請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44443完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王重雄(Chung-Hsiung Wang) | |
| dc.contributor.author | Shih-Chia Yeh | en |
| dc.contributor.author | 葉斯佳 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:57:55Z | - |
| dc.date.available | 2019-04-08 | |
| dc.date.copyright | 2009-08-06 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-31 | |
| dc.identifier.citation | Ahrens, C. H., R. L. Russell, C. J. Funk, J. T. Evans, S. H. Harwood, and G. F. Rohrman. 1997. The sequence of the Orgyia pseudotsugata multinucleocapsid nuclear polyhedrosis virus genome. Virology 229: 381-399.
Amarzguioui, M. 2004. Improved siRNA-mediated silencing in refractory adherent cell lines by detachment and transfection in suspension. BioTechniques 36: 766-770. Appel, R. D., A. Bairoch, and D. F. Hochstrasser. 1994. A new generation of information retrieval tools for biologists: The example of the ExPASy WWW server. Trends Biochem. Sci. 19: 258-260. Au, V., M. Yu, and E. B. Carstens. 2009. Characterization of a baculovirus nuclear localization signal domain in the late expression factor 3 protein. Virology 385: 209-217. AVRDC, 2005. AVRDC Annual Report 2004. Asian Vegetable Research and Development Center, Shanhua, Tainan, Taiwan. Barrion, A. T., C. G. Bandong, D. L. Cruz, R. F. Aposts, and J. A. Litsinger. 1987. Natural enemies of the bean pod borer Maruca vitrata in the Philippines. Trop. Grain Legume Bull. 34: 21-22. Bischoff, D., and J. M. Slavicek. 1994. Identification and characterization of a protein kinase gene in the Lymantria dispar multinucleocapsid nuclear polyhedrosis virus. J. Virol. 68: 1728-1736. Blissard, G. W., and G. F. Rohrmann. 1989. Location, sequence, transcriptional mapping, and temporal expression of the gp64 envelope glycoprotein gene of the Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus. Virology 170: 537-555. Blissard, G. W., and J. R. Wenz. 1992. Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. J. Virol. 66: 6829-6835. Booker, R. H. 1963. Notes on the pest complex of cowpea in Northern Nigeria. pp. 9-12. Proc. Ist. Nigerian Grain Legume Conf., Inst. Agri. Res., Samaru, Zaria, Nigeria. Braunagel, S. C., D. M. Elton, H. Ma, and M. D. Summers. 1996a. Identification and analysis of an Autographa californica nuclear polyhedrosis virus structural protein of the occlusion-derived virus envelope: ODV-E56. Virology 217: 97-110. Braunagel, S. C., H. He, P. Ramamurthy, and M. D. Summers. 1996b. Transcription, translation, and cellular localization of three Autographa californica nuclear polyhedrosis virus structural proteins ODV-E18, ODV-E35, and ODV-EC27. Virology 222: 100-114. Bulach, D. M., C. A. Kumar, A. Zaia, B. F. Liang, and D. E. Tribe. 1999. Group II nucleopolyhedrovirus subgroups revealed by phylogeneic analysis of polyhedrin and DNA polymerase gene sequences. J. Invertebr. Pathol. 73: 59-73. Burchell, J., H. Durbin, and J. Taylor-Papadimitriou. 1983. Complexity of expression of antigenic determinants, recognized by monoclonal antibodies HMFG-1 and HMFG-2, in normal and malignant human mammary epithelial cells. J. Immunol. 131: 508-513. Burchell, J., S. Gendler, J. Taylor-Papadimitriou, A. Girling, A. Lewis, R. Millis, and D. Lamport. 1987. Development and characterization of breast cancer reactive monoclonal antibodies directed to the core protein of the human milk mucin. Cancer Res. 47: 5476-5482. Chang, S. H., H. L. Sun, and Z. H. Li. 1998. Effect of temperature oscillation on isect cell growth and baculovirus replication. Appl. Environ. Microbiol. 64: 2237-2239. Chang, T. C., and C. C. Chen. 1989. Observation of three lepidopterous pests attacking leguminous vegetables in Taiwan. Bull. Taichung District Agri. Impr. Stat. 24: 21-29 (in Chinese). Cheley, S., K. S. Kosik, P. Paskevich, S. Bakalis, and H. Bayley. 1992. Phosphorylated baculovirus p10 is a heat-stable microtubule-associated protein associated with process formation in Sf9 cells. J. Cell. Sci. 102: 739-752. Chen, X., Z. Hu, J. A. Jehle, Y. Zhang, and J. M. Vlak. 1997. Analysis of the ecdysteroid UDP-glucosyltransferase gene of Heliothis armigera single-nucleocapsid baculovirus. Virus Genes 15: 219-225. Chen, Y. R. 2008. Genomic study and BEVS construction of Maruca vitrata multiple nucleopolyhedrovirus, MaviMNPV. Doctoral Dissertation, Graduate Institute of Entomology, National Taiwan Univ. 68 pp (in Chinese). Chen, Y. R., C. Y. Wu, S. T. Lee, Y. J. Wu, C. F. Lo, M. F. Tsai, and C. H. Wang. 2008. Genomic and host range studies of Maruca vitrata nucleopolyhedrovirus. J. Gen. Virol. 89: 2315-2330. Chou, C. M., C. J. Huang, C. F. Lo, G. H. Kuo, and C. H. Wang. 1996. Characterization of Perina nuda nucleopolyhedrovirus (PenuNPV) polyhedrin gene. J. Invertebr. Pathol. 67: 259-266. Chong, Y., J. Yu, L. Wang, Z. Li, P. Zhang, and Y. Pang. 2003. Identification of a novel protein associated with envelope of occlusion-derived virus in Spodoptera litura multicapsid nucleopolyhedrovirus. Virus Genes 26: 5-13. Clemens, J. C., C. A. Worby, N. Simonson-Leff, M. Muda, T. Maehama, B. A. Hemmings, and J. E. Dixon. 2000. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci. U.S.A. 97: 6499-6503. Ellenberger, T. E., C. J. Brandl, K. Struhl, and S. C. Harrison. 1992. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α helices: crystal structure of the protein-DNA complex. Cell 71: 1223-1237. Fagerlund, R., K. Melen, L. Kinnunen, and I. Julkunen. 2002. Arginine/Lysine-rich nuclear localizaion signals mediate interactions between dimeric STATs and importin α5. J. Biol. Chem. 277: 30072-30078. Federici, B. A. 1997. Baculovirus Pathogenesis. pp. 33-57. In: L. K. Miller, ed. The Baculoviruses. Plenum Press, New York. Freshney, R. I. 2005a. Advantage of tissue culture. pp. 6-8. In: Culture of Animal Cells A Manual of Basic Technique (Fifth Edition). Wiley-Liss, New York. Freshney, R. I. 2005b. Characterization. pp. 247-280. In: Culture of Animal Cells A Manual of Basic Technique (Fifth Edition). Wiley-Liss, New York. Freshney, R. I. 2005c. Scale-up. pp. 451-465. In: Culture of Animal Cells A Manual of Basic Technique (Fifth Edition). Wiley-Liss, New York Funk, C. J., S. C. Braunagel, and G. F. Rohrmann. 1997. Baculovirus structure. pp. 7-32. In: L. K. Miller, ed. The Baculoviruses. Plenum Press, New York. Gelernter, W. D., and B. A. Federici. 1986. Continuous cell line from Spodoptera exigua (Lepidoptera: Noctuidae) that supports replication of nuclear polyhedrosis viruses from Spodoptera exigua and Autographa californica. J. Invertebr. Pathol. 48: 199-207. Goldschmidt, R. 1915. Some Experiments on Spermatogenesis in Vitro. Proc. Natl. Acad. Sci. USA 1: 220-222. Goodman, C. L., and A. H. Mcintosh. 1994. Production of baculovirus for insect control using cell culture. pp. 33-56. In: K. Maramorosch, and A. H. McIntosh, eds. Insect Cel Biotechnology. CRC Press, Boca Raton. Goodman, C. L., A. H. Mcintosh, G. N. E. Sayed, J. J. Grasela, and B. Stiles. 2001. Production of selected baculoviruses in newly established lepidopteran cell line. In Vitro Cell. Dev. Biol. Anim. 37: 374-379. Goodwin, R. H., F. J. Tropkins, and P. McCawley. 1978. Gypsy moth cell lines divergent in viral susceptibility. In Vitro 14: 485-494. Grace, T. D. C. 1962. Establishment of four strains of cells from insect tissues grown in vitro. Nature 195: 788-789. Groener, A. 1986. Specificity and safety of baculovirus. pp. 177-202. In: R. R. Granados, and B. A. Federici, eds. The Biology of Baculoviruses, Vol. I. Biological Properties and Molecular Biology. CRC Press, Boca Raton. Grula, M. A., P. L. Buller, and R. F. Weaver. 1981. a-amanitin-resistant viral RNA synthesis in nuclei isolated from nuclear polyhedrosis virus-infected Heliothis zea larvae and Spodoptera frugiperda cells. J. Virol. 38: 916-921. Hay, R. J. 2000. Cell line preservation and characterization. pp. 95-148. In: Masters, J. R. W. (ed.). Animal Cell Culture, A Practical Approach. IRL Press at Oxford University Press, U. K. Hefferon, K. L. 2004. Baculovirus late expression factors. J. Mol. Microbiol. Biotechnol. 7: 89-101. Herniou, E. A., J. A. Olszewski, J. S. Cory, and D. R. O’Reilly. 2003. The genome sequence and evolution of baculoviruses. Annu. Rev. Entomol. 48: 211-234. Hink, W. F. 1970. Established insect cell line from the cabbage looper, Trichoplusia ni. Nature 226: 466-467. Hink, W. F., and R. L. Hall. 1989. Recently established invertebrate cell lines. pp 269-293. In: Mitsuhashi J., ed. Invertebrate Cell System Applications. CRC Press, Boca Raton. Hong, T., S. C. Braunagel, and M. D. Summers. 1994. Transcription, translation, and cellular localization of PDV-E66: A structural protein of the PDV envelope of Autographa californica nuclear polyhedrosis virus. Virology 204: 210-222. Hu, Y., L. Rajan, and W. P. Schilling. 1994. Ca2+ signaling in Sf9 insect cells and the functional expression of a rat brain M5 muscarinic receptor. Am. J. Physiol. Cell Physiol. 266: 1736-1743. Huang, C. C., and W. K. Peng. 2001. Emergence, mating, and oviposition of the bean pod borer, Maruca vitrata (F.) (Lepidoptera: Pyralidae). Formosan Entomol. 23: 1-11. (in Chinese with English abstract). Huang, C. C., and W. K. Peng. 2002. Effect of temperatures on the development of legume pod borer, Maruca vitrata (Lepidoptera: Pyralidae) on Sesbania cannabina. Plant Prot. Bull. 44: 245-285. (in Chinese with English abstract). Huang, C. C., W. K. Peng, and N. S. Talekar. 2002. Larval population changes in the bean pod borer, Maruca vitrata (Lepidoptera: Pyralidae) on Sesbania cannabina on an AVRDC farm, Taiwan. Formosan Entomol. 22: 271-278. (in Chinese with English abstract) Huang, C. C., W. K. Peng, and N. S. Talekar. 2003. Parasitoids and other natural enemies of Maruca vitrata feeding on Sesbania cannabina in Taiwan. BioControl 48: 407-416. Inlow, D., A. Shauger, and B. Maiorella. 1989. Insect cell culture and baculovirus propagation in protein-free medium. J. Tissue Cult. Methods 12: 13-16. Jarvis, D. L., D. A. Bohlmeyer, and Jr. A. Garcia. 1991. Requirements for nuclear localization and supramolecular assembly of a baculovirus polyhedron protein. Virology 185: 795-810. Jeffreys, A. J., V. Wilson, and S. L. Thein. 1985. Individual-specific “fingerprints” of human DNA. Nautre 316: 76-79. Jehle, J. A., G. W. Blissard, B. C. Bonning, J. S. Cory, E. A. Herniou, G. F. Rohrmann, D. A. Theilmann, S. M. Thiem, and J. M. Vlak. 2006. On the classification and nomenclature of baculovirused: A proposal for revision. Arch. Virol. 151: 1257-1266. Kang, Y., K., T. Yoon, K. Lee, and H. J. Kim. 2003. Homo- or hetero-dimerization of muscarinic receptor subtypes is not mediated by direct protein-protein interaction through intracellular and extracellular regions. Arch. Pharm. Res. 26: 846-854. Katsuma, S., T. Fujii, S. Kawaoka, and T. Shimada. 2008. Bombyx mori nucleopolyhedrovirus SNF2 global transactivator homologue (Bm33) enhances viral pathogenicity in B. mori larvae. J. Gen. Virol. 89: 3039-3046. Knudson, D. L., and T. W. Tinsley. 1974. Replication of a nuclear polyhedrosis virus in a continuous cell culture of Spodoptera frugiperda: purification, assay of infectivity, and growth characteristics of the virus. J. Virol. 14: 934-944. Kogan, P. H., X. Chen, and G. W. Blissard. 1995. Overlapping TATA- dependent and TATA-independent early promoter activities in the baculovirus gp64 envelope fusion protein gene. J. Virol. 69: 1452-1461. Kool, M., and J. M. Vlak. 1993. The structural and functional organization of the Autographa californica nuclear polyhedrosis virus genome. Arch. Virol. 130. 1-16. Kozlov, E. A., N. M. Sidorova, and S. B. Serebryani. 1975. Proteolytic cleavage of polyhedral protein during dissolution of inclusion bodies of the nuclear polyhedrosis viruses of Bombyx mori and Galleria mellonella under alkaline condition. J. Invertebr. Pathol. 25: 97-101. Kretsovali, A., C. Spilianakis, A. Dimakopoulos, T. Makatounakis, and J. Papamatheakis. 2001. Self-association of class II transactivator correlates with its intracellular localization and transactivation. J. Biol. Chem. 276: 32191-32197. Kuchler, R. J. 1977. Development of animal cell populations in vitro. pp. 90-113. In: R. J. Kuchler, ed. Biochemical Methods in Cell Culture and Virology. Dowden, Hatehingon, and Ross, Inc. Press, Stroudsburg. Landschulz, W. H., P. F. Johnson, and S. L. McKnight. 1988. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 4860: 1759-1764. Lapointe, R., D. W. Back, Q. Ding, and E. B. Carstens. 2000. Identification and molecular characterization of the Choristoneura fumiferana multicapsid nucleopolyhedrovirus genomic region encoding the regulatory genes pkip, p47, lef-12, and gta. Virology 271: 109-121. Lane, E. B. 1982. Monoclonal antibodies provide specific intramolecular markers for the study of epithelial tonofilament organization. J. Cell Biol. 92: 665-673. Lauzon, H., C. J. Lu carotti, P. J. Krell, Q. Feng, A. Retnakaran, and B. M. Aeif. 2004. Sequence and organization of the Neodiprion lecontei nucleopolyhedrovirus genome. J. Virol. 78: 7023-7035. Lee, S. H., and R. F. Hou. 1992. Establishment of a cell line derived from embryos of the diamondback moth, Plutella xylostella (L.). J. Invertebr. Pathol. 59: 174-177. Lee. S. T., R. Srinivasan, Y. J. Wu, and N. S. Talekar. 2007. Occurrence and characterization of a nucleopolyhedrovirus from Maruca vitrata (Lepidoptera, Pyralidae) isolated in Taiwan. BioControl 52: 801-819. Li, L., Q. Li, L. G. Willis, M. Erlandson, D. A. Theilmann, and C. Donly. 2005. Complete comparative genomic analysis of two field isolates of Mamestra configurata nucleopolyhedrovirus-A. J. Gen Virol. 86: 91-105. Liao, C. T., and C. C. Chen. 1998. Distribution of Maruca testulalis Geyer (Lepidoptera: Pyralidae) eggs and larvae on Sesbania. Bull. Taichung DAIS 59: 47-52. Lin, H. F. 2008. Identification of insect cell lines and cell line cross-contamination (CLCC) by internal transcribed spacer region of ribosomal DNA. Master Thesis, Graduate Institute of Entomology, National Taiwan Univ. 67 pp. (in Chinese). Liu, C. Y., and J. S. Hwang. 2006. Rearing of the legume-pod borer (Maruca vitrata) on an improved semi-synthetic artificial diet. Plant Prot. Bull. 48: 9-16 (in Chinase). Livak, K. J., and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and 2(-Delta Delta C(T)) method. Methods 25: 402-408. Long, G., X. Chen, P. Dick, J. M. Vlak, and Z. Hu. 2003. Open reading frame 122 of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus encodes a novel structural protein of occlusion-derived virions. J. Gen. Virol. 84: 115-121. Lu, A., and L. K. Miller. 1996. Species-specific effects of the hcf-1 gene on baculovirus virulence. J. Virol. 70: 5123-5130. Lu, A., and L. K. Miller. 1997. Regulation of baculovirus late and very late gene expression. pp. 193-216. In: L. K. Miller, ed. The Baculoviruses. Plenum Press, New York. Lu, A., P. J. Krell, J. M. Vlak, and G. F. Rohrmann. 1997. Baculovirus DNA replication. pp. 193-216. In: L. K. Miller, ed. The Baculoviruses. Plenum Press, New York. Lynn, D. E. 1999. Comparison of cell line maintenance procedures on insect cells used for producing baculoviruses. In Vitro Cell. Dev. Biol. Anim. 35: 248-251. Lynn, D. E. 2001. Novel technoques to establish new insect cell lines. In Vitro Cell Dev. Biol-Animal 37: 319-321. Manchenko, F. P. 2003. pp. 285. In: Handbook of Detection of Enzymes on Electrophoretic Gels. CRC Press, London. McCarthy, W. J., and R. A. Dicapus. 1979. Characterization of solubilized proteins from tissue culture and host-derived nuclear polyhedra of Lymantria dispar and Autographa californica. Intervirology 11: 174-181. McIntosh, H. A., J. J. Grasela, and H. J. R. Popham. 2005. AcMNPV in permissive, semipermissive, and nonpermissive cell lines from arthropoda. In Vitro Cell. Dev. Biol-Animal 41: 298-304. Melen, K., L. Kinnunen, and I. Julkunen. 2001. Arginine/Lysine-rich structural element is involved in interferon-induced nuclear import of STATs. J. Biol. Chem. 276: 16447-16455. Miller. L. K. 1997. Introduction to the Baculoviruses. pp. 1-6. In: L. K. Miller, ed. The Baculoviruses. Plenum Press, New York. Moll, R., W. W. Franke, D. L. Schiller, B. Geiger, and R. Krepler. 1982. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31: 11-24. Monsma, S. A., and G. W. Blissard. 1995. Identification of a membrane fusion domain and an oligomerization domain in the baculovirus GP64 envelope fusion protein. J. Virol. 69: 2583-2595. Monsma, S. A., A. G. P. Oomens, and G. W. Blissard. 1996. The GP64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection. J. Virol. 70: 4607-4616. Moscardi, F. 1999. Assessment of the application of baculoviruses for control of Lepidoptera. Annu. Rev. Entomol. 44: 257-289. Okano, K., A. L. Vanarsdall, V. S. Mikhailov, and G. F. Rohrmann. 2006. Conserved molecular systems of the baculovirus. Virology 344: 77-87. Olson, V. A., J. A. Wetter, and P. D. Friesen. 2002. Baculovirus transregulator IE1 requires a dimeric nuclear localization element for nuclear import and promoter activation. J. Virol. 76: 9505-9515. Perera, O. P., S. M. Valles, T. B. Green, S. White, C. A. Strong, and J. J. Becnel. 2006. Molecular analysis of an occlusion body protein from Culex nigripalpus nucleopolyhedrovirus (CuniNPV). J. Invertebr. Pathol. 91: 35-42. Pullen, S. S., and P. D. Friesen. 1995. The CAGT motif functions as an initiator element during early transcription of the baculovirus transregulator ie-1. J. Virol. 69: 3575-3583. Quant-Russell, R. L., M. N. Pearson, G. F. Rohrmann, and G. S. Beaudreau. 1987. Characterization of baculovirus p10 synthesis using monoclonal antibodies. Virology 160: 9-19. Reed, L. J., and H. Muench. 1983. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27: 493-497. Rhiel, M., C. M. Mitchell-Logean, and D. W. Murharmmer. 1997. Comparison of Trichoplusia ni BTI-Tn-5B1-4 (High FiveTM) and Spodoptera frugiperda Sf-9 insect cell line metabolism in suspension cultures. Biotechnol. Bioeng. 55: 909- 920. Rothfels, K. H., and L. Siminovitch. 1958. An air-drying technique for flattening chromosomes in mammalian cells grown in vitro. Stain Technol. 33: 73-77. Rohrmann, G.. F. 1986. Polyhedrin structure. J. Gen. Virol. 67: 1499-1513. Rohrmann, G.. F. 1992. Baculovirus structural proteins. J. Gen. Virol. 73: 749-761. Rubinstein, R., and A. Polson. 1983. Midgut and viral associated proteases of Heliothis armigera. Intervirology 19: 16-25. Russell, R. L. Q., C. J. Funk, and G. F. Rohrmann. 1997. Association of a baculovirus encoded protein with the capsid basal region. Virology 227: 142-152. Russell, R. L. Q., and G. F. Rohrmann. 1990. A baculovirus polyhedron envelope protein: immunogold localization in infected cells and mature polyhedra. Virology 174: 177-184. Russell, R. L. Q., M. N. Pearson, and G. F. Rohrmann. 1991. Immunoelectron microscopic examination of Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus-infected Lymantria dispar cells: Time course and localization of major polyhedron-associaated proteins. J. Gen. Virol. 72: 275-283. Satoko, I., I. Motoko, and K. Michihiro. 2004. Association of Sf9 cell proliferating cell nuclear antigen with the DNA replication site of Autographa californica multicapsid nucleopolyhedrovirus. J. Gen. Virol. 85: 2857-2862. Scheper, G. C., R. G. J. Vries, M. Broere, M. Usmany, H. O. Voorma, J. M. Vlak, and A. A. M. Thomas. 1997. Translational properties of the untranslated regions of the p10 messenger RNA of Autographa californica multicapsid nucleopolyhedrovirus. J. Gen. Virol. 78: 687-696. Schmidt, O., and U. Moreth. 1999. Identification of the dry rot fungus, Serpula lacrymans, and the wild merulius, S. himantioides, by amplified ribosomal DNA restriction analysis (ARDRA). Holzforschung 53: 123-128. Singh, S.R., L.E.N. Jackai, J.H.R. dos Santos, and C.B. Adalla. 1990. Insect pests of cowpeas. pp. 43-89. In: S.R. Singh ed. Insect Pests of Tropical Food Legumes. John Wiley & Sons, New York. Slavicek, J. M., and J. M. Gabler. 2005. Production of LdNPV in cell culture bioreactor. Proceedings, 16th U.S. Department of Agriculture interagency research forum on gypsy moth and other invasive species. Shih, C. J., R. W. Lin, and C. H. Wang. 1997. Establishment of a cell line from Spodoptera litura (Lepidoptera: Noctuidae) and replication of S. litura nuclear polyhedrosis virus in vitro. J. Invertebr. Pathol. 69: 1-6. Stommel, J. M., N. D. Marchenko, G. S. Jimenez, U. M. Moll, T. J. Hope, and G. M. Wahi. 1999. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18: 1660-1672. Summers, M. D., and G. E. Smith. 1988. A manual of methods for baculovirus vectors and insect cell culture procedure. Tex. Agric. Exp. Station 1555: 57. Tabachnick, W. J., and D. L. Knudson. 1980. Characterization of invertebrate cell lines. II. Isozyme analysis electrophoresis. In Vitro 16: 392-398. Tanada, Y., R. T. Hess, and E. M. Omi. 1982. Unique virus morphogenesis and cytopathology of a baculovirus (hypertrophy strain) in larva of the armyworm. Pseudaletia unipuncta. J. Invertebr. Pathol. 40: 197-203. Tang, L. C. 2001. Maruca vitrata. pp. 24-25. In: Important pests in the vegetables. Taichung (in Chinese). Theilmann, D. A., G. W. Blissard, B. Bonning, J. A. Jehle, D. R. O’Reilly, G. F. Rohrmann, S. Thiem, and J. M. Valk. 2005. Family Baculoviridae. pp. 1129-1185. In: C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger, and L. A. Ball, eds. Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses. Springer, New York. Theilmann, D. A, J. K. Chantler, S. Stewart, H. T. M. Flipsen, J. M. Vlak, and N. E. Crook. 1996. Characterization of a highly conserved baculovirus structural protein that is specific for occlusion-derived virions. Virology 218: 148-158. Trager, W. 1935. Cultivation of the virus of grasserie in silkworm tissue cultures. J Exp. Med. 61: 501-514. Tweeten, K. A., L. A. Bulla, and R. A. Consigli. 1980. Characterization of an extremely basic protein derived from granulosis virus nucleocapsids. J. Virol. 33: 866-876. van Lent, J. W. M., J. T. M. Groenen, E. C. Klinge-Roode, G. F. Rohrmann, D. Zuidema, and J. M. Vlak. 1990. Localization of the 34kDa polyhedron envelope protein in Spodoptera frugiperda cells infected with Autographa californica nuclear polyhedrosis virus. Arch. Virol. 111: 103-114. van Oers, M. M., M. H. C. Abma-Henkens, E. A. Herniou, J. C. W. de Groot, S. Peters, and J. M. Vlak. 2005. Genome sequence of Chrysodeixis chalcites nucleopolyhedrovirus, a baculovirus with two DNA photolyase genes. J. Gen. Virol. 86: 2069-2080. Vaughn, J. L., R. H. Goodwin, G. J. Tompkins, and P. McCawley. 1977. The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro 13: 213-217. Visnovsky, G.., J. D. Claus, and J. C. Merchuk. 2003. Cultivation of insect cells in airlift reactors: influence of reactor configuration and superficial gas velocity. Lat. Am. Appl. Res. 33: 207-211. Wang, C. H., C. M. Chou, H. C. Liu, S. L. Kau , and C. F. Lo. 1996. Continuous cell line from pupal ovary of Perina nuda (Lepidoptera: Lymantriidae) that is permissive to nuclear polyhedrosis virus from P. nuda. J. Invertebr. Pathol. 67: 199-204. Wang, H. C. 2006. Identification, functional assay and application of ICP11, the mosthighly expressed novel protein of shrimp white spot syndrome virus (WSSV). Doctoral Dissertation, Institute of Zoology, National Taiwan University. 78 pp (in Chinease). White, T. J., T. Bruns, S. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. pp. 315-322. In: M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White eds. PCR Protocols: A Guide to Methods and Applications. Academic Press, New York. Whitford, M., S. Stewart, J. Kuzio, and P. Faulkner. 1989. Identification and sequence analysis of a gene encoding gp67 an abundant envelope glycoprotein of the baculovirus, Autographa californica nuclear polyhedrosis virus. J. Virol. 63: 1393-1399. Whitt, M. A., and J. S. Manning. 1987. Role of chelating agents, monovalent anion and cation in the dissociation of Autographa californica nuclear polyhedrosis virus occlusion body. J. Invert. Pathol. 49: 61-69. Wood, H. A. 1980. Autographa californica nuclear polyhedrosis virus-induced proteins in tissue culture. Virology 102: 21-27. Wu, C. Y., and C. H. Wang. 2006. New cell lines from Lymantria xylina (Lepidoptera: Lymantriidae): Characterization and susceptibility to baculoviruses. J. Invertebr. Pathol. 93: 186-191. Wu, C. Y., H. N. Yang, C. F. Lo, and C. H. Wang. 2002. A Perina nuda cell line (NTU-Pn-HF) from pupal ovary that is persistently infected with a picorna-like (PnPV). Appl. Entomol. Zool. 37: 171-179. Wyatt, G. R., T. C. Loughheed, and S. S. Wyatt. 1956. The chemistry of insect hemolymph; organic components of the hemolymph of the silkworm, Bombyx mori, and two other species. J. Gen. Physiol. 39: 853-868. Xiao, H., and Y. Qi. 2007. Genome sequence of Leucania seperata nucleopolyhedrovirus. Virus. Genes 35: 845-856. Xing, K., R. Deng, J. Wang, J. Feng, M. Huang, and X. Wang. 2005. Analysis and prediction of baculovirus promoter sequences. Virus Res. 113: 64-71. Yamagishi, J., E. D. Burnett, S. H. Harwood, and G. W. Blissard. 2007. The AcMNPV pp31 gene is snot essential for productive AcMNPV replication or late gene transcription but appears to increase levels of most viral transcriptions. Virology 365: 34-47. Yeh, S. C., S. T. Lee, C. Y. Wu, and C. H. Wang. 2007. A cell line (NTU-MV) established from Maruca vitrata (Lepidoptera: Pyralidae): characterization, viral susceptibility, and production. J. Invertebr. Pathol. 96: 138-146. Zanotto, P. M., B. D. Kessing, and J. E. Maruniak. 1993. Phylogenetic interrelationships among baculoviruses: Evolutionary rates and host associations. J. Invertebr. Pathol. 62: 147-164. Zhang, J., A. Collins, M. Chen, I. Knyazev, and R. Gentz. 1998. High-density perfusion culture of insect cells with a BioSep ultrasonic filter. Biotechnol. Bioeng. 59: 351-359. Zummer, M., and P. Faulkner. 1979. Absence of protease in baculovirus polyhedral bodies propagated in vitro. J. Invertebr. Pathol. 33: 383-384. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44443 | - |
| dc.description.abstract | 豆莢螟細胞株 (NTU-MV) 係 2005 年從豆莢螟 (Maruca vitrata) (鱗翅目:螟蛾科) 的蛹內组織所建立,分別利用脂酶 (esterase)、乳酸脫氫酶 (lactate dehydrogenase) 和蘋果酸脫氫酶 (malate dehydrogenase) 三種同功異構酶及轉錄區間段 (internal transcribed spacer regions, ITS) 均能顯示出此細胞株有別於其他已建立的細胞株,且此 ITS 區段與豆莢螟幼蟲的 ITS 區段之相似度高達 98%,因而可證明此細胞株確實來自豆莢螟蟲體。豆莢螟細胞株具有多棘形、圓形、紡錘形和逗號形四種不同形態之細胞,其染色體的個數介於 16 到 268 之間。在含有 8% 胎牛血清之 TNM-FH (Gibco, BRL) 培養液於 28℃ 培養下之生長倍增時間 (doubling time) 為 27 小時,豆莢螟細胞株系是豆莢螟核多角體病毒 (M. vitrata nucleopolyhedrovirus,MaviNPV) 的高接受性細胞株系,在感染 MaviNPV 兩週後,胞外體病毒 (extracellular virus) 的效價高達 3.83 × 107-2.51 × 108 TCID50/ml,且平均每個細胞可生產高達 47 到 50 個封埋體 (occlusion bodies)。此高效率的 MaviNPV 體外增殖系統,可供進行 MaviNPV 基因研究 (mv74) 及構築表現載體之能力。MaviNPV 屬桿狀病毒第一群 (group I) 且和加州苜蓿夜蛾核多角體病毒 (AcMNPV) 親緣關係最為接近。MaviNPV 具 126 個開放譯讀區 (open reading frames, ORFs),其中有 125 個 ORFs 與 AcMNPV 為同源基因 (homologous genes),只有 MaviNPV 的 mv74 例外。然而 mv74 與其它四種核多角體病毒有同源基因,但其胺基酸相似度皆很低 (21-26%)。mv74 具 675 個核苷酸,可轉譯出 224 個胺基酸;此基因的早期啟動子,為富含 TA 區域下游 (downstream) 的 第 29 個鹼基對有 CAGT motif,有別於傳統的早期啟動子;其轉錄起始位置符合多數早期基因者位於 CAGT 的 A 鹼基上;mv74 RNA 在病毒感染寄主細胞 2 小時即有低量表現,於 72 小時則達最高量;MV74 蛋白質則在病毒感染 48 小時後方能偵測到,亦於 72 小時達最高表現量。利用免疫螢光偵測發現在病毒感染 48 小時後 MV74 只存在細胞質中,當感染至 72 到 96 小時,同時可見於細胞質與細胞核內,且與封埋體蛋白表現位置有重疊。以免疫金穿透式電子顯微鏡可發現 MV74 分佈於細胞質、胞外體病毒四周或封埋體內及病毒形成團,再經免疫金與負染之穿透式電子顯微鏡觀察,僅看到其位於封埋體上,由此可證實 MV74 為封埋體相關之蛋白質,但其確切功能得待進一步將此基因默化或大量表現後方可確定。 | zh_TW |
| dc.description.abstract | A new cell line, NTU-MV, derived from pupal tissues of an economically important pest, the legume pod borer Maruca vitrata, was established. This cell line contained four major cell types: polymorphic cells, round cells, spindle-shaped cells, and comma cells. The doubling time of MV cells in TNM-FH medium supplemented with 8% FBS at 28 ℃ was 27 h. The chromosome numbers of MV cells varied widely from 16 to 268. Compared to other insect cell lines, the MV cell line produced distinct isozyme patterns with esterase, malate dehydrogenase, and lactate dehydrogenase. Confirmation that NTU-MV was derived from M. vitrata was demonstrated by showing that the sequence of the internal transcribed spacer regions (ITS) of the MV cells was 98% identical to that of M. vitrata larvae. Two NTU-MV cell strains, NTU-MV1 and NTU-MV56, were selected based on susceptibility to MaviNPV (M. vitrata nucleopolyhedrovirus). NTU-MV, MV1, and MV56 cells showed a high susceptibility to MaviNPV and produced high yields of polyhedra (47-50 OBs/cell, 4 × 107-5.96 × 107 OBs/ml) and extracellular virus (3.83 × 107-2.51 × 108 TCID50/ml) after 2 weeks of MaviNPV infection. The NTU-MV cell line and its strains are useful tools for studying the molecular biology of MaviNPV. The MaviNPV genome is relatively small (111, 953 bp) and it contains only 126 putative open reading frames (ORFs). Except MaviNPV mv74, 125 homologous genes of MaviNPV were found in Autographa californica multiple nucleopolyhedrovirus (AcMNPV). MaviNPV mv74 homologs were also found in other NPVs, but mv74 only shared 21 to 26% identities with other NPV homologs in aminoacid sequences. MaviNPV mv74 consists of 675 base pairs encoding 224 amino acids. mv74 contains an early promoter motif, which is defferent from the traditional early promoter motif, and characterized by TA-rich region followed by a CAGT motif 29 bp downstream. MaviNPV mv74 RNA expression could be at first detected at 2 h postinfection, and expression levels reached the peack at 72 h postinfection. The MV74 protein was detected initially at 48 h postinfection with the peak at 72 h postinfection. The MV74 presented in both the cytoplasm and nucleus of the infected cells, especially co-localized with the occlusion bodies (OBs). MV74 was found on the surface of the OBs, but not on the extracellular virus or occlusion-derived virus. We conclude that MV74 is an occlusion body (OB)-associated protein. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:57:55Z (GMT). No. of bitstreams: 1 ntu-98-F94632001-1.pdf: 4514374 bytes, checksum: df2a9ab7490191fe440d7a73cd8a1c01 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員審定書……………………………………………………… i
致謝…………………………………………………………………… ii 中文摘要…………………………………………………………… iii英文摘要…………………………………………………………………… v 壹、前言…………………………………………………………… 1 貳、往昔研究…………………………………………………………………… 3 一、昆蟲細胞株發展史…………………………………………… 3 二、昆蟲細胞株之優點與應用…………………………………….….…......… 3 三、昆蟲細胞之特徵化 (characterization)……………………………………... 4 四、豆莢螟…………………………………………………………………….… 4 五、桿狀病毒之簡介…………………………………………………….…...…. 5 六、桿狀病毒之分類…………………………………………………………..... 5 七、核多角體病毒之生活史……………………………………………………. 6 八、桿狀病毒基因表現的階段性………………………………………..…….. 7 (一) 早期基因的表現 (early phase)…...…………………………..….….. 7 (二) 晚期基因表現 (late phase)………………………………….…….… 7 (三) 非常晚期基因的表現 (very late phase)…………………….…….… 7 九、桿狀病毒之構造蛋白……………………………………….………….…. 7 (一) 封埋體構造蛋白……………………………………….………….… 7 (二) 核蛋白質鞘構造蛋白……………………………….…………….… 8 (三) 封埋體病毒的外膜構造蛋白……………………….…………….… 8 (四) 胞外體病毒的外膜構造蛋白………………………....………….…. 8 十、豆莢螟核多角體病毒的基因體…………………………..………….…… 9 參、材料方法…………………………………………………...………………….. 10 一、豆莢螟細胞株系之建立與特徵化 (一) 供試昆蟲…………………………………………………………………. 10 (二) 供試細胞株………………………………………………………………. 10 (三) 初級培養 (primary culture)……...……………………………………… 10 (四) 繼代培養…………………………………………………………………. 10 (五) 連續細胞株 (continuous cell line) 之保存……………………………. 11 (六) 細胞分離株 (cell strains) 之建立……………………………............... 11 (七) 無血清培養液之培養……………………………………………….…… 11 (八) 病毒的來源………………………………………………………….…… 11 (九) 病毒體外增殖系統之建立………………………………………………. 12 (十) 豆莢螟細胞株特性之建立………………………………….…………… 12 1 細胞分離株之外表形態……………………………….…………….. 12 2 不同胎牛血清濃度之生長曲線………………………….………….. 12 3 細胞染色體數目分佈圖之建立…………………………….……….. 12 4 同功異構酶之圖譜………………………………………….……….. 13 5 細胞 DNA 標誌……………………………….…………….….…… 13 (1) 目標 DNA 片段之放大及純化…………………………….…... 13 (2) 目標 DNA 片段之接合 (ligation)………..………...…...….….. 14 (3) 目標 DNA 片段之轉形 (transformation).................................... 14 (4) 萃取含目標 DNA 片段之質體.................................................... 14 (5) 目標 DNA 片段之限制酶切割反應............................................ 15 (6) 目標 DNA 片段之序列分析........................................................ 15 (十一) 細胞懸浮培養之最佳化及封埋體產量測試……………..................... 15 二、豆莢螟核多角體病毒 (MaviNPV) 病毒特徵化............................................ 15 (一) 病毒效價與寄主範圍之測定 TCID50..................................................... 15 (二) 封埋體之掃描式電子顯微鏡超微外觀構造............................................. 16 (三) 穿透式電子顯微鏡觀察............................................................................. 16 (四) 豆莢螟細胞分離株之感染率..................................................................... 16 (五) 不同血清濃度對豆莢螟細胞之封埋體產量的影響................................. 16 (六) 不同豆莢螟細胞分離株之封埋體及胞外體病毒的產量......................... 17 (七) 封埋體之純化............................................................................................. 17 (八) 病毒 DNA 之萃取.................................................................................... 17 (九) 病毒 DNA 之限制酵素圖譜分析............................................................ 18 三、MV74 特徵化及功能分析 (一) MV74 胺基酸序列之分析與比對.......................................................... 18 (二) 病毒 RNA 之萃取.................................................................................... 18 (三) mv74 基因之5’ 和 3’ 未轉譯區段 (untranslated region, UTR) 鑑定....19 1 5’ 未轉譯區段鑑定 (5’ RACE)............................................................ 19 2 3’ 未轉譯區段鑑定 (3’ RACE)............................................................ 20 (四) mv74 RNA 表現時序之確認……………………………..…...….....… 20 (五) MV74 抗體之製備與測試………………………………….…….…… 21 1 mv74 DNA 片段之增幅…………………………….……………....… 21 2 mv74的轉殖和大量表現…………………………………..…………... 21 (六) 蛋白質電泳分析 ( SDS-PAGE electrophoresis )………….……..…...… 22 1 膠體製備………………………………………………….…….….....… 22 2 樣本處理……………………………………………….…………......… 22 3 西方墨點雜合反應 (Western blotting hybridization)…………….....… 22 (七) MV74 蛋白質表現時序之確認…………………………….….…...…. 22 (八) 免疫螢光標定 MV74 和封埋體蛋白在受感染細胞的表現位置.......... 23 1 免疫螢光樣本製作………………………….………………….………. 23 2 免疫螢光之觀察……………………………….…………………..…... 23 (九) 免疫金方法確認 MV74 在胞器內表現之位置...………………..….... 23 1 免疫金之樣本固定脫水及包埋…………………….……………....…. 24 2 切片…………………………………………………….………………. 24 3 免疫金染色………………………………………………….……….…. 24 (十) 免疫金方法確認 MV74 是否存在封埋體、胞外體病毒和封埋體病毒表面…………………………………………………………….……..….. 24 1 胞外體病毒之純化…..………………………………………….……… 24 2 封埋體之純化………………………………………………….……….. 25 3 封埋體病毒之純化……………………………………………….…….. 25 4 以負染及免疫沉澱之方法觀察………………………………….….….... 25 (十一) 利用雙股 RNA 抑制基因表現…………………………………..……. 25 1 雙股 RNA 之置備…………………………………………………..…. 25 2 確認製作出雙股 RNA ….………………………………….……….…. 26 3 將雙股 RNA 送至細胞中………………………………….……….…. 26 4 感染病毒…………………………………………………….……….…. 26 5 確認基因的默化…………………………………………….………….. 26 肆、結果..…………………………………………………………………..………. 27 一、豆莢螟細胞株系之建立與特徵化 (一) 初級培養與繼代培養…………………………..……………….………. 27 (二) 細胞分離株之建立……………………………..……………….………. 27 (三) 不同胎牛血清濃度之細胞生長曲線…………..……………….………. 27 (四) 細胞染色體數目分佈圖………………………..……………….………. 28 (五) 同功異構酶之圖譜……………………………..……………….………. 28 (六) 細胞 DNA 標誌………………………………..……………….……… 28 (七) 細胞懸浮培養之最佳化及封埋體產量測試……..…………….………. 28 二、豆莢螟核多角體病毒 (MaviNPV) 特徵化 (一) 病毒的效價及寄主範圍測試……………………..……………….……. 29 (二) 病毒超微形態……………………………………..…………….………. 29 1 封埋體之掃描式電子顯微鏡超微外觀構造……..…...……….….…… 29 2 穿透式電子顯微鏡觀察…………………………..……….………….... 29 (三) 豆莢螟細胞分離株的感染率…………………………………..………... 30 (四) 不同血清濃度對豆莢螟細胞之封埋體產量的影響…………………..... 30 (五) 不同豆莢螟細胞分離株之封埋體及胞外體病毒的產量…………….… 30 (六) 病毒 DNA 之限制酵素圖譜分析………………………………..….…. 31 三、MV74 特徵化及功能分析 (一) MV74 胺基酸序列之分析與比對……………………………….….… 31 (二) mv74 基因之5’ 和 3’ 未轉譯區段 (untranslated region, UTR) 鑑定... 32 (三) mv74 RNA 表現時序之確認……………………………………....… 32 (四) MV74 抗體製備及測試………………………………………….……. 32 (五) MV74 蛋白質表現時序之確認………………………………….……. 32 (六) 免疫螢光標定 MV74 和封埋體蛋白在受感染細胞的表現位置….…… 33 (七) 免疫金方法確認 MV74 在胞器內表現之位置…………………….…. 33 (八) 免疫金方法確認 MV74 是否存在封埋體、胞外體病毒和封埋體病毒表面……………………………………………………………………..…. 33 (九) 利用雙股 RNA 抑制基因表現……………………………………….. 34 伍、討論……………………………………………………………………….…… 35 一、豆莢螟細胞株系與病毒高感受性………………………………………. 35 二、豆莢螟核多角體病毒寄主專一性………………………………………. 37 三、細胞懸浮培養之最佳化及封埋體產量測試……………………..……... 37 四、 MV74 胺基酸序列之分析與比對……………………………………... 38 五、 mv74 基因之 5’ 和 3’ 未轉譯區段 (untranslated region, UTR) 鑑定.. 40 六、 mv74 RNA表現時序之確認…………………………………………… 40 七、 MV74 蛋白質表現時序之確認……………………………...………… 41 八、 MV74 蛋白質表現位置及多聚型………………………...…………… 41 九、雙股 RNA 抑制基因……………………………………………………. 42 十、 MV74 蛋白質表現位置與封埋體相關蛋白質……………...……..….. 43 陸、結論………………………………………………………………...…….….… 45 柒、參考文獻…………………………………………………………………….… 46 附圖…………………………………………………………………………….…… 59 附表…………………………………………………………………………….….... 96 附錄…………………………………………………………………………….…… 98 捌、已發表之研究報告…………………………………………………….…….. 106 | |
| dc.language.iso | zh-TW | |
| dc.subject | 封埋體相關蛋白質 | zh_TW |
| dc.subject | mv74 | zh_TW |
| dc.subject | 豆莢螟核多角體病毒 | zh_TW |
| dc.subject | 特徵化 | zh_TW |
| dc.subject | 細胞株 | zh_TW |
| dc.subject | 豆莢螟 | zh_TW |
| dc.subject | Maruca vitrata | en |
| dc.subject | cell line | en |
| dc.subject | occlusion body-associated protein | en |
| dc.subject | mv74 | en |
| dc.subject | MaviNPV | en |
| dc.subject | Maruca vitrata nucleopolyhedrovirus | en |
| dc.subject | characterization | en |
| dc.title | 豆莢螟核多角體病毒 (MaviNPV) 在 NTU-MV 細胞株系之體外增殖及其 MV74 蛋白特徵分析 | zh_TW |
| dc.title | In vitro propagation of Maruca vitrata nucleopolyhedrovirus (MaviNPV) in NTU-MV cell strains and characterization of its MV74 protein | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 柯俊成(Chiun-Cheng Ko) | |
| dc.contributor.oralexamcommittee | 羅竹芳,侯豐男(Roger F. Hou),唐立正,趙裕展,吳宗遠,石正人 | |
| dc.subject.keyword | 豆莢螟,細胞株,特徵化,豆莢螟核多角體病毒,mv74,封埋體相關蛋白質, | zh_TW |
| dc.subject.keyword | Maruca vitrata,cell line,characterization,Maruca vitrata nucleopolyhedrovirus,MaviNPV,mv74,occlusion body-associated protein, | en |
| dc.relation.page | 106 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-03 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 4.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
