulbe, and Masud Mansuripur. Dynamic theory of crystallization in ge2sb2.3te5 phase-change optical recording media. Appl. Opt., 39(35):6695–6701, 2000. [43] NI Zheludev, SL Prosvirnin, N. Papasimakis, and VA Fedotov. Lasing spaser. Nature Photonics, 2(6):351–354, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44477 | - |
| dc.description.abstract | 近幾年來,超穎材料研究發展得很快。然而,製作奈米級且反應
在可見光波段超穎材料非常的困難且昂貴。因此,我們發展高聚焦超 快雷射在相變化材料 (鍺銻碲合金)上寫下奈米結構之光熱奈米微影 術。高聚焦之雷射光斑可以將熱能侷限在很小的區域,並產生結晶化 或非晶化之過程。在實驗中,利用 AFM 來觀察相變化以及切割造成的 表面形貌及分析其生成原因,且得到最小線寬 97 nm。我們也以熱傳 導分析來研究相變化的過程以及區域,並以數值方法得出線寬和功率 的關係,當低功率時和實驗有相當好的擬合。另外,切割深度和切割 率和功率,寫線速度的關係及物理也有定性上的說明。在應用方面, 我們也製作了大小 500 奈米見方的卍字手性結構,線寬約為 100 奈 米。表示此方法有製作奈米級結構的能力,並且提供低成本和低複雜 度的優點。 | zh_TW |
| dc.description.abstract | In recent years, the research of metamaterials has developed quickly. However, the fabrication of metamaterials responding to visible light is still difficult and expensive. Therefore, the novel opto-thermal nanolithography is proposed. In this thesis, the
opto-thermal nanolithography of as-deposited Ge2Sb2Te5 (GST) film using tightly focused femto-second pulsed laser has been studied. A focused laser spot is utilized to generate a spatially confined hot area in a Ge2Sb2Te5 film, where heat induced amorphization or crystallization of Ge2Sb2Te5 would take place. Hence, two different phases are observed. In our experiment, the topography of direct-writing lines is investigated, and the minimum line width of 97 nm is achieved by this technique. Some charecteristics of topography are studied. We also study the phenomenon theoretically by solving the heat-conduction equation to deduce the temperature distribution and to account for amorphization and crystallization. Numerical results for the relation between the line width and the laser power are obtained. In application, a planar chiral metamaterial (gammadion shape) with a unit cell size of 500×500 nm2 is fabricated. It is demonstrated that the technique provides a low-cost nanofabrication for metamaterials. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:59:59Z (GMT). No. of bitstreams: 1 ntu-98-R96222027-1.pdf: 14390314 bytes, checksum: 954d9316e4222be9e3a4ae27355230aa (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 一 簡介
1 1.1 超穎材料(Metamaterials) . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 常見的奈米製程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.1 光學微影 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.2 電子束微影[7] . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.3 聚焦離子束微影 . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 相變化材料與光熱微影術 (Opto-Thermal Nanolithography) . . . . . . . . . . . . . . . . . . . . 12 1.3.1 相變化材料介紹 . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.2 光熱微影術 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 二 光熱作用之原理 17 2.1 多層膜材料中的熱傳導 . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.1 熱傳導方程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.2 邊界條件與初始條件 . . . . . . . . . . . . . . . . . . . . . . 19 2.2 熱源:高斯光束的高聚焦光場 . . . . . . . . . . . . . . . . . . . . 21 2.2.1 超快雷射高斯光束. . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 聚焦光場 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.3 高斯光束的聚焦電場 . . . . . . . . . . . . . . . . . . . . . . 26 I2.3 多層材料中的溫度分佈 . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.1 Green’s function 方法 . . . . . . . . . . . . . . . . . . . . . . 31 2.3.2 溫度場的解析解 . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4 結晶化和分晶化的判斷準則 . . . . . . . . . . . . . . . . . . . . . . 34 三 實驗架構和樣品製備 39 3.1 光熱微影術系統 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.1 實驗架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.2 儀器介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.1.3 樣品製備 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.1.4 實驗控制變因 . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2 控制流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2.1 圖案座標化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2.2 週期、陣列數目、縮放參數、和延遲時間 . . . . . . . . . . 54 3.2.3 對焦修正 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 四 實驗結果和討論 56 4.1 系統對雷射功率衰減之量測 . . . . . . . . . . . . . . . . . . . . . . 56 4.2 樣品反射率,穿透率以及等效吸收常數之量測 . . . . . . . . . . . 58 4.3 光熱微影之實驗結果 . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.3.1 鍺銻碲膜厚= 40 nm 實驗結果 . . . . . . . . . . . . . . . . 62 4.3.2 鍺銻碲膜厚= 30 nm 實驗結果. . . . . . . . . . . . . . . . . 67 4.3.3 鍺銻碲膜厚= 20 nm 實驗結果. . . . . . . . . . . . . . . . . 70 4.3.4 鍺銻碲膜厚= 10 nm 實驗結果. . . . . . . . . . . . . . . . . 73 4.3.5 鍺銻碲膜厚= 5 nm 實驗結果 . . . . . . . . . . . . . . . . . 76 II 4.3.6 最小線寬以及奈米結構 . . . . . . . . . . . . . . . . . . . . . 79 4.3.7 總結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 五 實驗數據分析 83 5.1 線寬和照度的關係. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2 切割深度(ablation depth) 和照度的關係 . . . . . . . . . . . . . . . 89 5.3 切割率(ablation rate) 和脈衝數的關係 . . . . . . . . . . . . . . . . 92 5.4 總結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 六 總結與未來工作 96 參考文獻 97 A 程式碼 104 | |
| dc.language.iso | zh-TW | |
| dc.subject | 熱光阻 | zh_TW |
| dc.subject | 超快雷射 | zh_TW |
| dc.subject | 鍺銻碲 | zh_TW |
| dc.subject | 相變化 | zh_TW |
| dc.subject | 光熱微影術 | zh_TW |
| dc.subject | 表面電漿 | zh_TW |
| dc.subject | 超穎材料 | zh_TW |
| dc.subject | surface plasmon | en |
| dc.subject | thermal resist | en |
| dc.subject | ultrafast laser | en |
| dc.subject | Ge2Sb2Te5 | en |
| dc.subject | phase change | en |
| dc.subject | metamaterial | en |
| dc.subject | opto-thermal nanolithography | en |
| dc.title | 應用光熱效應之相變化奈米微影製程 | zh_TW |
| dc.title | Phase-Change Fabrication for Opto-Thermal Nanolithography | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 梁培德(Pui-Tak Leung),周趙遠鳳(Yuan-Fong Chau) | |
| dc.subject.keyword | 超穎材料,表面電漿,光熱微影術,相變化,鍺銻碲,超快雷射,熱光阻, | zh_TW |
| dc.subject.keyword | metamaterial,surface plasmon,opto-thermal nanolithography,phase change,Ge2Sb2Te5,ultrafast laser,thermal resist, | en |
| dc.relation.page | 104 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-31 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 14.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
