請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44425完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉秀慧(Shiou-Hwei Yeh) | |
| dc.contributor.author | Yu-Shan Fan | en |
| dc.contributor.author | 范瑜珊 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:56:51Z | - |
| dc.date.available | 2014-09-15 | |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-03 | |
| dc.identifier.citation | [1] C. M. Lee, S. N. Lu, C. S. Changchien, C. T. Yeh, T. T. Hsu, J. H. Tang, J. H. Wang, D. Y. Lin, C. L. Chen, and W. J. Chen, 'Age, gender, and local geographic variations of viral etiology of hepatocellular carcinoma in a hyperendemic area for hepatitis B virus infection,' Cancer, vol. 86, pp. 1143-50, Oct 1 1999.
[2] T. Maruyama, S. Iino, K. Koike, K. Yasuda, and D. R. Milich, 'Serology of acute exacerbation in chronic hepatitis B virus infection,' Gastroenterology, vol. 105, pp. 1141-51, Oct 1993. [3] M. W. Yu, Y. C. Yang, S. Y. Yang, S. W. Cheng, Y. F. Liaw, S. M. Lin, and C. J. Chen, 'Hormonal markers and hepatitis B virus-related hepatocellular carcinoma risk: a nested case-control study among men,' J Natl Cancer Inst, vol. 93, pp. 1644-51, Nov 7 2001. [4] D. S. Chen, 'Public health measures to control hepatitis B virus infection in the developing countries of the Asia-Pacific region,' J Gastroenterol Hepatol, vol. 15 Suppl, pp. E7-10, May 2000. [5] J. E. Maynard, 'Hepatitis B: global importance and need for control,' Vaccine, vol. 8 Suppl, pp. S18-20; discussion S21-3, Mar 1990. [6] H. S. Margolis, M. J. Alter, and S. C. Hadler, 'Hepatitis B: evolving epidemiology and implications for control,' Semin Liver Dis, vol. 11, pp. 84-92, May 1991. [7] M. Dehesa-Violante and R. Nunez-Nateras, 'Epidemiology of hepatitis virus B and C,' Arch Med Res, vol. 38, pp. 606-11, Aug 2007. [8] F. Henkler, J. Hoare, N. Waseem, R. D. Goldin, M. J. McGarvey, R. Koshy, and I. A. King, 'Intracellular localization of the hepatitis B virus HBx protein,' J Gen Virol, vol. 82, pp. 871-82, Apr 2001. [9] H. J. Han, E. Y. Jung, W. J. Lee, and K. L. Jang, 'Cooperative repression of cyclin-dependent kinase inhibitor p21 gene expression by hepatitis B virus X protein and hepatitis C virus core protein,' FEBS Lett, vol. 518, pp. 169-72, May 8 2002. [10] N. Schek, R. Bartenschlager, C. Kuhn, and H. Schaller, 'Phosphorylation and rapid turnover of hepatitis B virus X-protein expressed in HepG2 cells from a recombinant vaccinia virus,' Oncogene, vol. 6, pp. 1735-44, Oct 1991. [11] J. A. Kemppainen, M. V. Lane, M. Sar, and E. M. Wilson, 'Androgen receptor phosphorylation, turnover, nuclear transport, and transcriptional activation. Specificity for steroids and antihormones,' J Biol Chem, vol. 267, pp. 968-74, Jan 15 1992. [12] S. Murakami, 'Hepatitis B virus X protein: structure, function and biology,' Intervirology, vol. 42, pp. 81-99, 1999. [13] J. C. Cross, P. Wen, and W. J. Rutter, 'Transactivation by hepatitis B virus X protein is promiscuous and dependent on mitogen-activated cellular serine/threonine kinases,' Proc Natl Acad Sci U S A, vol. 90, pp. 8078-82, Sep 1 1993. [14] M. J. Bouchard, L. H. Wang, and R. J. Schneider, 'Calcium signaling by HBx protein in hepatitis B virus DNA replication,' Science, vol. 294, pp. 2376-8, Dec 14 2001. [15] D. J. Barton and J. B. Flanegan, 'Synchronous replication of poliovirus RNA: initiation of negative-strand RNA synthesis requires the guanidine-inhibited activity of protein 2C,' J Virol, vol. 71, pp. 8482-9, Nov 1997. [16] M. J. Wentz, S. A. Becker, and B. L. Slagle, 'Dissociation of DDB1-binding and transactivation properties of the hepatitis B virus X protein,' Virus Res, vol. 68, pp. 87-92, Jun 2000. [17] H. F. Maguire, J. P. Hoeffler, and A. Siddiqui, 'HBV X protein alters the DNA binding specificity of CREB and ATF-2 by protein-protein interactions,' Science, vol. 252, pp. 842-4, May 10 1991. [18] S. Takada, N. Kaneniwa, N. Tsuchida, and K. Koike, 'Hepatitis B virus X gene expression is activated by X protein but repressed by p53 tumor suppressor gene product in the transient expression system,' Virology, vol. 216, pp. 80-9, Feb 1 1996. [19] D. F. Spandau and C. H. Lee, 'trans-activation of viral enhancers by the hepatitis B virus X protein,' J Virol, vol. 62, pp. 427-34, Feb 1988. [20] M. Levrero, C. Balsano, G. Natoli, M. L. Avantaggiati, and E. Elfassi, 'Hepatitis B virus X protein transactivates the long terminal repeats of human immunodeficiency virus types 1 and 2,' J Virol, vol. 64, pp. 3082-6, Jun 1990. [21] C. Balsano, M. L. Avantaggiati, G. Natoli, E. De Marzio, H. Will, M. Perricaudet, and M. Levrero, 'Full-length and truncated versions of the hepatitis B virus (HBV) X protein (pX) transactivate the cmyc protooncogene at the transcriptional level,' Biochem Biophys Res Commun, vol. 176, pp. 985-92, May 15 1991. [22] J. S. Twu, M. Y. Lai, D. S. Chen, and W. S. Robinson, 'Activation of protooncogene c-jun by the X protein of hepatitis B virus,' Virology, vol. 192, pp. 346-50, Jan 1993. [23] J. Han, H. Y. Yoo, B. H. Choi, and H. M. Rho, 'Selective transcriptional regulations in the human liver cell by hepatitis B viral X protein,' Biochem Biophys Res Commun, vol. 272, pp. 525-30, Jun 7 2000. [24] B. Aufiero and R. J. Schneider, 'The hepatitis B virus X-gene product trans-activates both RNA polymerase II and III promoters,' EMBO J, vol. 9, pp. 497-504, Feb 1990. [25] Z. Zhang, N. Torii, A. Furusaka, N. Malayaman, Z. Hu, and T. J. Liang, 'Structural and functional characterization of interaction between hepatitis B virus X protein and the proteasome complex,' J Biol Chem, vol. 275, pp. 15157-65, May 19 2000. [26] Z. Hu, Z. Zhang, E. Doo, O. Coux, A. L. Goldberg, and T. J. Liang, 'Hepatitis B virus X protein is both a substrate and a potential inhibitor of the proteasome complex,' J Virol, vol. 73, pp. 7231-40, Sep 1999. [27] A. S. Kekule, U. Lauer, L. Weiss, B. Luber, and P. H. Hofschneider, 'Hepatitis B virus transactivator HBx uses a tumour promoter signalling pathway,' Nature, vol. 361, pp. 742-5, Feb 25 1993. [28] S. Murakami, J. Cheong, S. Ohno, K. Matsushima, and S. Kaneko, 'Transactivation of human hepatitis B virus X protein, HBx, operates through a mechanism distinct from protein kinase C and okadaic acid activation pathways,' Virology, vol. 199, pp. 243-6, Feb 15 1994. [29] J. Benn and R. J. Schneider, 'Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade,' Proc Natl Acad Sci U S A, vol. 91, pp. 10350-4, Oct 25 1994. [30] C. M. Chiu, S. H. Yeh, P. J. Chen, T. J. Kuo, C. J. Chang, W. J. Yang, and D. S. Chen, 'Hepatitis B virus X protein enhances androgen receptor-responsive gene expression depending on androgen level,' Proc Natl Acad Sci U S A, vol. 104, pp. 2571-8, Feb 20 2007. [31] E. Bier, 'Drosophila, the golden bug, emerges as a tool for human genetics,' Nat Rev Genet, vol. 6, pp. 9-23, Jan 2005. [32] N. E. Baker, 'Patterning signals and proliferation in Drosophila imaginal discs,' Curr Opin Genet Dev, vol. 17, pp. 287-93, Aug 2007. [33] R. W. Carthew, 'Pattern formation in the Drosophila eye,' Curr Opin Genet Dev, vol. 17, pp. 309-13, Aug 2007. [34] J. Morante, C. Desplan, and A. Celik, 'Generating patterned arrays of photoreceptors,' Curr Opin Genet Dev, vol. 17, pp. 314-9, Aug 2007. [35] K. J. Venken and H. J. Bellen, 'Emerging technologies for gene manipulation in Drosophila melanogaster,' Nat Rev Genet, vol. 6, pp. 167-78, Mar 2005. [36] E. A. Bach, S. Vincent, M. P. Zeidler, and N. Perrimon, 'A sensitized genetic screen to identify novel regulators and components of the Drosophila janus kinase/signal transducer and activator of transcription pathway,' Genetics, vol. 165, pp. 1149-66, Nov 2003. [37] T. K. Sang, C. Li, W. Liu, A. Rodriguez, J. M. Abrams, S. L. Zipursky, and G. R. Jackson, 'Inactivation of Drosophila Apaf-1 related killer suppresses formation of polyglutamine aggregates and blocks polyglutamine pathogenesis,' Hum Mol Genet, vol. 14, pp. 357-72, Feb 1 2005. [38] M. Mutsuddi, C. M. Marshall, K. A. Benzow, M. D. Koob, and I. Rebay, 'The spinocerebellar ataxia 8 noncoding RNA causes neurodegeneration and associates with staufen in Drosophila,' Curr Biol, vol. 14, pp. 302-8, Feb 17 2004. [39] C. Frei and B. A. Edgar, 'Drosophila cyclin D/Cdk4 requires Hif-1 prolyl hydroxylase to drive cell growth,' Dev Cell, vol. 6, pp. 241-51, Feb 2004. [40] M. E. Lane, M. Elend, D. Heidmann, A. Herr, S. Marzodko, A. Herzig, and C. F. Lehner, 'A screen for modifiers of cyclin E function in Drosophila melanogaster identifies Cdk2 mutations, revealing the insignificance of putative phosphorylation sites in Cdk2,' Genetics, vol. 155, pp. 233-44, May 2000. [41] J. Lu, M. L. Ruhf, N. Perrimon, and P. Leder, 'A genome-wide RNA interference screen identifies putative chromatin regulators essential for E2F repression,' Proc Natl Acad Sci U S A, vol. 104, pp. 9381-6, May 29 2007. [42] D. Zannoth, 'Here are latest data on MSMS malpractice claims study,' Mich Med, vol. 80, pp. 624-7, Nov 1981. [43] S. L. Wong, Y. Chen, C. M. Chan, C. S. Chan, P. K. Chan, Y. L. Chui, K. P. Fung, M. M. Waye, S. K. Tsui, and H. Y. Chan, 'In vivo functional characterization of the SARS-Coronavirus 3a protein in Drosophila,' Biochem Biophys Res Commun, vol. 337, pp. 720-9, Nov 18 2005. [44] W. J. Yang, C. J. Chang, S. H. Yeh, W. H. Lin, S. H. Wang, T. F. Tsai, D. S. Chen, and P. J. Chen, 'Hepatitis B virus X protein enhances the transcriptional activity of the androgen receptor through c-Src and glycogen synthase kinase-3beta kinase pathways,' Hepatology, vol. 49, pp. 1515-24, May 2009. [45] T. A. Jongens, L. D. Ackerman, J. R. Swedlow, L. Y. Jan, and Y. N. Jan, 'Germ cell-less encodes a cell type-specific nuclear pore-associated protein and functions early in the germ-cell specification pathway of Drosophila,' Genes Dev, vol. 8, pp. 2123-36, Sep 15 1994. [46] L. Zhang, F. Ren, Q. Zhang, Y. Chen, B. Wang, and J. Jiang, 'The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control,' Dev Cell, vol. 14, pp. 377-87, Mar 2008. [47] Y. C. Tsai and Y. H. Sun, 'Long-range effect of upd, a ligand for Jak/STAT pathway, on cell cycle in Drosophila eye development,' Genesis, vol. 39, pp. 141-53, Jun 2004. [48] Q. Zhou, S. Apionishev, and D. Kalderon, 'The contributions of protein kinase A and smoothened phosphorylation to hedgehog signal transduction in Drosophila melanogaster,' Genetics, vol. 173, pp. 2049-62, Aug 2006. [49] T. Klein, L. Seugnet, M. Haenlin, and A. Martinez Arias, 'Two different activities of Suppressor of Hairless during wing development in Drosophila,' Development, vol. 127, pp. 3553-66, Aug 2000. [50] N. S. Tolwinski and E. Wieschaus, 'Armadillo nuclear import is regulated by cytoplasmic anchor Axin and nuclear anchor dTCF/Pan,' Development, vol. 128, pp. 2107-17, Jun 2001. [51] J. Jia, K. Amanai, G. Wang, J. Tang, B. Wang, and J. Jiang, 'Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus,' Nature, vol. 416, pp. 548-52, Apr 4 2002. [52] J. Gao, C. Chen, L. Hong, J. Wang, Y. Du, J. Song, X. Shao, J. Zhang, H. Han, J. Liu, and D. Fan, 'Expression of Jagged1 and its association with hepatitis B virus X protein in hepatocellular carcinoma,' Biochem Biophys Res Commun, vol. 356, pp. 341-7, May 4 2007. [53] W. L. Shih, M. L. Kuo, S. E. Chuang, A. L. Cheng, and S. L. Doong, 'Hepatitis B virus X protein inhibits transforming growth factor-beta -induced apoptosis through the activation of phosphatidylinositol 3-kinase pathway,' J Biol Chem, vol. 275, pp. 25858-64, Aug 18 2000. [54] H. Tang, L. Da, Y. Mao, Y. Li, D. Li, Z. Xu, F. Li, Y. Wang, P. Tiollais, T. Li, and M. Zhao, 'Hepatitis B virus X protein sensitizes cells to starvation-induced autophagy via up-regulation of beclin 1 expression,' Hepatology, vol. 49, pp. 60-71, Jan 2009. [55] S. Huang, J. He, X. Zhang, Y. Bian, L. Yang, G. Xie, K. Zhang, W. Tang, A. A. Stelter, Q. Wang, H. Zhang, and J. Xie, 'Activation of the hedgehog pathway in human hepatocellular carcinomas,' Carcinogenesis, vol. 27, pp. 1334-40, Jul 2006. [56] Y. Kim, J. W. Yoon, X. Xiao, N. M. Dean, B. P. Monia, and E. G. Marcusson, 'Selective down-regulation of glioma-associated oncogene 2 inhibits the proliferation of hepatocellular carcinoma cells,' Cancer Res, vol. 67, pp. 3583-93, Apr 15 2007. [57] C. Y. Logan and R. Nusse, 'The Wnt signaling pathway in development and disease,' Annu Rev Cell Dev Biol, vol. 20, pp. 781-810, 2004. [58] Q. Ding, W. Xia, J. C. Liu, J. Y. Yang, D. F. Lee, J. Xia, G. Bartholomeusz, Y. Li, Y. Pan, Z. Li, R. C. Bargou, J. Qin, C. C. Lai, F. J. Tsai, C. H. Tsai, and M. C. Hung, 'Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin,' Mol Cell, vol. 19, pp. 159-70, Jul 22 2005. [59] X. Zeng, K. Tamai, B. Doble, S. Li, H. Huang, R. Habas, H. Okamura, J. Woodgett, and X. He, 'A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation,' Nature, vol. 438, pp. 873-7, Dec 8 2005. [60] K. Hughes, E. Nikolakaki, S. E. Plyte, N. F. Totty, and J. R. Woodgett, 'Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation,' EMBO J, vol. 12, pp. 803-8, Feb 1993. [61] E. J. McManus, K. Sakamoto, L. J. Armit, L. Ronaldson, N. Shpiro, R. Marquez, and D. R. Alessi, 'Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis,' EMBO J, vol. 24, pp. 1571-83, Apr 20 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44425 | - |
| dc.description.abstract | 肝癌(Hepatocellular carcinoma, HCC)為台灣地區主要癌症死亡原因之一,肝癌的發生與B型肝炎病毒慢性感染具有密切相關。B型肝炎病毒X蛋白(Hepatitis B virus X protein, HBx)是一種B型肝炎病毒製造的調節蛋白,HBx除了影響病毒複製之外,許多研究指出HBx也參與肝癌的發生。但是HBx究竟如何影響病毒複製及肝癌之癌化過程,以及細胞中參與調控之關鍵分子基因,仍有待進一步釐清。尤其是目前許多研究利用cell culture system所指出參與調控HBx功能之細胞因子及訊息傳遞路徑眾多且多有爭議,此問題將有可能藉由利用果蠅單純之genetic 分析工具達到釐清關鍵分子機制之目的。因此本研究計劃以果蠅作為實驗動物,利用果蠅眼睛發育時,表現HBx蛋白所造成的rough eye表現型作為篩選的依據,分別進行「Non-biased」的Dose-sensitive genetic screen,以及針對特定的訊息傳遞路徑進行 genetic screen。
實驗設計乃利用p-element mediated transgenesis技術製造HBx的轉殖果蠅,並利用UAS/GAL4系統在果蠅眼睛表達HBx蛋白,結果發現30℃培養下,果蠅眼睛具有清楚的可供基因篩選的不正常表徵,表示HBx的確對細胞中特定調控機制產生影響,可提供後續進行whole genome dose-sensitive genetic screen之研究。在之後接續進行果蠅染色體缺失篩選時,利用Bloomington Deficiency Kits (Bloomington Stock Center),一共有270株基因缺陷的果蠅作為篩選材料(包含了95%以上的果蠅基因組),目前已完成50個染色體 (約1/6 基因組)之缺失篩選。完成的染色體位置分別為第二條染色體左臂的21A1到31C1,以及第二條染色體右臂的44D1到53A1。實驗結果發現在這兩區域間,分別存在兩個會增強HBx轉殖果蠅所造的眼睛不規則表徵之基因缺失果蠅株,分別是Df(2L)ed1、Df(2L)BSC143、Df(2R)en-A、Df(2R)BSC134。後續將可以相同的實驗方法完成果蠅染色體缺失篩選,並再利用基因區域中的每一基因的RNAi果蠅株,藉此找出HBx相關的修飾基因。 至於HBx和特定訊息傳遞路徑的基因互動實驗,結果發現HBx與EGFR、Notch、Hippo、JAK/STAT、 Autophagy等訊息路徑之間不存在明顯之交互作用。反之HBx 與PI3K、Wnt、mTOR訊息路徑之間可偵測到正向交互作用之存在,而與Hedgehog訊息路徑間則存在負向的交互作用。進一步分析HBx和Wnt訊息路徑間的關係時,採用constitutively active 之 GSK-3 kinase作為實驗材料時,發現HBx和其存在明顯的正向基因互動。於是假設HBx所造成的複眼發育不正常表徵可能透過GSK-3 kinase,這樣的推測在利用Dominant negative form GSK-3與HBx基因轉殖果蠅進行cross 時,發現DN-GSK-3會減弱HBx所造成的複眼發育不正常表徵,間接說明HBx所造成的複眼發育不正常表徵應透過GSK-3所調控的路徑。實驗結果顯示,在果蠅的實驗系統中GSK-3 kinase 可能為HBx的修飾基因,然而HBx如何影響此路徑,對病毒複製造成什麼影響,以及最終導致癌化的過程是未來可進一步研究的方向。 | zh_TW |
| dc.description.abstract | Hepatitis B virus (HBV) infection is hyperendemic in Taiwan and is a major risk factor for HCC. The HBV X protein (HBx) not only can regulate the viral replication, it is also implicated as a carcinogenic factor for hepatocellular carcinoma (HCC). But currently the molecular mechanisms by which HBx contributes to viral replication and HCC carcinogenesis remain largely inconclusive. We propose to dissect the complicated HBx regulated cellular events by using the drosophila genetic approaches. Two approaches are conducted in this thesis, one is the non-biased whole genome genetic screen to find out the HBx modifier gene(s), and the other is the genetic screening for specific signaling pathways interacting with HBx.
We first try to generate the HBx transgenic fly and study the phenotypes caused by HBx expression in Drosophila compound eyes. The full length HBx was cloned into pUAST and the resulting pUAST-HBx was used to generate UAS-HBx transgenic flies by microinjection. HBx mRNA is detectable when ectopic expressed UAS-HBx under the control of eye specific driver, GMR-GAL4 . We found that at 30 ℃, the HBx expressing ommatidia displays a rough eye phenotype, which can be used as a screen platform for subsequent genetic screening analysis. To do the non-biased whole genome genetic screen, we have included a set of chromosome deficient fly stocks, which cover more than 95% of fly genome, to explore the novel factors which can modify the HBx-mediated rough eye phenotype. Currenly, 50 chromosome deficient lines have been screened (~1/6 of the fly genome), spanning the chromosome regions of 21A1 to 31C1 and 44D1 to 53A1 on the second chromosome. Four deficiency lines were found with ability to enhance the severity of HBx-mediated rough eye, including Df(2L)ed1, Df(2L)BSC143, Df(2R)en-A, and Df(2R)BSC134. The same experiments will be applied to the other 5/6 genome and the putative modifier gene(s) within each chromosome region will be identified by RNAi approach. For the genetic screening of specific signaling pathways interacting with HBx, no genetic interactions between HBx and the signaling pathways of EGFR, Notch, Hippo, JAK/STAT, and Autophagy were identified. In constrast, there exists positive genetic interactions between HBx and PI3K、Wnt、mTOR signaling pathways and a negative genetic interaction between HBx and Hedgehog signaling pathway. To focus on the interaction between HBx and Wnt signaling pathway, our results further deomonstrated a positive genetic interaction between HBx and the constitutively active form of GSK-3 kinase. It suggested that HBx might increase the activity of GSK-3 kinase pathway. Accordingly, we propose that HBx-induced rough eye might be caused by regulating the GSK-3 kinase pathway. Indeed, the HBx-mediated rough eye is diminished in the dominant negative GSK-3 genetic background. Our current results suggested that GSK-3 kinase might function as a genetic modifier of HBx in this fly system. How does HBx affect this pathway and what is the resulting effect on viral replication and carcinogenic process warrants further investigation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:56:51Z (GMT). No. of bitstreams: 1 ntu-98-R96445108-1.pdf: 3520156 bytes, checksum: 47c41f15d67b6c4376b562489677af11 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員會審定書.................................... i
致謝................................................ ii 中文摘要............................................ iii 英文摘要............................................ v 目錄................................................ vii 序論................................................ 1 B型肝炎與肝癌(HCC)形成之關係........................ 1 B型肝炎病毒X蛋白質(HBx)的功能........................ 1 HBx與肝癌發生的關係................................. 3 生物動物模式-果蠅(Drosophila spp.).................. 4 研究目的........................................... 7 材料與方法.......................................... 9 實驗結果............................................ 16 第一部份:果蠅染色體缺失篩選 1.以顯微注射轉殖技術得到HBx基因轉殖果蠅.............. 16 2. HBx基因轉殖果蠅影響果蠅眼睛複眼發育................ 17 3.偵測HBx在果蠅體內表達情形........................... 18 4.果蠅染色體缺失篩選................................. 19 第二部份:特定訊息傳遞路徑基因篩選 1. EGFR訊息傳遞路徑................................. 21 2. Notch訊息傳遞路徑................................. 21 3. PI3K訊息傳遞路徑.................................. 21 4. Wnt訊息傳遞路徑.................................. 22 5. Hedgehog訊息傳遞路徑................................................... 24 6. Hippo訊息傳遞路徑................................................... 25 7. JAK/STAT訊息傳遞路徑.................................................. 25 8. mTOR訊息傳遞路徑.................................................. 25 結果討論............................................ 26 參考文戲............................................. 34 圖附錄............................................... 40 | |
| dc.language.iso | zh-TW | |
| dc.subject | B型肝炎病毒X蛋白 | zh_TW |
| dc.subject | 果蠅 | zh_TW |
| dc.subject | hepatitis B virus X protein | en |
| dc.subject | Drosophila genetic interaction | en |
| dc.title | 利用果蠅作為生物模式動物尋找B型肝炎病毒X蛋白之修飾基因 | zh_TW |
| dc.title | Identifying the species-conserved modifiers of hepatitis B virus X protein by Drosophila genetic approaches | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 吳君泰(June-Tai Wu) | |
| dc.contributor.oralexamcommittee | 陳培哲(Pei-Jer Chen),蕭信宏(Shin-Hong Shiao) | |
| dc.subject.keyword | 果蠅,B型肝炎病毒X蛋白, | zh_TW |
| dc.subject.keyword | Drosophila genetic interaction,hepatitis B virus X protein, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-03 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 3.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
