Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44434
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊性芳(Hsin-Fang Yang-Yen)
dc.contributor.authorPei-Hsuan Chiaen
dc.contributor.author賈佩璇zh_TW
dc.date.accessioned2021-06-15T02:57:23Z-
dc.date.available2010-09-15
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-08-01
dc.identifier.citationAbremski, K., and Hoess, R. (1984). Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J Biol Chem 259, 1509-1514.
Altmeyer, A., Simmons, R.C., Krajewski, S., Reed, J.C., Bornkamm, G.W., and Chen-Kiang, S. (1997). Reversal of EBV immortalization precedes apoptosis in IL-6-induced human B cell terminal differentiation. Immunity 7, 667-677.
Bae, J., Donigian, J.R., and Hsueh, A.J. (2003). Tankyrase 1 interacts with Mcl-1 proteins and inhibits their regulation of apoptosis. J Biol Chem 278, 5195-5204.
Bae, J., Leo, C.P., Hsu, S.Y., and Hsueh, A.J. (2000). MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain. J Biol Chem 275, 25255-25261.
Bamforth, S.D., Braganca, J., Eloranta, J.J., Murdoch, J.N., Marques, F.I., Kranc, K.R., Farza, H., Henderson, D.J., Hurst, H.C., and Bhattacharya, S. (2001). Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Nat Genet 29, 469-474.
Bamforth, S.D., Braganca, J., Farthing, C.R., Schneider, J.E., Broadbent, C., Michell, A.C., Clarke, K., Neubauer, S., Norris, D., Brown, N.A., et al. (2004). Cited2 controls left-right patterning and heart development through a Nodal-Pitx2c pathway. Nat Genet 36, 1189-1196.
Chao, J.R., Wang, J.M., Lee, S.F., Peng, H.W., Lin, Y.H., Chou, C.H., Li, J.C., Huang, H.M., Chou, C.K., Kuo, M.L., et al. (1998). mcl-1 is an immediate-early gene activated by the granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling pathway and is one component of the GM-CSF viability response. Mol Cell Biol 18, 4883-4898.
Chen, Y., Haviernik, P., Bunting, K.D., and Yang, Y.C. (2007). Cited2 is required for normal hematopoiesis in the murine fetal liver. Blood 110, 2889-2898.
Coultas, L., Chawengsaksophak, K., and Rossant, J. (2005). Endothelial cells and VEGF in vascular development. Nature 438, 937-945.
Craig, R.W. (2002). MCL1 provides a window on the role of the BCL2 family in cell proliferation, differentiation and tumorigenesis. Leukemia 16, 444-454.
Derenne, S., Monia, B., Dean, N.M., Taylor, J.K., Rapp, M.J., Harousseau, J.L., Bataille, R., and Amiot, M. (2002). Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells. Blood 100, 194-199.
Dettman, R.W., Denetclaw, W., Jr., Ordahl, C.P., and Bristow, J. (1998). Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193, 169-181.
Domina, A.M., Smith, J.H., and Craig, R.W. (2000). Myeloid cell leukemia 1 is phosphorylated through two distinct pathways, one associated with extracellular signal-regulated kinase activation and the other with G2/M accumulation or protein phosphatase 1/2A inhibition. J Biol Chem 275, 21688-21694.
Dumont, D.J., Yamaguchi, T.P., Conlon, R.A., Rossant, J., and Breitman, M.L. (1992). tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 7, 1471-1480.
Epstein, J.A., and Buck, C.A. (2000). Transcriptional regulation of cardiac development: implications for congenital heart disease and DiGeorge syndrome. Pediatr Res 48, 717-724.
Ermakov, A., Stevens, J.L., Whitehill, E., Robson, J.E., Pieles, G., Brooker, D., Goggolidou, P., Powles-Glover, N., Hacker, T., Young, S.R., et al. (2009). Mouse mutagenesis identifies novel roles for left-right patterning genes in pulmonary, craniofacial, ocular, and limb development. Dev Dyn 238, 581-594.
Erwert, R.D., Eiting, K.T., Tupper, J.C., Winn, R.K., Harlan, J.M., and Bannerman, D.D. (2003). Shiga toxin induces decreased expression of the anti-apoptotic protein Mcl-1 concomitant with the onset of endothelial apoptosis. Microb Pathog 35, 87-93.
Ghosh, K., and Van Duyne, G.D. (2002). Cre-loxP biochemistry. Methods 28, 374-383.
Gu, H., Marth, J.D., Orban, P.C., Mossmann, H., and Rajewsky, K. (1994). Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265, 103-106.
Hoffman, J.I., and Kaplan, S. (2002). The incidence of congenital heart disease. J Am Coll Cardiol 39, 1890-1900.
Huang, H.M., Huang, C.J., and Yen, J.J. (2000). Mcl-1 is a common target of stem cell factor and interleukin-5 for apoptosis prevention activity via MEK/MAPK and PI-3K/Akt pathways. Blood 96, 1764-1771.
Inoshita, S., Takeda, K., Hatai, T., Terada, Y., Sano, M., Hata, J., Umezawa, A., and Ichijo, H. (2002). Phosphorylation and inactivation of myeloid cell leukemia 1 by JNK in response to oxidative stress. J Biol Chem 277, 43730-43734.
Jaffredo, T., Bollerot, K., Sugiyama, D., Gautier, R., and Drevon, C. (2005a). Tracing the hemangioblast during embryogenesis: developmental relationships between endothelial and hematopoietic cells. Int J Dev Biol 49, 269-277.
Jaffredo, T., Nottingham, W., Liddiard, K., Bollerot, K., Pouget, C., and de Bruijn, M. (2005b). From hemangioblast to hematopoietic stem cell: an endothelial connection? Exp Hematol 33, 1029-1040.
Jourdan, M., De Vos, J., Mechti, N., and Klein, B. (2000). Regulation of Bcl-2-family proteins in myeloma cells by three myeloma survival factors: interleukin-6, interferon-alpha and insulin-like growth factor 1. Cell Death Differ 7, 1244-1252.
Kirby, M.L., Gale, T.F., and Stewart, D.E. (1983). Neural crest cells contribute to normal aorticopulmonary septation. Science 220, 1059-1061.
Kisanuki, Y.Y., Hammer, R.E., Miyazaki, J., Williams, S.C., Richardson, J.A., and Yanagisawa, M. (2001). Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 230, 230-242.
Kozopas, K.M., Yang, T., Buchan, H.L., Zhou, P., and Craig, R.W. (1993). MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci U S A 90, 3516-3520.
Kuo, C.T., Morrisey, E.E., Anandappa, R., Sigrist, K., Lu, M.M., Parmacek, M.S., Soudais, C., and Leiden, J.M. (1997). GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11, 1048-1060.
Laugwitz, K.L., Moretti, A., Caron, L., Nakano, A., and Chien, K.R. (2008). Islet1 cardiovascular progenitors: a single source for heart lineages? Development 135, 193-205.
Leu, C.M., Chang, C., and Hu, C. (2000). Epidermal growth factor (EGF) suppresses staurosporine-induced apoptosis by inducing mcl-1 via the mitogen-activated protein kinase pathway. Oncogene 19, 1665-1675.
Liu, H., Peng, H.W., Cheng, Y.S., Yuan, H.S., and Yang-Yen, H.F. (2005). Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol Cell Biol 25, 3117-3126.
Manner, J., Perez-Pomares, J.M., Macias, D., and Munoz-Chapuli, R. (2001). The origin, formation and developmental significance of the epicardium: a review. Cells Tissues Organs 169, 89-103.
Maurer, U., Charvet, C., Wagman, A.S., Dejardin, E., and Green, D.R. (2006). Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 21, 749-760.
Michels, J., Foria, V., Mead, B., Jackson, G., Mullee, M., Johnson, P.W., and Packham, G. (2006). Immunohistochemical analysis of the antiapoptotic Mcl-1 and Bcl-2 proteins in follicular lymphoma. Br J Haematol 132, 743-746.
Molkentin, J.D., Lin, Q., Duncan, S.A., and Olson, E.N. (1997). Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 11, 1061-1072.
Moore, A.W., McInnes, L., Kreidberg, J., Hastie, N.D., and Schedl, A. (1999). YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126, 1845-1857.
Nijhawan, D., Fang, M., Traer, E., Zhong, Q., Gao, W., Du, F., and Wang, X. (2003). Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev 17, 1475-1486.
Opferman, J.T., Iwasaki, H., Ong, C.C., Suh, H., Mizuno, S., Akashi, K., and Korsmeyer, S.J. (2005). Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science 307, 1101-1104.
Opferman, J.T., Letai, A., Beard, C., Sorcinelli, M.D., Ong, C.C., and Korsmeyer, S.J. (2003). Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426, 671-676.
Orkin, S.H., and Zon, L.I. (1997). Genetics of erythropoiesis: induced mutations in mice and zebrafish. Annu Rev Genet 31, 33-60.
Pu, W.T., Ishiwata, T., Juraszek, A.L., Ma, Q., and Izumo, S. (2004). GATA4 is a dosage-sensitive regulator of cardiac morphogenesis. Dev Biol 275, 235-244.
Puthier, D., Bataille, R., and Amiot, M. (1999). IL-6 up-regulates mcl-1 in human myeloma cells through JAK / STAT rather than ras / MAP kinase pathway. Eur J Immunol 29, 3945-3950.
Ramsdell, A.F. (2005). Left-right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left-right axis determination. Dev Biol 288, 1-20.
Reynolds, J.E., Yang, T., Qian, L., Jenkinson, J.D., Zhou, P., Eastman, A., and Craig, R.W. (1994). Mcl-1, a member of the Bcl-2 family, delays apoptosis induced by c-Myc overexpression in Chinese hamster ovary cells. Cancer Res 54, 6348-6352.
Rinkenberger, J.L., Horning, S., Klocke, B., Roth, K., and Korsmeyer, S.J. (2000). Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev 14, 23-27.
Sato, T.N., Qin, Y., Kozak, C.A., and Audus, K.L. (1993). Tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proc Natl Acad Sci U S A 90, 9355-9358.
Schlaeger, T.M., Bartunkova, S., Lawitts, J.A., Teichmann, G., Risau, W., Deutsch, U., and Sato, T.N. (1997). Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proc Natl Acad Sci U S A 94, 3058-3063.
Schneider, H., and Brueckner, M. (2000). Of mice and men: dissecting the genetic pathway that controls left-right asymmetry in mice and humans. Am J Med Genet 97, 258-270.
Schnurch, H., and Risau, W. (1993). Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development 119, 957-968.
Sharma, P.R., Anderson, R.H., Copp, A.J., and Henderson, D.J. (2004). Spatiotemporal analysis of programmed cell death during mouse cardiac septation. Anat Rec A Discov Mol Cell Evol Biol 277, 355-369.
Shmueli, A., and Oren, M. (2005). Life, death, and ubiquitin: taming the mule. Cell 121, 963-965.
Snarr, B.S., Kern, C.B., and Wessels, A. (2008). Origin and fate of cardiac mesenchyme. Dev Dyn 237, 2804-2819.
Stennard, F.A., and Harvey, R.P. (2005). T-box transcription factors and their roles in regulatory hierarchies in the developing heart. Development 132, 4897-4910.
Townsend, K.J., Trusty, J.L., Traupman, M.A., Eastman, A., and Craig, R.W. (1998). Expression of the antiapoptotic MCL1 gene product is regulated by a mitogen activated protein kinase-mediated pathway triggered through microtubule disruption and protein kinase C. Oncogene 17, 1223-1234.
Townsend, K.J., Zhou, P., Qian, L., Bieszczad, C.K., Lowrey, C.H., Yen, A., and Craig, R.W. (1999). Regulation of MCL1 through a serum response factor/Elk-1-mediated mechanism links expression of a viability-promoting member of the BCL2 family to the induction of hematopoietic cell differentiation. J Biol Chem 274, 1801-1813.
Vinci, M.C., Visentin, B., Cusinato, F., Nardelli, G.B., Trevisi, L., and Luciani, S. (2004). Effect of vascular endothelial growth factor and epidermal growth factor on iatrogenic apoptosis in human endothelial cells. Biochem Pharmacol 67, 277-284.
Wang, B., Weidenfeld, J., Lu, M.M., Maika, S., Kuziel, W.A., Morrisey, E.E., and Tucker, P.W. (2004). Foxp1 regulates cardiac outflow tract, endocardial cushion morphogenesis and myocyte proliferation and maturation. Development 131, 4477-4487.
Wang, J.M., Chao, J.R., Chen, W., Kuo, M.L., Yen, J.J., and Yang-Yen, H.F. (1999). The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol 19, 6195-6206.
Ward, N.L., and Dumont, D.J. (2002). The angiopoietins and Tie2/Tek: adding to the complexity of cardiovascular development. Semin Cell Dev Biol 13, 19-27.
Yang, T., Buchan, H.L., Townsend, K.J., and Craig, R.W. (1996). MCL-1, a member of the BLC-2 family, is induced rapidly in response to signals for cell differentiation or death, but not to signals for cell proliferation. J Cell Physiol 166, 523-536.
Yang, T., Kozopas, K.M., and Craig, R.W. (1995). The intracellular distribution and pattern of expression of Mcl-1 overlap with, but are not identical to, those of Bcl-2. J Cell Biol 128, 1173-1184.
Zambrowicz, B.P., Imamoto, A., Fiering, S., Herzenberg, L.A., Kerr, W.G., and Soriano, P. (1997). Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci U S A 94, 3789-3794.
Zhong, Q., Gao, W., Du, F., and Wang, X. (2005). Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121, 1085-1095.
Zhou, P., Levy, N.B., Xie, H., Qian, L., Lee, C.Y., Gascoyne, R.D., and Craig, R.W. (2001). MCL1 transgenic mice exhibit a high incidence of B-cell lymphoma manifested as a spectrum of histologic subtypes. Blood 97, 3902-3909.
Zhou, P., Qian, L., Kozopas, K.M., and Craig, R.W. (1997). Mcl-1, a Bcl-2 family member, delays the death of hematopoietic cells under a variety of apoptosis-inducing conditions. Blood 89, 630-643.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44434-
dc.description.abstractMcl-1屬於Bcl-2蛋白家族中具有抗細胞凋亡功能的一員,在諸多受調控的細胞生死程式中扮演重要的上游角色。老鼠若全身性缺乏Mcl-1蛋白,會造成胚胎在著床前後死亡。在這篇論文中,我們利用Cre-loxP系統將內皮細胞譜系中的mcl-1基因剔除。以Tie2-cre將內皮細胞部份的mcl-1剔除後,會造成大部分的胚胎死亡:Tie2-cre;mMcl-1f/ko突變鼠的比例從E13.5以後開始明顯下降,但有部分突變鼠可以存活到出生後。組織切片分析顯示,這些條件性基因剔除小鼠的心臟發育有嚴重的延遲現象,其中ㄧ隻還帶有與先天性心臟缺損相似的缺陷。然而,再經由更細部的分析之後,我們未能在Tie2-cre;mMcl-1f/ko突變鼠的心內膜墊(endocardial cushion)中觀察到不正常的間葉細胞(mesenchymal cell)增生或凋亡亦或是神經脊細胞(neural crest cell)遷移的異常。存活的Tie2-cre;mMcl-1f/ko突變鼠經由心臟超音波檢查發現,主動脈血液回流以及和主動脈狹窄相似的表現型。這些結果暗示了內皮細胞所表現的Mcl-1蛋白在胚胎心臟發育和維持成熟心臟的正常功能中扮演了重要的角色。我們仍然需要更多的實驗來說明Mcl-1蛋白如何實行這些功能。zh_TW
dc.description.abstractMyeloid cell leukemia-1 (Mcl-1) is an anti-apoptotic member of the Bcl-2 protein family, which plays an apical role in many regulatory programs of cell death and survival. Mcl-1 deficiency results in peri-implantation lethality. Here, we employed the Cre-loxP system to conditionally knockout mcl-1 in the endothelial cell lineage. Tie2-cre-mediated deletion of mcl-1 leads to embryonic lethality with incomplete penetrance, with the expected frequency of Tie2-cre;mMcl-1f/ko conditional knockout embryos decreasing dramatically after E13.5. Histological analysis revealed that these conditional knockout embryos demonstrate a severe delay in heart development and one of them manifested defects mimicking congenital heart defects. However, detailed analysis revealed that cell proliferation and survival of mesenchymal cells in the endocardial cushion as well as migration of neural crest cell appeared to be normal in these mutant mice. The survived adult conditional knockout mice showed aortic regurgitation and an aortic stenosis-like phenotype. These results suggest a crucial role of endothelial Mcl-1 in embryonic heart development and maintaining normal heart functions during the adulthood. How Mcl-1 carries out these functions remains to be determined.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:57:23Z (GMT). No. of bitstreams: 1
ntu-98-R96448011-1.pdf: 2566806 bytes, checksum: aabb1f2293a1b888198904d2035379b9 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsTable of content………………………………………...……………………………….1
中文摘要………………………………………………………………………………...6
Abstract……………………..………………………………………………………......7
1. Introduction…………………………………………………………………...……...8
1-1 Mcl-1 (Myeloid cell leukemia-1)…………………………………………………8
1-1-1 Structure of Mcl-1…………………………………………………………..8
1-1-2 Regulation of Mcl-1 expression………………………………………….....9
1-1-3 Regulation of Mcl-1 protein stability……………………………………...11
1-1-4 Biological functions of Mcl-1……………………………………………..11
1-1-5 Mcl-1 expression in endothelial cells……………………………………..13
1-2 Cre-loxP system…………………………………………………………………13
1-3 Tie2………………………………………………………………………………15
1-3-1 Identification and characterization of Tie2………………………………..15
1-3-2 Expression of Tie2………………………………………………………...16
1-3-3 Tie2-cre transgenic mice…………………………………………………..18
1-4 Heart development………………………………………………………………19
1-5 Specific aims…………………………………………………………………….22
2. Material and methods……………………………………………………….……..24
2-1 Mouse (Mus musculus) strains……………………………………………….….24
2-2 Generation of Conditional knockout embryos……………………………….….24
2-3 Genotyping…………………………………………………………………..…..25
2-4 Histology and Immunohistochemistry………………………………………..…26
2-5 LacZ Staining………………………………………………………………..…..27
2-6 Cell Proliferation Analysis………………………………………………..……..28
2-7 Cell Apoptosis Analysis……………………………………………………..…..29
2-8 RNA In Situ Hybridization………………………………………………..…….29
2-9 Image Acquisition…………………………………………………………...…..31
3. Results…………………………………………………………………………...…..33
3-1 Mcl-1 expression patterns in the mouse heart region…………………………....33
3-2 Disruption of the mcl-1 gene in endothelial cells……………………………….33
3-3 Embryos lacking Mcl-1 in endothelial cell lineage have heart defects………….35
3-4 Embryos lacking one allele of the gene mcl-1 in endothelial cells have heart defects………………………………………………………………………...….36
3-5 Disruption of Mcl-1 expression in the endothelial cell lineage results in a decrease in mesenchymal cell number in endocardial cushions…………………38
3-6 Cardiac neural crest cell migration in endothelial cell Mcl-1 deficient embryos………………………………………………………………………….39
3-7 Regurgitation of the aortic semilunar valve in Mcl-1 conditional knockout mice………………………………………………………………………..…….40
4. Discussion……………………………………...……………………………..……..42
4-1 Endothelial cell Mcl-1 may be required for embryonic hematopoiesis………....43
4-2 Mcl-1 expressed in the endothelial cell lineage is essential for embryonic heart development………………………………………………………………..…….44
4-3 Endothelial cell Mcl-1 is a dosage-sensitive regulator of cardiac morphogenesis…………………………………………………………………...46
4-4 Depletion of Mcl-1 in endothelial cell results in an aortic stenosis-like phenotype………………………………………………………………………...47
5. Figures and tables………………………………………………………………..…49
Figure 1. Transverse sections of E12.5 mMcl-1f/+ embryos were
immunohistochemically stained with mouse Mcl-1-specific antibodies………...49
Figure 2. Schematic respresentation of the mcl-1 locus, targeting vector, mcl-1 flox allele and mcl-1 deletion allele………………………………………………….50
Figure 3. Schematic representation of the mcl-1 genome locus, targeting vector and the mutant alleles……………………………………………………………...…51
Figure 4. X-gal stained transverse sections of Tie2-cre; R26R transgenic E11.5 embryos………………………………………………………………………….52
Figure 5. Mating strategy of this study………………………………………………53
TABLE 1. Survival analysis of embryos and postnatal pups derived from Tie2-cre;mMcl-1+/ko crossed with mMcl-1f/f mice……………………………….54
Figure 6. Live embryos dissected at E10.5…………………………………………..55
Figure 7. Live embryos dissected at E11.5…………………………………………..56
Figure 8. Live embryos dissected at E13.5, E14.5 and E15.5……………………….57
Figure 9. Developmental delay of Tie2-cre;mMcl-1f/ko mutants…………………….58
Figure 10. OFT alignment defects in Tie2-cre;mMcl-1f/ko mutants………………….59
Figure 11. VSD and right atrial dilation in Tie2-cre;mMcl-1f/ko mutants……………60
Figure 12. Dilation of atria and developmental delay in mMcl-1f/ko hypomorphic mutants……………………………………………………………………….…..61
Figure 13. OFT alignment defects, VSD and right atrial dilation in mMcl-1f/ko hypomorphic mutants…………………………………………………………....62
TABLE 2. Frequency of cardiovascular defects in E13.5 embryos from various genotyoes……………………………………………………………………...…63
Figure 14. Transverse sections of control, mMcl-1f/ko and Tie2-cre;mMcl-1f/ko E12.5 embryos were Immunohistochemically stained with mouse Mcl-1-specific antibodies………………………………………………………………………...64
Figure 15. Loss of Mcl-1 in endothelial cells reduces the cell number of mesenchymal cell in endocardial cushions……………………………………....65
Figure 16. Loss of Mcl-1 in endothelial cells does not affect proliferation of mesenchymal cell in the endocardial cushions…………………………………..66
TABLE 3. Quantitative results of TUNEL staining in E10.5 and E11.5 embryos…..67
Figure 17. Neural crest cell (NCC) migration in Mcl-1 conditional knockout mice. Whole-mount in situ hybridization of embryos at E10.5 using Crabp1-specific probe…………………………………………………………………………..…68
Figure 18. The survived Tie2-cre;mMcl-1f/ko mice did not manifest any defects in heart contraction…………………………………………………………………69
TABLE 4. Comparison of LV Diastolic Inflow Parameters…………………………70
Figure 19. Aortic semilunar valve regurgitation revealed by color flow Doppler recording in 9-month-old mMcl-1f/ko, Tie2-cre;mMcl-1f/+ and Tie2-cre;mMcl-1f/ko mice………………………………………………………...................................71
TABLE 5. Results of Parameters Scored in the Echocardiographic Recording……..72
Figure 20. The vascular system in yolk sacs of Tie2-cre;mMcl-1f/ko embryos at E9.5 is under-developed…………………………………………………………………73
Reference…………………………………………………………………………...….74
dc.language.isoen
dc.subject心臟發育zh_TW
dc.subjectMcl-1zh_TW
dc.subject細胞凋亡zh_TW
dc.subject內皮細胞譜系zh_TW
dc.subject小鼠zh_TW
dc.subjectanti-apoptotic memberen
dc.subjectendothelial cell lineageen
dc.subjectCre-loxP systemen
dc.subjectMcl-1en
dc.subjectheart developmenten
dc.title促存活蛋白Mcl-1在Tie2+細胞譜系之功能探討zh_TW
dc.titleFunctional Characterization of the Pro-survival Protein Mcl-1 in Tie2+ Cell Lineageen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee游麗如(Li-Ru You),吳君泰(June-Tai Wu)
dc.subject.keywordMcl-1,細胞凋亡,內皮細胞譜系,小鼠,心臟發育,zh_TW
dc.subject.keywordMcl-1,anti-apoptotic member,Cre-loxP system,endothelial cell lineage,heart development,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2009-08-03
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved