請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44441
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡曜陽(Yao-Yang Tsai) | |
dc.contributor.author | Chao-Yen Chiu | en |
dc.contributor.author | 邱肇彥 | zh_TW |
dc.date.accessioned | 2021-06-15T02:57:48Z | - |
dc.date.available | 2011-08-22 | |
dc.date.copyright | 2011-08-22 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-22 | |
dc.identifier.citation | 1. C. Salomon, Process for the machining of metals and acting materials when being works by cutting tools , German patent No. 523594 (1931).
2. G. Boothroyd, W.A. Knight, Fundamentals of Machining and Machine Tools, Marcel Dekker, New York, (1988). 3. K.F. Ehmann, M.S. Hong, A generalized model of the surface generation process in metal cutting, CIRP Annals 43 (1994) 483–486. 4. W. Grzesik, A revised model for predicting surface roughness in turning, Wear 194 (1996) 143–148. 5. D.Y. Jang, Y.G. Choi, H.G. Kim, A. Hsiao, Study of the correlation between surface roughness and cutting vibrations to develop an on-line roughness measuring technique in hard turning,International Journal of Machine Tools and Manufacture 36 (1996) 453–464. 6. S.C. Lin, M.F. Chang, A study on the effects of vibrations on the surface finish using a surface topography simulation model for turning, International Journal of Machine Tools and Manufacture 38 (1998) 763–782. 7. C.A. Chen, W.C. Liu, N.A. Duffie, A surface topography model for automated surface finishing, International Journal of Machine Tools and Manufacture 38 (1998) 543–550. 8. B.H. Kim, C.N. Chu, Texture prediction of milled surfaces using texture superposition method, Computer Aided Design 31 (1999) 485–494. 9. D.K. Baek, T.J. Ko, H.S. Kim, Optimization of feedrate in a face milling operation using a surface roughness model, International Journal of Machine Tools and Manufacture 41 (2001) 451–462. 10. K.Y. Lee, M.C. Kang, Y.H. Jeong, D.W. Lee, J.S. Kim, Simulation of the surface roughness and profile in high speed end milling, Journal of Materials Processing Technology 113 (2001) 410–415. 11. S.A. Coker, Y.C. Shin, In-process control of surface roughness due to tool wear using a new ultrasonic system, International Journal of Machine Tools and Manufacture 36 (1996) 411–422. 12. C. Beggan, M. Woulfe, P. Young, G. Byrne, Using acoustic emission to predict surface quality, International Journal of Advanced Manufacturing Technology 15 (1999) 737–742. 13. J.D. Thiele, S.N. Melkote, Effect of cutting edge geometry and workpiece hardness on surface generation in the finish hard turning of AISI 52100 steel, Journal of Materials Processing Technology 94 (1999) 216–226. 14. A.E. Diniz, J.C. Filho, Influence of the relative positions of tool and workpiece on tool life, tool wear and surface finish in the face milling process, Wear 232 (1999) 67–75. 15. R. Baptista, J.F. Antune Simoes, Three and five axis milling of sculptured surfaces, Journal of Materials Processing Technology 103 (2000) 398–403. 16. O.B. Abouelatta, J. Madl, Surface roughness prediction based on cutting parameters and tool vibrations in turning operations, Journal of Materials Processing Technology 118 (2001) 269–277. 17. P. Munoz-Escalona, Z. Cassier, Influence of the critical cutting speed on the surface finish of turned steel, Wear 218 (1998) 103–109. 18. A.K. Ghani, I.A. Choudhury, Study of tool life, surface roughness and vibration in machining nodular cast iron with ceramic tool, Journal of Materials Processing Technology 127 (2002) 17–22. 19. S.K. Choudhury, G. Bartarya, Role of temperature and surface finish in predicting tool wear using neural network and design of experiments, International Journal of Machine Tools & Manufacture 43 (2003) 747–753 20. D. Singh, P. Venkateswara Rao, A surface roughness prediction model for hard turning process, The International Journal of Advanced Manufacturing Technology 32 (2007) 1115–1124 21. J. Z. Zhang, J. C. Chen, Surface roughness optimization in an end-milling operation using the Taguchi design method, Journal of Materials Processing Technology 184 (2007) 233–239 22. Y. Quinsat, L. Sabourin, Surface topography in ball end milling process: Description of a 3D surface roughness parameter, Journal of Materials Processing Technology 195 (2008) 135–143 23. Hongtao Li, Xinmin Lai, Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness, International Journal of Machine Tools & Manufacture 48 (2008) 1–14 24. A. Vijayaraghavan, Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness, International Journal of Machine Tools & Manufacture 49 (2009) 89–98 25. A.M. Zain, Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process, Expert Systems with Applications 37 (2010) 4650–4659 26. J. Philippe Costes, Surface roughness prediction in milling based on tool displacements, Journal of Manufacturing Processes xxx (2011) xxx–xxx 27. 王廷飛, 表面組織解說,前程出版社(1985) 28. DIN4760, Form Deviations; Concepts; Classification System,Deutches Institut Fuer Normung, (1982). 29. S. Kalpakjian, Manufacturing and Technology, Addision-Wesley Publishing Company (1999) 30. M.E. Merchant, Mechanics of the Metal Cutting Process. II. Plasticity Conditions in Orthogonal Cutting, Journal of Applied Physics 6 (1945) 318 - 324 31. B.T. Sheen, Machining feature recognition and tool-path generation for 3-axis CNC milling, Computer-Aided Design 38 (2006) 553–562 32. A. Hansen, Tool positioning and path generation computer-aided manufacturing, PH.D thesis, Computer Science Dept., Univ. of Southern California, Los Angeles (1989) 33. A. Hansen, F. Arbab, An algorithm for generating NC tool paths for arbitrary shape pockets with island, ACM Transactions on Graphics 11 (1992) 152-182 34. L. A. Piegl, W. Tiller, Computer offsets of NURBS curves and surfaces, Computer-Aided Design 31 (1999)147-156 35. S. Suh , K. Lee, NC milling tool path generation for arbitrary shape pockets defined be sculpture surface, Computer-Aided Design 22 (1990)273-284. 36. B. K. Choi, S. C. Park, A pair-wise offset algorithm for 2D point-sequence curve, Computer-Aided Design 31 (1999)735-745 37. J. P. Kruth, J. Detand, G. Zeir, Methods to improve the response time of a CAPP system that generates non-linear process plans, Advance in Engineering Software 25 (1996)9-17 38. T. Lim, J. Corney, D. E. R. Clark, Exact tool sizing for feature accessibility, The International Journal of Advanced Manufacturing Technology 17 (2001)181-188 39. 范光照, 表面粗糙度及其量測(2010) 40. J. P. William, Intrroduction to MATLAB 6 for Engineers, McGraw-Hill Companies (2001) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44441 | - |
dc.description.abstract | 加工產品的表面品質不僅決定產品的外觀,更決定了產品的受力特性等重要因素。現代三軸切削中心機已具有高效率,高自由度,高剛性和高尺寸精度等優勢,如果可提高加工表面品質便可進一步提升加工效益。因此本研究將利用三軸切削中心機,針對工件常見的斜面和曲面進行精加工表面的分析和研究,考慮等高路徑的分層切深(stepdown),平行路徑的路徑間隔(stepover)並讓刀具路徑平行輪廓,殘料高度(height of scallop),主軸轉速(spindle speed),線速度(cutting speed),進給量(feed rate),刀具半徑,斜面斜率,曲面之曲率半徑,平銑刀和球銑刀對加工表面的影響。
由實驗結果發現,進給方向的表面粗糙度主要受到進給量和主軸轉速的影響;垂直於進給方向的表面粗糙度,則受到路徑和刀具所產生的殘料影響。斜面加工時,平銑刀加工的表面粗糙度不如球銑刀,球銑刀和工件相切的接觸寬度較短,不會有波紋產生且較容易得到良好的表面粗糙度;使用等高路徑加工斜面,進給方向的粗糙度較平行路徑優良,垂直於進給方向之粗糙度則是平行路徑較為優良。曲面加工時,使用球銑刀搭配等高路徑之加工表面不會有波紋產生,但是搭配平行路徑於含有Z軸的座標平面加工曲面時,容易因為刀具和工件接觸點的變化,複製刀具表面的微小誤差至加工表面形成波紋,其波紋度和曲面的曲率半徑相關,較小的曲率半徑波紋度較明顯。可利用不同刀具的表面特性進行波紋干涉,也可利用不同路徑進行互補,減少加工表面之波紋度。 | zh_TW |
dc.description.abstract | Surface quality of machined products do not only determines the appearance of the products, but also determines the features of products. Novel three-axis milling CNC machines have advantages of high efficiency, high flexibility, high rigidity and high accuracy. Therefore, improving the efficiency and quality of the surface finishing by using three-axis CNC milling machine is a essential issue. This study will use a three-axis CNC milling machine to research the finishing oblique surface and curved surface. Considering the toolpath stepover, stepdown, height of scallop, spindle speed, cutting speed, feed rate, tool radius, slope gradient, radius of curvature, end mills and ball end mills effect on the machined surface.
The experimental results show that feed rate and spindle speed effect surface roughness in the feed direction. The scallop is caused by toolpath and tool radius, and effect surface roughness in cross feed direction. Ball end mills is easier than end mills to get low surface roughness in oblique surface finishing. Furthermore, the surface roughness of oblique in feed direction made by contour toolpath is better than parallel toolpath. For curved surface finishing, using ball end mills with parallel toolpath will produce surface waviness caused by small shape errors of tool. Surface waviness is related to radius of curvature, and can be removed by second processing. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:57:48Z (GMT). No. of bitstreams: 1 ntu-100-R98522725-1.pdf: 10235239 bytes, checksum: 4888d35f711d4e3b2bdd16aedcfeff34 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 摘要 I
ABSTRACT III 目錄 V 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1.1 研究背景及動機 1 1.2 文獻回顧 3 1.3 研究目的 9 1.4 本文架構 10 第二章 相關理論基礎 11 2.1 銑削加工製程 11 2.1.1 平銑削 11 2.1.2 面銑削 13 2.1.3 端銑削 15 2.2 切削理論 16 2.3 刀具路徑規劃理論 21 2.3.1 2D刀具路徑生成 21 2.3.2 2D刀具路徑種類 23 2.3.3 3D刀具路徑種類 26 2.4 表面粗糙度理論 31 2.4.1 表面組織定義 31 2.4.2 表面量測相關術語 32 2.4.3 表面粗糙度表示方式 33 2.4.4 表面波紋度表示方式 36 第三章 實驗方法和步驟 37 3.1 實驗規劃 37 3.2 實驗設備 38 3.3 實驗材料 39 3.3.1 加工材料 39 3.3.2 刀具材料 39 3.4 表面量測和觀測儀器 40 3.4.1 表面輪廓儀 40 3.4.2 光學顯微鏡 41 3.4.3 USB照相顯微鏡 41 第四章 實驗結果與討論 43 4.1 理想數值分析 43 4.1.1 平行路徑加工分析 45 4.1.2 等高路徑加工分析 48 4.2 基礎加工實驗 59 4.2.1 主軸轉速 59 4.2.2 刀具半徑 61 4.2.3 進給量 63 4.3 斜面加工實驗 67 4.3.1 平行路徑斜面加工實驗 67 4.3.2 等高路徑斜面加工實驗 74 4.4 曲面加工實驗 80 4.4.1 平行路徑曲面加工 80 4.4.2 等高路徑曲面加工 96 第五章 結論與未來展望 105 5.1 結論 105 5.2 未來展望 107 參考文獻 109 | |
dc.language.iso | zh-TW | |
dc.title | 三軸工具機銑削路徑之精加工表面研究 | zh_TW |
dc.title | Study of finishing surface of end milling toolpath for three-axis machining center | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 莊勝雄(S. H. Chuang),王世明 | |
dc.subject.keyword | X-Y-Z三軸,斜面,曲面,精加工表面,波紋度, | zh_TW |
dc.subject.keyword | X-Y-Z axis,oblique surface,curved surface,surface finishing,waviness, | en |
dc.relation.page | 112 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-22 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 10 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。