Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44411
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃燦輝(Tsan-Hwei Huang)
dc.contributor.authorHuang-Kuei Chuen
dc.contributor.author朱晃葵zh_TW
dc.date.accessioned2021-06-15T02:56:02Z-
dc.date.available2009-08-13
dc.date.copyright2009-08-13
dc.date.issued2009
dc.date.submitted2009-08-03
dc.identifier.citation1. 王泰典 (1993):岩石隧道擠壓變形模式之研究,國立台灣大學土木工程學研究所博士論文,台北
2. 中華工程股份有限公司 (2003):交通部公路總局東西向快速公路漢寶草屯線八卦山隧道工程-動態資訊資料庫
3. 李明勳 (2000):卵礫石層隧道開變形行為之最佳化,國立台灣科技大學營建工程學研究所碩士論文,台北
4. 汪世輝、梁光燦、王建力、謝啟泰 (2008):隧道施工變形監控管理,第七屆海峽兩岸隧道與地下工程學術與技術研討會,大連
5. 林士淵 (1992):規則節理岩體潛變模式之研究,國立台灣大學土木工程學研究所碩士論文,台北
6. 周允文、何泰源、陳福勝、湯輝雄、梁樾 (1999):八卦山卵礫石層隧道施工案例探討,第八屆大地工程學術研討會論文集,屏東,恆春,1583~1592
7. 陳正勳 (1989):岩石隧道地盤反應曲線之研究,國立台灣大學土木工程學研究所碩士論文,台北
8. 陳堯中 (2001):卵礫石隧道工程行為之研究,土木水利,2,5~19
9. 陳賀瑞 (1997):中北部地區及軟弱砂岩之物理與力學性質之初步探討,國立交通大學土木工程學研究所碩士論文,新竹
10. 黃燦輝 (1985):數值分析法在隧道工程之應用,地工技術,11,5~16
11. 黃俊傑 (2004):池上斷層地表季節性潛移行為之力學參數研究:斷層摩擦力學參數及淺層岩層(黏)彈性係數探討,國立台灣大學土木工程學研究所碩士論文,台北
12. 經濟部中央地質調查所 (2008):都會區及周緣坡地環境地質資料庫圖集-中部地區
13. 廖俊逸 (2008):砂岩受剪引致異向軟化及依時組成模式初探,國立台灣大學土木工程學研究所碩士論文,台北
14. 蔡立盛 (2005):砂岩依時性力學特性研究及應用,國立台灣大學土木工程學研究所博士論文,台北
15. 鄺寶山、王文禮 (1993):FLAC程式於隧道工程之實例分析,地工技術,41,50~61
16. 寶勇華 (1996):軟弱岩石隧道數值分析模式研究,國立台灣大學土木工程學研究所碩士論文,台北
17. Boidy, E., Bouvard, A. and Pellet, F. (2002):Back analysis of time-dependent behavior of a test gallery in claystone. Tunnelling and Underground Space Technology, 17, 415-424.
18. Boukharov, G. N., Chanda, M. W. and Boukharov, N. G. (1995):The three processes of brittle crystalline rock creep. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 32(4), 325-335.
19. Cai, M. (2008):Influence of stress path on tunnel excavation response-Numerical tool selection and modeling strategy. Tunnelling and Underground Space Technology, 23, 618-628.
20. Cristescu, N. D. and Hunsche, U. (1998):Time effect in Rock Mechanics. John Wiley & Sons Inc., New York, U. S. A.
21. Cristescu, N. D. (1993):Rock rhelogy. Comprehensive Rock Engineering (ed. in chief J. A. Hudson), Pergamon, Oxford, Vol. 1, 523-544.
22. Eberhardt, E. (2001):Numerical modeling of three-dimensional stress rotation ahead of an advancing tunnel face. Int. J. Rock Mech. & Min. Sci., 38, 499-518.
23. Goodman, R. E. (1989):Introduction to Rock Mechanics. 2nd ed. John Wiley & Sons Inc., New York, U. S. A.
24. González-Nicieza, C., Álvarez-Vigil, A. E., Menéndez-Díaz, A. and González-Palacio, C. (2008):Influence of the depth and shape of a tunnel in the application of the convergence-confinement method. Tunnelling and Underground Space Technology, 23, 25-37.
25. Guan, Z., Jiang, Y., Tanabashi, Y. and Huang, H. (2008):A new rheological model and its application in mountain tunneling. Tunnelling and Underground Space Technology, 23, 292-299.
26. Hoek, E. and E. T. Brown (1980):Underground Excavations in Rock. The Institution of Mining and Metallurgy, London.
27. Itasca Consulting Group, Inc. (2005):FLAC-Fast Lagrangian Analysis of Continua, Version 5.0, User’s Manual, Itasca Consulting Group, Inc., Minneapolis, Minnesota, U. S. A.
28. Jaeger, J. C. and Cook, N. G. W. (1979):Fundamentals of rock mechanics, 3rd edition, Chapman and Hall.
29. Kaiser, P. K. and N. R. Morgenstern (1981):Phenomenological model for rock with time-dependent strength. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 18(2), 153-165.
30. Kaiser, P. K., M. S. Diederichs, C. D. Martin, J. Sharp and W. Steiner (2000): Underground works in hard rock tunneling and mining, In: GeoEng 2000: International Conference on Geotechnical & Geological Engineering, November 19-24, Melbourne, Australia, Vol. 1, 841-926.
31. Kontogianni, V. A. and Stiros, S. C. (2005):Induced deformation during tunnel excavation: Evidence from geodetic monitoring. Engineering Geology, 79,115-126.
32. Ladanyi, B. and Gill, D. E. (1988):Design of tunnel linings in a creeping rock. Int. J. Min. and Geo. Eng., 6, 113-126.
33. Pan, Y. W. and J. J. Dong (1991a):Time-dependent tunnel convergence-Ⅰ. Formulation of model. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 28(6), 469-475.
34. Pan, Y. W. and J. J. Dong (1991b):Time-dependent tunnel convergence-Ⅱ. Advance rate and tunnel-support interaction. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 28(6), 477-488.
35. Purwodihardjo, A. and Cambou, B. (2005):Time-dependent modeling for soils and its application in tunneling. Int. J. Numer. Anal. Meth. Geomech, 29, 49-71.
36. Shalabi, F. I. (2005):FE analysis of time-dependent behavior of tunneling in squeezing ground using two different creep models. Tunnelling and Underground Space Technology, 20, 271-279.
37. Singh, D. P. (1975):A study of creep of rocks. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 12, 271-276.
38. Sulem, J., Panet, M. and Guenot, A. (1987a):Closure analysis in deep tunnels. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 24(3), 145-154.
39. Sulem, J., Panet, M. and Guenot, A. (1987b):An analytical solution for time-dependent displacement in a circular tunnel. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 24(3), 155-164.
40. Sterpi, D. and Gioga, G. (2009):Visco-Plastic behaviour around advancing tunnels in squeezing rock. Rock Mech Rock Engng. 42, 319-339.
41. Wang, T. T. and Huang, T. H. (2009):A constitutive model for the deformation of a rock mass containing sets of ubiquitous joints. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 46, 521-530.
42. William, N. F., James, S. L. and Kasif, O. (1976):Creep and relaxation of nonlinear viscoelastic materials. North-Holland publishing company, New York, U. S. A.
43. Yu, C. W. (1998):Creep characteristics of soft rock and modelling of creep tunnel. Department of Civil and Environmental Engineering University of Bradford. Ph. D. thesis, U. K.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44411-
dc.description.abstract隧道施工變形控管為現代隧道施工之重要理念之一,當變形量達一穩定後方能設置二次襯砌;目前國內許多進入「中、老年期」的隧道深處於數百公尺地底以下,施工過程既無災害記錄,亦無大量變形情況,卻於完工營運後數年開始出現異狀,且逐年惡化;如何掌握營運中隧道長期穩定的影響因素,及早展開系統性的安全檢測與評估,適時進行維護與延壽,已成為隧道工程極為重要之課題。欲探討營運後結構長期穩定的特性,必先瞭解施工過程的依時變形行為,而欲瞭解施工過程的依時變形的行為,必先納入大地材料黏彈塑特性對工程行為的影響。
大地材料在承受應力達特定門檻以上常顯露依時變形行為,其特性不同於廣泛應用的彈塑性組成關係所描述者,而造成工程行為具有依時變化的現象,欲在既有的彈塑模式下納入依時變形特性,受限於分析程序的複雜性以及參數取得的困難度等因素,在工程實務上仍不多見。
因此本研究以探討隧道依時收斂變形為目的,透過:(1)隧道開挖的力學機制與長期影響因素的研究;(2)非線性黏彈塑模式的建立;(3)數值模擬與監測案例的比對進行參數反算;(4) 比較不同開挖與支撐條件之隧道周圍應力分佈與收斂特性等四方面,進行分析與探討。
數值分析方面,將柏格模式撰寫修改成阻尼參數隨應力狀態變化,改善既有黏彈模式於不同應力狀態下考慮不足的缺憾,經過測試無誤後,進而探討不同開挖與支撐方式隧道周圍的應力分佈,以及該應力狀態下周圍材料阻尼參數的變化,以至於其引致的隧道收斂變形特性,並闡述大地材料依時變形特性對隧道長期穩定性的影響。研究結果將可以提隧道長期穩定分析之參考。
zh_TW
dc.description.abstractThe controlling of convergence deformation is an important concept in modern tunneling technique, and the second lining well be installed when deformation of rock surrounding tunnel is under control as the NATM method. In Taiwan, numbers of tunnels in middle to old ages increase with time rapidly, which deteriorate after years of performance, but there are no ruptures during construction and few numbers of deformations on rock when tunneling. So it is important to know well about the factors affecting their long-term stability.
In order to know well about tunnel structure systems in long-term stability characteristics, we must understand how time-dependent deformations occur during tunneling in first. Secondly, it is necessary to consider the influences by visco-elastio-plastic mechanics behavior of geo-materials.
Time-dependent deformation behaviors usually appear when geo-materials are abide by stress which is larger than creep critical stress threshold. It is different between time-dependent deformation behaviors and elasto-plastic constitutive model which is been applied extensively in tunnel convergence mechanisms. Some models combine elasto-plastic constitutive law with time-dependent characters which are too many complex procedures for analysis and the parameters are too hard to obtain, so they are difficult to use in engineering application.
This research aims to know well about tunnel time-dependent convergence deformations by using: (1) the influences of long-term factors and mechanics mechanisms during tunneling; (2) a non-linear visco-elasto-plastic constitutive model; (3) numerical simulations and monitoring measurements data for parameters by back-analysis; (4) time-dependent constitutive numerical model of different excavation forms and support systems and discuss stress around tunnel and convergence behaviors.
Base on the original Burgers rheological model, the model in this research modifies the viscous parameter as a function relative to different stress states. After test and verify confidentially, the model can improved the defects that classic visco-elastic model cannot consider different stress states mechanics mechanisms.
The numerical results show that the model can understand the phenomena at time-dependent deformation for geo-materials and underground structures during tunneling, and it also can be used for tunnel long-term stability research.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:56:02Z (GMT). No. of bitstreams: 1
ntu-98-R96521117-1.pdf: 8340803 bytes, checksum: 85272c686fe801b4c1b432d23fd1b3c0 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員審定書 Ⅰ
誌 謝 Ⅱ
摘 要 Ⅲ
ABSTRACT ⅠⅤ
符號表 ⅤⅠ
目錄 ⅤⅢ
表目錄 ⅩⅡ
圖目錄 ⅩⅢ
第一章 導論 1
1.1 研究背景與目的 1
1.2 研究方法與內容 1
第二章 前人研究 4
2.1 隧道分析常用的彈塑力學模式 4
2.1.1 應力-應變曲線 5
2.1.2 破壞準則 5
2.1.3 隧道開挖圍岩破壞類型 6
2.2 潛變模式 6
2.2.1 黏彈模式 7
2.2.2 黏彈塑模式 8
2.2.3 黏塑模式 9
2.2.4 經驗模式 9
2.2.5 柏格黏彈參數於實驗室求取方法 10
2.3 隧道開挖變形之分析模式 10
2.3.1 經驗準則 11
2.3.2 理論解模式 12
2.3.3 數值分析 13
第三章 非線性黏彈塑模式之建立 22
3.1 非線性黏彈塑數學模式 22
3.1.1 常見之隧道黏彈塑變形現象 22
3.1.2 既有黏彈塑模式之特性與其描述隧道變形之限制 24
3.1.3 模式之假設 25
3.1.4 數學模式與其特性 26
3.1.5 模式有關應力狀態影響依時變形之考慮 28
3.2 非線性黏彈塑數值模式 31
3.2.1 FLAC程式與fish語言 31
3.2.2 柏格模式於fish語法中的修改 32
3.2.3 柏格黏彈塑模式數值運算流程 33
3.2.4 FLAC分析潛變方法與注意事項 34
3.3 模試驗證 35
3.3.1 黏彈模式於三軸加壓試體的驗證 35
3.3.2 黏彈塑模式於圓形隧道開挖的驗證 36
第四章 隧道變形模擬之應用與模式參數反算分析 51
4.1 案例探討-以台76線八卦山隧道為例 51
4.1.1 工址條件 51
4.1.2 施工概況 52
4.2 八卦山隧道施工監測 53
4.3 數值模擬分析流程 54
4.3.1 數值網格與邊界 54
4.3.2 分析參數之選定 55
4.3.3 隧道開挖支撐之模擬 55
4.4 分析結果與討論 56
第五章 不同開挖與支撐條件之隧道周圍應力分佈與收斂特性 70
5.1 不同開挖型式對隧道依時變形抑制效果之探討 70
5.1.1 隧道幾何條件之影響 70
5.1.2 不同開挖方式之影響 72
5.1.3 台階開挖時機(長度)對隧道依時變形之影響 74
5.2 不同支撐條件對隧道依時變形抑制效果之探討 76
5.2.1 支撐材料勁度對隧道變形抑制效果討論 76
5.2.2 噴凝土支撐時機對隧道變形抑制效果討論 77
第六章 結論與建議 104
6.1 結論 104
6.2 建議 105
參考文獻 107
附錄 A 修正柏格黏彈模式之使用者副程式 A-1
附錄 B 修正柏格黏彈塑模式之使用者副程式 B-1
附錄 C 八卦山隧道WL-113案例數值模擬程式碼 C-1
附錄 D 論文口試-問題與回覆 D-1
dc.language.isozh-TW
dc.title大地材料依時變形對隧道收斂特性之影響zh_TW
dc.titleInfluence of time-dependent deformation of geo-materials
on the convergence characteristic during tunneling
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.coadvisor王泰典(Tai-Tien Wang)
dc.contributor.oralexamcommittee楊長義(Zon-yee Yang),董家鈞(Jia-Jyun Dong)
dc.subject.keyword隧道收斂,依時變形,彈塑變形,黏彈塑模式,長期穩定性,zh_TW
dc.subject.keywordtunnel convergence,time-dependent deformation,elasto-plastic deformation,visco-elasto-plastic constitutive model,long-term stability,en
dc.relation.page111
dc.rights.note有償授權
dc.date.accepted2009-08-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
8.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved