請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44472完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳世銘 | |
| dc.contributor.author | Jou-Ching Li | en |
| dc.contributor.author | 李柔靜 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:59:41Z | - |
| dc.date.available | 2014-08-03 | |
| dc.date.copyright | 2009-08-03 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-31 | |
| dc.identifier.citation | 行政院農業委員會農糧署。2007。台灣地區蔬菜生產概況。台北:行政院農委會。網址:http://www.afa.gov.tw/。上網日期:2008-09-15。
呂宏志。2005。溫室多功能監測系統之開發-苗床植株遙測與環境因子量測。碩士論文。台北:臺灣大學生物產業機電工程學研究所。 李芳繁、王智立。1999。採摘柑橘果實機器手臂之研製。農業機械學刊8(3): 1-8。 李柔靜。2007。於溫室環境下多光譜影像校正系統效能提升之研究。學士專題。台北:國立台灣大學生物產業機電工程學系。 沈俊宏。2006。Automatic Focus and White Balance for Digital Cameras。碩士論文。台北:國立台灣大學電信工程學研究所。 邱贊生。2001。數位相機之自動白平衡。碩士論文。台北:國立台灣大學資訊工程學研究所。 張文龍。2007。自主移動機器人之人機互動控制的設計與實現。碩士論文。桃園:中原大學機械工程學研究所。 張晉倫。2006。應用溫室多功能監測系統於甘藍種苗生長性狀判別之研究。碩士論文。台北:國立台灣大學生物產業機電工程學研究所。 黃祿倭。2008。立體視覺於視訊人體偵測之應用。碩士論文。台中:國立中興大學電機工程學研究所。 楊清富、李芳繁。1994。應用機器視覺進行番茄顏色分級之研究。農業機械學刊 3(1): 15-29。 廖育盛。2008。以對應點為基礎應用立體視覺之自動停車系統。碩士論文。台北:國立台北科技大學車輛工程研究所。 熊元愷。2005。應用電腦立體視覺建立虛擬實境地理資訊系統。碩士論文。台北:國立台灣大學生物產業機電工程學研究所。 蔡尚光。1993。水耕番茄的秘密。初版,15-20。台北 : 淑馨。 韓錦絲。2007。番茄果實特性之全互交分析。碩士論文。嘉義:國立嘉義大學農學研究所。 Arima, S., N. Kondo, and M. Monta. 2004. Strawberry harvesting robot on table-top culture. ASAE Paper No. 043087. Canada, Ontario: ASAE. Barnard, K., L. Martin, A. Coath, and B. Funt. 2002. A comparison of computational color constancy algorithms- Part II: Experiments with image data. IEEE Transactions on Image Processing. 11: 985-996. Barnard, S. T. and M. A. Fischler. 1982. Computational stereo. ACM Computing Surveys. 14: 553-572. Bulanon, D. M., T. Kataoka, Y. Ota, and T. Hiroma. 2002. A segmentation algorithm for the automatic recognition of fuji apples at harvest. Biosystem Engineering. 83(4):405-412. Bulanon, D., T. Kataoka, H. Okamoto, and S. Hata. 2004. Determining the 3-D location of the apple fruit during harvest. ASAE Paper No. 701P1004. Japan, Kyoto: ASAE. Bulanon, D., T. Kataoka, H. Okamoto, S. Hata, and F. Tampa. 2005. Feedback control of manipulator using machine vision for robotic apple harvesting. ASAE Paper No. 053114. U.S, Florida: ASAE. Brown, M. Z., D. Burschka, and G. D. Hager. 2003. Advances in computational stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence. 25(8): 993-1008. Chiang, J. 1999. Gray World Assumption. Vision, Imaging Science and Technology Activities lab. California: USA. Available at: scien.stanford.edu/class/psych221. Accessed 23 July 2008. Dhond, U. R. and J. K. Aggarwal. 1989. Structure from stereo- a review. IEEE Transactions on Systems, Man and Cybernetics. 19: 1489-1510. Durg, A. V. and O. Rashkovskiy. 2000. Global white point detection and white balance for color image. U. S. Patent No. 6069972. Gejima, Y., H. Zhang., and M. Nagata. 2003. Judgment on level of maturity for tomato quality using L*a*b* color image processing. IEEE Advanced Intelligent Mechatronics. 2: 1355-1359. Gonzalez, R. C., and R. E. Woods. 1992. Digital Image Processing. New York: Addison-Wesley. Hannan, M. and T. Burks. 2004. Current developments in automated citrus harvesting. ASAE Paper No. 043087. Canada, Ontario: ASAE. Hannan, M., T. Burks, and D. Bulanon. 2007. A real-time machine vision algorithm for robotic citrus harvesting. ASABE Papre No. 073125. U.S., Minnesota: ASABE. Haruki, T. and K. Kikuchi. 1992. Video camera system using fuzzy logic. Transactions on Consumer Electronics. 38(3): 624-634. Henten, E. J. V., B. A. J. Van Tuijl, J. Hemming, J. G. Kornet, J. Bontsema, and E. A. Van. 2003. Field test of an autonomous cucumber picking robot. Biosystems Engineering. 86(3): 305-313. Fisher, R. S. Perkins, A. Walker, and E. Wolfart. 2003. Sobel Edge Detector. Image Processing Learning Resources. Chichester: UK: Image Processing Learning Resources. Available at: www.homepages.inf.ed.ac.uk/rbf/HIPR2. Accessed 15 June 2008. Jimenez, A., R. Ceres, and J. Pons. 2000. A survey of computer vision methods for locating fruit on trees. Transactions of the ASAE 43(6): 1911-1920. Jiang, H., Y. Peng, G. Student, and Y. Ying. 2008. Measurement of 3-D locations of ripe tomato by binocular stereo vision for tomato harvesting. ASABE Papre No. 084880. U.S., Rhode Island: ASABE. Jung, Y. H., J. S. Kim, B. S. Hur, and M. G. Kang. 2000. Design of real-time image enhancement preprocessor for CMOS image sensor. IEEE Transactions on Consumer Electronics. 46: 68-75. Kise, M., Q. Zhang, and F. Rovira- Más. 2005. A stereovision-based crop row detection method for tractor-automated guidance. Biosystems Engineering. 90(4): 357-367. Kondo, N., K. Yamamoto, K. Yata, and M. Kurita. 2008. A machine vision for tomato cluster harvesting robot. ASABE Papre No. 084044. U.S., Rhode Island: ASABE. Kortstee, A. J., N. J. G. Appeldoorn, M. E. P. Oortwijn, and R. G. F. Visser. 2007. Differences in regulation of carbohydrate metabolism during early fruit development between domesticated tomato and two wild relatives. Planta 226(4): 929-939. Lee, D. J., J. D. Anderson, and J. K. Archibald. 2008. Hardware implementation of a spline-based genetic algorithm for embedded stereo vision sensor providing real-time visual guidance to the visually impaired. European Association for Speech, Signal and Image Processing. Paper No. 385827. Ling, P., R. Ehsani, K. Ting, Y. Chi, N. Ramalingam, M. Klingman, and C. Draper. 2004. Sensing and end-effector for a robotic tomato harvester. ASAE Paper No. 043088. Canada, Ontario: ASAE. Liu, Y. H. 2003. Analysis and classifier design and their applications in computer vision and data mining. PhD dissertation. Taipei, Taiwan: National Taiwan University, Department of Mechanical Engineering. Lopez, C. A. F. and P. A. Gomez. 2004. Comparison of color indexes for tomato ripening. Hortic Bras 22(3). Luong, Q. T. and O. D. Faugeras. 2004. The fundamental matrix: theory, algorithm, and stability analysis. International Journal of Computer Vision. 17: 43-75. Monta, M., K. Namba, and N. Kondo. 2004. Three Dimensional Sensing System Using Laser Scanner. ASAE Paper No. 041158. Canada, Ontario: ASAE. Nagata, M., J Tallada, F. Ishino, Y. Gejima, and S. Kai. 2004. Estimation of tomato ripening stages using three color models. Bulletin of the Faculty of Agriculture. 50: 65-71. Nakano, N., R. Nishimura, H. Sai, A. Nishizawa, and H. Komatsu. 1998. Digital stillcamera system for megapixel CCD. IEEE Transactions on Consumer Electronics. 44: 581-586. Park, S. Y. and M. Subbarao. 2005. A multiview 3D modeling system based on stereo vision techniques. Machine Vision and Applications. 16: 148-156. Rovira-Más, F. and J. F. Reid. 2004. 3D density and density maps for stereo vision- based navigation. ASAE Paper No. 701P1004. Japan, MI: ASAE. Rovira-Más, F. S. Han., J. Wei, and J. F. Reid. 2007. Autonomous guidance of a corn harvester using stereo vision. Agricultural Engineering International. 13(4): 1-13. Szeliski, R. and D. Scharstein. 2004. Sampling the disparity space image. IEEE Transactions on Pattern Analysis and Machine Intelligence. 26(3): 419-425. Tsai, R. 1987. A versatile camera calibration techniaue for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE robotics and automation. 3(4): 323-344. Von, K. J. 1970. Chromatic adaptation. Sources of Color Science. 1(1): 109-119. Zabih, R. and J. Woodfill. 1994. Non-parametric local transforms for computing visual correspondence. Computer Vision. 150-158. Zhang, Z. 2004. Camera calibration with one-dimentional objects. IEEE Transactions on Pattern Analysis and Machine Intelligence. 26(7): 892- 899. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44472 | - |
| dc.description.abstract | 目前台灣農業逐漸在轉型,將機器人應用到生物產業上是一主要趨勢。本論文為研究番茄採收機械視覺系統,並搭配宜蘭大學生機系所開發的爪具控制裝置,共同開發適用於設施內果蔬無人化採收之機器人系統。本研究針對溫室內之番茄進行視覺系統的建立,視覺系統包含三部分,影像擷取、影像處理與分析、雙眼立體視覺計算深度資訊。第一部份影像擷取方面,利用影像擷取控制流程獲得良好品質之影像,並且經過白平衡轉換將原有色偏影像做校正。研究結果在不同光環境或光源變化的情況下,皆可獲得曝光適度的影像;另一方面,對數型迴歸白平衡演算法可用於即時應用之色彩校正。經由以上自動曝光與白平衡轉換的結合,系統的影像擷取部分可即時在3~5秒內獲得良好品質之影像。第二部分進行影像處理與分析,程式搭配色調Hue色層將番茄分級,再搜尋各顆番茄位置與外部特徵二維座標,計算出番茄的蒂頭、中心、底部等資訊。另外若番茄有重疊狀況,程式亦可利用影像處理的方式求得各番茄的中心,解決番茄重疊造成的影像處裡問題。第三部分為雙眼立體視覺系統,使用單支攝影機搭配移動平台,進行雙眼視覺的建立,以降低開發成本。而立體視覺獲取番茄各特徵點之實際三維空間座標,可供採摘爪具及行走載具的路徑規劃。結果顯示雙眼視覺在60 cm~ 80 cm的工作範圍下,XY座標最大誤差為7.63 mm,第三維深度距離判斷也有良好的表現,與實際距離誤差小於4.4 mm。進一步將影像整合機器手臂作整合試驗,70 cm的工作距離下,採摘正確率可高達93.3%。因此綜合以上,本研究結果能成功擷取良好影像,並獲得番茄的外部特徵三維座標位置,達成本研究番茄採收機械視覺系統的研究目的。 | zh_TW |
| dc.description.abstract | In recent years, the agriculture of Taiwan was gradually in the process of reforming. The use of robots in agriculture industry has been regarded as an important trend. This study is aimed to develop a machine vision system for robotic fruit harvesting. This study will be integrated with the claw device controller, which has been built by I-Lan University, to develop a fruit harvesting robot in greenhouse. The research aims to construct a machine vision system for tomato picking using a robot in greenhouses. The system is composed of three parts, which are image grabbing, image processing, and dual camera stereo system. In the first part, the system used image grabbing control process to get a good exposure image, and conducted white balance adjustment. The results showed that no matter how the light condition was changed, the developed algorithm was able to obtain a good image. In the other hand, the log-regression-white-balance method could be used in real time situations. After the automatic exposure processing combined with white balance treatment, the image grabbing control process was able to obtain the good quality image in real time within 3~5 seconds. The system performs image processing and analysis in the second part. The program utilized hue index from HIS color system to do tomato grading, then searched the tomato position individually and the external characteristics on two-dimensional coordinates. It also calculated the information of pedicle, center, and bottom on the tomato. In addition, the program could also make use of image processing methods to achieve the center of the tomato if the situation of overlapping tomatoes occurred. The third part is dual camera stereo system. We used a single camera with a mobile platform for the establishment of binocular visionto reduce costs. The stereo vision system obtained actual three-dimensional position of each tomato feature for the claw path planning. Within the work range of 60~80 cm, the results showed the errorwas less than 7.63 mm in X and Y axes. In addition, the depth of the third dimension also had good performance and the error compared to the actual distance was 4.4 mm at most. Furthermore, the integration tests of the machine arm and the image system were done under a distance of 70 cm. The picking accurate rate was as high as 93.3%. In summary, the results of this study could successfully capture good images and calculate tomato’s three-dimensional coordinates of the external characteristics. Therefore, the machine vision system met the purpose of this study toward developing a tomato harvesting robot. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:59:41Z (GMT). No. of bitstreams: 1 ntu-98-R96631015-1.pdf: 3817995 bytes, checksum: 9de74cd9864c204a45f103451975151b (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 誌 謝 i
摘 要 ii Abstract iii 目 錄 iv 圖目錄 vii 表目錄 xi 第一章 前言與研究目的 1 1. 1 前言 1 1. 2 研究目的 2 第二章 文獻探討 3 2. 1 作物採收機器人系統 3 2. 2 番茄基礎生理 8 2. 2. 1 番茄的發展 8 2. 2. 2 番茄果實成熟性狀 9 2. 3 影像擷取系統 10 2. 3. 1 自動曝光 10 2. 3. 2 白平衡 13 2. 3. 2. 1 白平衡轉換 13 2. 3. 2. 2 白平衡演算法 15 2. 4 影像處理 19 2. 4. 1 色彩座標模型 19 2. 4. 2 影像番茄成熟度分級 21 2. 4. 3 影像標籤化 24 2. 4. 4 影像膨脹與侵蝕 25 2. 4. 5 邊緣特徵萃取 26 2. 5 立體視覺系統 28 2. 5. 1 攝影機成像座標系統 28 2. 5. 2 雙眼立體視覺系統 29 2. 5. 3 攝影機校正 31 2. 5. 4 影像關聯對應 34 2. 5. 5 雙眼視覺應用於採收機器人 35 第三章 材料與方法 37 3. 1 實驗材料 37 3. 2 儀器架設 44 3. 3 實驗方法 44 3. 3. 1 系統流程 45 3. 3. 2 影像擷取 46 3. 3. 2. 1 自動曝光 46 3. 3. 2. 2 白平衡 50 3. 3. 3 影像分析 51 3. 3. 3. 1 色彩座標轉換 51 3. 3. 3. 2 影像目標物邊緣 51 3. 3. 3. 3 番茄外部特徵 53 3. 3. 4 空間座標定位 57 3. 4 實驗設計 59 3. 4. 1 番茄模型影像分析 59 3. 4. 2 立體視覺試驗 60 3. 4. 3 採摘系統整合 61 第四章 結果與討論 64 4. 1 影像擷取 64 4. 1. 1 自動曝光 64 4. 1. 2 白平衡 65 4. 2 番茄模型影像分析 69 4. 2. 1 影像背景分離 69 4. 2. 2 番茄外部特徵 70 4. 3 實驗結果 75 4. 3. 1 番茄模型影像分析 75 4. 3. 2 立體視覺計算空間座標 82 4. 3. 3 球面像差影像扭曲校正分析 89 4. 3. 4 採摘系統整合 91 第五章 結論與建議 93 5. 1 結論 93 5. 2 建議 95 參考文獻 96 附錄 100 附錄A 光環境區域自動曝光演算法 100 附錄B 立體視覺系統計算空間中實際座標結果 102 | |
| dc.language.iso | zh-TW | |
| dc.subject | 立體視覺 | zh_TW |
| dc.subject | 採收機器 | zh_TW |
| dc.subject | 機器視覺 | zh_TW |
| dc.subject | 影像處理 | zh_TW |
| dc.subject | Harvesting Robot | en |
| dc.subject | Machine Vision | en |
| dc.subject | Stereo Vision | en |
| dc.subject | Image Processing | en |
| dc.title | 番茄採收機械視覺系統之研究 | zh_TW |
| dc.title | Study on Machine Vision System for Tomato Picking Robot | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 萬一怒,邱奕志,謝廣文,廖國基 | |
| dc.subject.keyword | 採收機器,機器視覺,影像處理,立體視覺, | zh_TW |
| dc.subject.keyword | Harvesting Robot,Machine Vision,Image Processing,Stereo Vision, | en |
| dc.relation.page | 111 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-31 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 3.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
