請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44410完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 瞿大雄(Tah-Hsiung Chu) | |
| dc.contributor.author | Rong-Fa Kuo | en |
| dc.contributor.author | 郭榮發 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:55:59Z | - |
| dc.date.available | 2009-08-03 | |
| dc.date.copyright | 2009-08-03 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-03 | |
| dc.identifier.citation | [1] T. Fjallbrant, “Activity and stability of linear networks,” IEEE Trans. Circuit Theory, pp. 12-17, vol. 12, no. 1, Mar. 1965.
[2] D. M. Pozar, Microwave Engineering, 3rd ed., New York: John Wiley, 2005, pp. 542-548. [3] S. Y. Liao, Microwave Circuit Analysis and Amplifier Design, Prentice-Hall, 1987, pp. 91-101. [4] R. E. Collin, Foundations for Microwave Engineering, 2nd ed., New York: McGraw-Hill, 1992, pp. 735-740. [5] D. T. Hess, and G. Weiss, “Negative resistance circuits,” IEEE Trans. Educ. vol. 11, no. 3, pp. 204-205, Sept. 1968. [6] A. P. S. Khanna, J. Obregon, and Y. Garault, “Efficient low-noise three port X-band FET oscillator using two dielectric resonators,” International Microwave Symposium Digest, vol. 82, no. 1, pp. 277 - 279, Jun. 1982. [7] M. K. Achuthan and S. Pasupathy, “Negative resistance in amplifiers and conditions for the stability of amplifiers,” IEEE Trans. Education, vol. 13, no. 2, pp. 102 - 103, Aug. 1970. [8] J. G. Linvill and F. F. Gibbons, Transistors and Active Circuits, McGraw-Hill, New York, 1961. [9] H. C. Gundnun and M. E. Rizkalla, “Eigenvalues and the Linvill power plane stability,” IEEE 39th Midwest Symposium on Circuits and Systems, vol. 3, no. 18-21, pp. 1075 - 1078, Aug. 1996. [10] A. P. Stern, “Stability and power gain of tuned transistor amplifiers,” Proc. IRE, 45, 3, pp-335-343, Mar. 1957. [11] J. M. Rollett, “Stability and power-gain invariants of linear two ports,” IRE Trans. Circuit Theory, vol. 9, no. 1, pp-29-32, Mar. 1962. [12] K. Kurokawa, “Power waves and the scattering matrix,” IEEE Trans. Microw. Theory Tech., vol. 13, no. 2, pp. 194 - 202, Mar. 1965. [13] E. Carli and T. Corzani, “General representation for the Rollett stability factor of a two-port network,” IEEE Trans. Circuits Theory, vol. 16, no. 2, pp. 215-217, May 1969. [14] P. J. Owens and D. Woods, “Reappraisal of the unconditional stability criteria for active 2-port networks in terms of S parameters,” Electron. Letters, vol. 6, pp. 315, 1970. [15] D. Woods, “Reappraisal of the unconditional stability criteria for active 2-port networks in terms of S parameters,” IEEE Trans. Circuits and Systems, vol. 23, no. 2, pp. 73-81, Feb. 1976. [16] C. S. Gledhill and M. F. Abulela, “Scattering parameter approach to the design of narrow-band amplifiers employing conditionally stable active elements,” IEEE Trans. Microw. Theory Tech., vol. 22, no. 1, pp. 43-48, Jan. 1974. [17] R. P. Meys, “Review and discussion of stability criteria for linear 2-ports,” IEEE Trans. Circuits and Systems, vol. 37, no. 11, pp. 1450-1452, Nov. 1990. [18] M. Ohtomo, “Proviso on the unconditional stability criteria for linear two port,” IEEE Trans. Microw. Theory Tech., vol. 43, no. 5, pp. 1197-1200, May 1995. [19] J. G. Su, S. C. W, and C. Y. C “An investigation on RF CMOS stability related to bias and scaling,” Solid-State Electronics, vol. 46, no. 4, pp. 451-458, 2002. [20] M. Pirola and G. Ghione, “Immittance and S-parameter-based criteria for the unconditional stability of linear two-ports: relations and invariance properties,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 3, pp. 519-523, Mar. 2009. [21] E. L. Tan, “A quasi-invariant single-parameter criterion for linear two-port unconditional stability,” IEEE Microw. Wireless Components Letters, vol. 14, no. 10, pp. 487-489, Oct. 2004 [22] M. L. Edwards and J. H. Sinsky, “A new criterion for linear 2-port stability using a single geometrically derived parameter,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 12, pp. 2303-2311, Dec. 1992. [23] G. Lombardi and B. Neri, “Criteria for the evaluation of unconditional stability of microwave linear two-ports a critical review and new proof,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 6, pp. 746-751, Jun. 1999. [24] P. Bianco, G. Ghionen, and M. Pirola, “New simple proofs of the two-port stability criterium in terms of the single stability parameter μ1 (μ2),” IEEE Trans. Microw. Theory Tech., vol. 49, no. 6, pp. 1073-1076, Jun. 2001 [25] E. L. Tan, “Rollett-based single-parameter criteria for unconditional stability of linear two-ports,” IEE Proc. Microw. Antennas Propag., vol. 151, no. 4, pp. 299- 302, Aug. 2004. [26] E. L. Tan, “Simple derivation and proof of geometrical stability criteria for linear two-ports,” Microw. Opt. Tech. Letters., vol.40, no. 1, pp. 81-83, Jan. 2004. [27] M. L. Edwards and S. Cheng “Conditionally stable amplifier design using constant μ-contours,” International Microwave Symposium Digest, vol. 2, no. 17-21, pp. 863-866, Jun. 1996. [28] E. L. Tan, “Quasi-invariant single-parameter criterion for unconditional stability: review and application,” Asia-Pacific Microwave Conference , pp. 12-15, Dec. 2006. [29] J. F. Boehm and W. G. Albright, “Unconditional stability of a three-port network characterized with S-parameters,” IEEE Trans. Microw. Theory Tech., vol. 35, no. 6, pp. 582-585, Jun. 1987. [30] E. L. Tan, “Simplified graphical analysis of linear three-port stability” IEE Proc.-Microw. Antenna Propag., vol. 152, no. 4, pp. 209-213, Aug. 2005. [31] Advanced Design System (ADS), Agilent Technologies, Palo Alto, CA. [32] D. F. Page and A. R. Boothroyd, “Instability in two-port active network,” IRE Trans. Circuit Theory, vol. 5 no. 2, pp. 133-139, Jun. 1958. [33] G. Gonzalez and O. J. Sosa, “On the design of a series feedback network in a transistor negative-resistance oscillator,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 1, pp. 42-47, Jan. 1999. [34] B. Kormanyos, “Matching network synthesis for low noise and power amplifiers,” Microw. and RF Mag., pp.105-109, Feb. 1998 [35] T. G. Ruttan, B. Grossman, A. Ferrero, and J. Martens, “Multiport VNA measurements,” Microw. Magazine, vol.9, no. 3, pp. 56-69, Jun. 2008. [36] H. C. Lu and T. H. Chu, “Port reduction methods for scattering matrix measurement of an n-port network,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 6, pp. 959-968, Jun. 2000. [37] H. C. Lu and T. H. Chu, “Multiport scattering matrix measurement using a reduced-port network analyzer,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 5, pp. 1525-1533, May 2003. [38] J. C. Vaz, J. L. Caceres, J. C. Freire, and J. Perez, “ Design and performance of dielectric resonator oscillators with series feedback,” IEEE Electrotechnical Conference, pp. 339-342, Apr. 1989. [39] V. F. Fusco, “Series feedback integrated active microstrip antenna synthesis and characterization,” Electron. Letters, vol. 28, no. 1, pp. 89-91, Jan. 1992. [40] A. I. Grayzel, “A new configuration providing negative resistance at higher frequency than that of the negative resistance device by itself,” International Microwave Symposium Digest, vol. 78, no. 1, pp. 329-331, Jun. 1978. [41] P. Ribenboim, Fermat's Last Theorem, New York: Springer, 1999. [42] J. P. Tignol, Galois' Theory of Algebraic Equations , World Scientific, 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44410 | - |
| dc.description.abstract | 本論文發展三埠網路的穩定性及不穩定性分析方法,是以二埠網路輸入埠與輸出埠的反射係數表示式,作為穩定性及不穩定性分析的基礎。即藉由將一個三埠網路,其中一埠接上負載,例如第三埠接上 成為一含 變數之二埠網路,如具有回饋網路的二埠串接回饋網路就是一例,並在第一章簡介二埠網路的穩定性分析,以期藉由二埠網路特性,研究發展三埠網路之穩定性分析方法。本論文後續章節,將藉由此一含第三埠 的二埠網路,其輸入埠與輸出埠之反射係數 及 表示式,或運用其表示成一含 變數之二埠網路穩定性因子 ,以期對所接負載網路 ,找到造成此二埠網路在輸入埠與輸出埠上,無條件穩定區域及條件不穩定區域的邊界表示式,或條件不穩定區域內最大不穩定曲線的表示式。對一個三埠微波電路設計,其另外二埠,即第一埠及第二埠也可藉由此程序,將其另二埠分別視為負載網路,分別求得其無條件穩定區域邊界、條件不穩定性邊界及條件不穩定區域內最大不穩定曲線,以完整分析三埠網路之穩定性及不穩定性。本論文將推導所得之三埠網路之穩定及不穩定解析式,藉由使用安捷倫ADS電腦輔助設計軟體分別予以實現,以加強該電腦輔助設計軟體的三埠網路穩定性及不穩定性分析能力,提供微波電路設計者的相關設計資訊。 | zh_TW |
| dc.description.abstract | Beginning with the expressions for the input and output reflection coefficients of a two-port network, this dissertation develops the stability and instability analyses of a three-port network by terminating one port, for example the port 3 with load. A two-port series-feedback network is an example of a three-port network with as the terminating network. Chapter 1 then explains the stability conditions and stability factors of a two-port network and a three-port network, respectively. In the following chapters, the unconditional stability boundaries and the conditional instability curves of a two-port network with the third port terminated with are derived with the explicit expressions. This procedure is followed by having each of the other two ports as the terminating network in order to fully characterize the stability and instability of a three-port network. The resulting explicit expressions related to the unconditional stability and the conditional instability of a three-port network are implemented using the Agilent ADS software tool. These derived expressions can not only enhance the computer-aided capability on the stability analysis of a three-port network but also provide useful information for the microwave circuit designer. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:55:59Z (GMT). No. of bitstreams: 1 ntu-98-D89942005-1.pdf: 1032447 bytes, checksum: 4a657174709ab5877b4543c76c9383be (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員會審定書..................... i
誌謝.......................... iii ACKNOWLEDGEMENT .................... iv 摘要........................... v ABSTRACT ........................ vi CONTENTS ....................... vii LIST OF FIGURES .................... xi CHAPTER 1 INTRODUCTION ................. 1 1.1 Stability of a Two-Port Network ........ 2 1.1.1 Stability Conditions ..............3 1.1.2 Stability Factor ................7 1.2 Stability of a Three-Port Network....... 10 1.2.1 Stability Conditions..............13 1.2.2 Stability Factor................17 1.3 Contributions................. 18 1.4 Chapter Outlines ............... 19 CHAPTER 2 STABILITY BOUNDARIES OF A THREE-PORT NETWORK ....................... 23 2.1 Graphic Approach ............... 24 2.1.1 Unconditional Stability Circles .... 25 2.1.2 Boundary Expressions.......... 31 2.1.3 Relation between and ........ 35 2.1.4 Uniqueness .............. 38 2.1.5 Continuity............... 40 2.1.6 Examples................ 41 2.2 Root-Solving Approach............. 51 2.2.1 Boundary Expressions.......... 51 2.2.2 Root-Solving Method .......... 52 2.2.3 Sufficient Conditions ......... 56 2.2.4 Examples................ 58 2.3 Summary.................... 62 CHAPTER 3 CONDITIONAL INSTABILITY CURVES OF A THREE-PORT NETWORK ........................ 65 3.1 Instability Requirements ........... 67 3.2 Unconditional Instability Requirements .... 72 3.3 Conditional Instability Requirements ..... 76 3.4 Conditional Instability Circles........ 81 3.5 Maximum Instability Curves .......... 83 3.6 Examples ................... 87 3.7 Summary ................... 98 CHAPTER 4 CONCLUSIONS .................101 4.1 Summary ................... 101 4.2 Future Work ................. 103 REFERENCES ...................... 105 APPENDICES ...................... 113 A Stability Circles C1 and C2 ......... 113 B Coefficients of (2.22)............ 116 C Solving a Quartic Equation.......... 118 D Conditional Instability Circle ....... 120 E Maximum Instability Curves L1 and L2 .... 121 F Intersection Point P............. 124 | |
| dc.language.iso | en | |
| dc.subject | 穩定因子 | zh_TW |
| dc.subject | 無條件穩定 | zh_TW |
| dc.subject | 穩定圓 | zh_TW |
| dc.subject | 反射系數 | zh_TW |
| dc.subject | 不穩定性 | zh_TW |
| dc.subject | 串接回饋 | zh_TW |
| dc.subject | stability circle | en |
| dc.subject | Reflection coefficient | en |
| dc.subject | instability | en |
| dc.subject | unconditional stability. stability factor | en |
| dc.subject | series-feedback | en |
| dc.title | 三埠網路之穩定性與不穩定性分析 | zh_TW |
| dc.title | Stability and Instability Analyses of a Three-port Network | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳俊雄(Chun-Hsiung Chen),莊晴光(Ching-Kuang C.Tzuang),黃建彰(Chien-Chang Huang),曾昭雄(C.-H. Tseng),王臺模 | |
| dc.subject.keyword | 反射系數,穩定圓,無條件穩定,穩定因子,串接回饋,不穩定性, | zh_TW |
| dc.subject.keyword | Reflection coefficient,stability circle,unconditional stability. stability factor,series-feedback,instability, | en |
| dc.relation.page | 126 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-03 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
