Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44423Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳炳宇(Bing-Yu Chen) | |
| dc.contributor.author | Sheng-Jie Luo | en |
| dc.contributor.author | 羅聖傑 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:56:44Z | - |
| dc.date.available | 2009-08-12 | |
| dc.date.copyright | 2009-08-12 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-01 | |
| dc.identifier.citation | [1] Apple Corporation Inc. Apple QuickTime Player. http://www.apple.com/quicktime/.
[2] H.-W. Chen, J.-H. Kuo, W.-T. Chu, and J.-L. Wu. Action movies segmentation and summarization based on tempo analysis. In MIR ’04: Proceedings of the 6th ACM SIGMM international workshop on Multimedia information retrieval, pages 251–258, New York, NY, USA, 2004. ACM. [3] W.-H. Cheng, Y.-Y. Chuang, Y.-T. Lin, C.-C. Hsieh, S.-Y. Fang, B.-Y. Chen, and J.-L. Wu. Semantic analysis for automatic event recognition and segmentation of wedding ceremony videos. IEEE Transactions on Circuits and Systems for Video Technology, 18(11):1639–1650, 2008. [4] P. Chiu, A. Girgensohn, and Q. Liu. Stained-glass visualization for highly condensed video summaries. In Proceedings of the 2004 IEEE International Conference on Multimedia and Expo, pages 2059–2062. IEEE, 2004. [5] W.-T. Chu and J.-L. Wu. Explicit semantic events detection and development of realistic applications for broadcasting baseball videos. Multimedia Tools Appl., 38(1):27–50, 2008. [6] CyberLink Corporation Inc. CyberLink MagicSports. http://www.cyberlink.com/multi/products/main 75 ENU.html. [7] CyberLink Corporation Inc. CyberLink PowerDVD. http://www.cyberlink.com/multi/products/main 1 ENU.html. [8] D. DeMenthon, V. Kobla, and D. Doermann. Video summarization by curve simplification. In MULTIMEDIA '98: Proceedings of the sixth ACM international conference on Multimedia, pages 211–218, New York, NY, USA, 1998. ACM. [9] A. Divakaran, K. A. Peker, and R. Radhakrishnan. Motion activity-based extraction of key-frames from video shots. In Proc. IEEE International Conference on Image Processing (1), pages 932–935, 2002. [10] A. Divakaran, K. A. Peker, and H. Sun. Constant pace skimming and temporal subsampling of video using motion activity. In ICIP (3), pages 414–417, 2001. [11] P. Dragicevic, G. Ramos, J. Bibliowitcz, D. Nowrouzezahrai, R. Balakrishnan, and K. Singh. Video browsing by direct manipulation. In CHI ’08: Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in computing systems, page 237 246, New York, NY, USA, 2008. ACM. [12] A. M. Ferman and A. M. Tekalp. Efficient filtering and clustering methods for temporal video segmentation and visual summarization. Journal of Visual Communication and Image Representation, 9:336–351, 1998. [13] W. H¨urst, G. G¨otz, and P. Jarvers. Advanced user interfaces for dynamic video browsing. In MULTIMEDIA ’04: Proceedings of the 12th annual ACM international conference on Multimedia, pages 742–743, New York, NY, USA, 2004. ACM. [14] T. Igarashi and K. Hinckley. Speed-dependent automatic zooming for browsing large documents. In UIST '00: Proceedings of the 13th annual ACM symposium on User interface software and technology, pages 139–148, New York, NY, USA, 2000. ACM. [15] E. W. Ishak and S. K. Feiner. Content-aware scrolling. In UIST '06: Proceedings of the 19th annual ACM symposium on User interface software and technology, pages 155–158, New York, NY, USA, 2006. ACM. [16] F. C. Li, A. Gupta, E. Sanocki, L.-w. He, and Y. Rui. Browsing digital video. In CHI '00: Proceedings of the SIGCHI conference on Human factors in computing systems, pages 169–176, New York, NY, USA, 2000. ACM. [17] W.-N. Lie and K.-C. Hsu. Video summarization based on semantic feature analysis and user preference. In IEEE International Conference on Sensor Networks, Ubiquitous and Trustworthy Computing, 2008. SUTC '08., pages 486–491, 2008. [18] R. Lienhart. Comparison of automatic shot boundary detection algorithms. In SPIE Storage and Retrieval for Image and Video Databases, number 3656, pages 290–301, 1999. [19] X. Liu, T. Mei, X.-S. Hua, B. Yang, and H.-Q. Zhou. Video collage. In MULTIMEDIA '07: Proceedings of the 15th international conference on Multimedia, pages 461–462, New York, NY, USA, 2007. ACM. [20] B. D. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of the 1981 DARPA Image Understanding Workshop, pages 121–130, April 1981. [21] T. Masui, K. Kashiwagi, and G. R. Borden, IV. Elastic graphical interfaces to precise data manipulation. In CHI '95: Conference companion on Human factors in computing systems, pages 143–144, New York, NY, USA, 1995. ACM. [22] Microsoft Corporation Inc. Microsoft Windows Media. http://www.microsoft.com/windows/windowsmedia/default.mspx. [23] K. A. Peker and A. Divakaran. An extended framework for adaptive playback-based video summarization. In SPIE Internet Multimedia Management Systems IV, Vol. 5242, pages 26–33, 2003. [24] Z. L. Qian Huang and A. Rosenberg. Automated semantic structure reconstruction and representation generation for broadcast news. In Proceedings of SPIE on Storage and Retrieval for Image and Video Databases, Vol. 3656, pages 50–62, 1999. [25] RealNetworks, Inc. RealNetworks RealOne Player. http://www.real.com/. [26] Y. Taniguchi, A. Akutsu, and Y. Tonomura. Panoramaexcerpts: extracting and packing panoramas for video browsing. In MULTIMEDIA '97: Proceedings of the fifth ACM international conference on Multimedia, pages 427–436, New York, NY, USA, 1997. ACM. [27] M.-C. Tien, Y.-T. Wang, C.-W. Chou, K.-Y. Hsieh, W.-T. Chu, and J.-L. Wu. Event detection in tennis matches based on video data mining. In Proceedings of the 2008 IEEE International Conference on Multimedia and Expo, ICME 2008, pages 1477–1480, 2008. [28] TiVo Inc. TiVo. http://www.tivo.com/. [29] B. T. Truong and S. Venkatesh. Video abstraction: A systematic review and classification. ACM Trans. Multimedia Comput. Commun. Appl., 3(1):3, 2007. [30] S. Uchihashi, J. Foote, A. Girgensohn, and J. Boreczky. Video manga: generating semantically meaningful video summaries. In MULTIMEDIA '99: Proceedings of the seventh ACM international conference on Multimedia (Part 1), pages 383–392, New York, NY, USA, 1999. ACM. [31] W. Willett, J. Heer, and M. Agrawala. Scented widgets: Improving navigation cues with embedded visualizations. IEEE Transactions on Visualization and Computer Graphics, 13(6):1129–1136, 2007. [32] M. M. Yeung and B. Liu. Efficient matching and clustering of video shots. In ICIP '95: Proceedings of the 1995 International Conference on Image Processing (Vol. 1)-Volume 1, pages 338–341, Washington, DC, USA, 1995. IEEE Computer Society. [33] D. Zhong, H. Zhang, and S.-F. Chang. Clustering methods for video browsing and annotation. In Proceedings of SPIE on Storage and Retrieval for Image and Video Databases, Vol. 2670, pages 239–246, 1996. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44423 | - |
| dc.description.abstract | 本論文提出一個新的影片瀏覽互動模型,稱之為自適快轉模型(adaptive fast-forwarding model)。此模型藉由分析影片中的語意化事件幫助使用者快速瀏覽影片;其設計是源自於類比車輛駕駛的行為模式:駕駛員若對窗外場景感興趣時,會降低車輛的速度,於不感興趣的場景則會加快車輛的速度。根據初步使用者實驗所觀察到的結果,我們設計出的影片播放系統具備以下的特徵:
(1) 根據影片內容的複雜程度及語意化事件,此播放系統得以自動地調整影片播放速度。 (2) 此播放系統會學習使用者對於語意化事件的偏好以及該使用者對於影片播放速度的習慣。 (3) 此播放系統在快轉影片時不會跳過任何影片片段,避免使用者遺漏任何感興趣的內容。 此外,為了改善傳統速度控制模型在此影片瀏覽模型中不適用的情況,我們提出了絕對速度控制模型(absolute speed control model),以增進影片播放速度的控制性。使用者測試的結果顯示,我們提出的系統-SmartPlayer比起傳統影片播放軟體的互動模式,在瀏覽部分特定種類之影片時可以帶來較好的使用經驗。 | zh_TW |
| dc.description.abstract | In this thesis we propose a new video interaction model called adaptive fast-forwarding to help people quickly browse videos with predefined semantic rules. This model is designed around the metaphor of scenic car driving, in which the driver slows down near areas of interest and speeds through unexciting areas. Results from a preliminary user study of our video player suggest the following:
• The player should adaptively adjust the current playback speed based on the complexity of the present scene and predefined semantic events. • The player should learn user preferences about predefined event types as well as a suitable playback speed. • The player should fast-forward the video continuously with a playback rate acceptable to the user to avoid missing any undefined events or areas of interest. Furthermore, we provide the absolute speed control model with the analog controller to enhance the experience of speed control. Our user study results suggest that for certain types of video, our system - SmartPlayer yields better user experiences in browsing and fast-forwarding videos than existing video players' interaction models. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:56:44Z (GMT). No. of bitstreams: 1 ntu-98-R96725015-1.pdf: 10544161 bytes, checksum: 7b36236b4b65e82e145ce070141781f3 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Abstract iii
List of Figures x List of Tables xiii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Problem and Proposed Solution 3 1.3 Thesis Organization 5 Chapter 2 RelatedWork 6 2.1 Video Summarization 6 2.1.1 Still-Image Abstraction 7 2.1.2 Video Skimming 8 2.1.3 Personalized Video Summarization 8 2.2 Interaction Models of Browsing 9 2.2.1 Document Browsing 9 2.2.2 Video Browsing 9 Chapter 3 User-Centric Video Fast-Forwarding 12 3.1 User Behavior Observation and Inquiry 12 3.2 System Overview 15 3.3 Skimming Model 16 3.3.1 Motion Layer 17 3.3.2 Semantic Layer 18 3.3.3 Personaization Layer 19 3.4 User Interface 20 3.5 Input Device and Speed Control Model 21 Chapter 4 User Testing 23 4.1 Task 1: Personalized Adaptive Fast-forwarding 24 4.1.1 Procedure and Measures 24 4.1.2 Results 25 4.1.3 Discussion 27 4.2 Task 2: Comparisons of Different Video Players 27 4.2.1 Procedure and Measures 27 4.2.2 Results 28 4.2.3 Discussion 31 4.3 Task 3: Comparisons of Different Control Approaches 34 4.3.1 Procedure and Measures 34 4.3.2 Results 34 4.3.3 Discussion 36 Chapter 5 Conclusion 38 Bibliography 41 Appendix A Another Research: Ambient Memento 46 A.1 Abstract 46 A.2 Introduction 47 A.3 Design Principles 51 A.4 System Overview 52 A.5 Photo Analysis 54 A.5.1 Photo Filtering 54 A.5.2 Memento Generation 55 A.5.3 Metadata Extraction 56 A.6 Theme Synthesis 57 A.6.1 Theme Template and Style 57 A.6.2 Memento Selection 59 A.6.3 Memento Collage 60 A.7 Theme Interaction 61 A.7.1 Memento Browsing 61 A.7.2 Active Region 63 A.7.3 Exceptions 64 A.8 Result and Evaluation 65 A.8.1 User Inquiries 66 A.8.2 Evaluation on Progressive Reminder 68 A.8.3 Discussion 69 A.9 Conclusions And Future Work 70 A.10 Bibliography 72 | |
| dc.language.iso | en | |
| dc.subject | 未定義之事件保留 | zh_TW |
| dc.subject | 影片播放倍速 | zh_TW |
| dc.subject | 自適應快轉 | zh_TW |
| dc.subject | 預先定義之事件偵測 | zh_TW |
| dc.subject | video playback | en |
| dc.subject | undefined event preserving | en |
| dc.subject | predefined event detection | en |
| dc.subject | adaptive fast-forward | en |
| dc.title | 基於使用者偏好之影片快轉模型 | zh_TW |
| dc.title | User-Preference-Based Video Fast-Forwarding Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 朱浩華(Hao-Hua Chu),梁容輝(Rung-Huei Liang) | |
| dc.subject.keyword | 影片播放倍速,自適應快轉,預先定義之事件偵測,未定義之事件保留, | zh_TW |
| dc.subject.keyword | video playback,adaptive fast-forward,predefined event detection,undefined event preserving, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-03 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| Appears in Collections: | 資訊管理學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-98-1.pdf Restricted Access | 10.3 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
