Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44396
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張國鎮
dc.contributor.authorChung-Han Yuen
dc.contributor.author游忠翰zh_TW
dc.date.accessioned2021-06-15T02:55:09Z-
dc.date.available2009-08-04
dc.date.copyright2009-08-04
dc.date.issued2009
dc.date.submitted2009-08-03
dc.identifier.citationBarnes, H. A., 1989, “Shear-Thickening in Suspension of Nonaggregating Solid Particals Dispersed in Newtonian Liquids”, Journal of Rheology, Nol. 33, 329~366.
Carlson J.D., Chrzan M.J. and James F.O. (1995). Magnetorheological fluid devices, U.S. Patent #5,398
Carson, J. D., Spencer, Jr., 1996, “Magneto-Rheological Fluid Dampers fir Semi-Active Seismic Control”, In the Proceeding of the 3rd International Conference on Motion and Vibration Control, Vol. III, pp.35~40
Catherall, A. A., Melrose, J. R., Ball, R. C., 2000, “Shear Thickening and Order-disorder Effects in Concentrated Colloids at High Shear Rate”, Journal of Rheology, Vol. 44, 1~25.
Constantinou, M. C. , and Symans, M. D. ,1992, “Experimental and Investigation of Seismic Response of Structure with Supplemental Fluid Viscous Dampers”, Publish as Report NCEER-92-0032, by the National Center of Earthquake Engineering Research, State University of New York at Buffalo.
Constantinou, M. C., Symans, M. D., 1993, “Experimental Study of Seismic Response of Buildings with Supplemental Fluid Dampers”, The Structure Design of Tall Buildings, Vol. 2, 93~132.
Dyke, S.J., Spencer, B.F. Jr., Sain, M.K. and Carlson, J.D. (1998). 'An experimental study of MR dampers for seismic protection.' Smart Materials & Structures, 7(5), 693-703
ESDU, “Non-Newtonian Fluids: Guide to classification and characteristics”, Item No. 97034, ESDU International plc, London, December 1997.
ESDU, “Non-Newtonian Fluids: Obtaining Viscometric Data for Frictional Pressure Loss Estimation for Pipe Flow”, Item No. 95012, ESDU International plc, London, December 2004.
Foss, D. R., Brady, J. F., 2000, “Structure, Diffusion and Rheology of Brownian Suspensions by Stokesian Dynamics Simulation”, Journal of Fluid Mechanics, Vol. 407, 167~200.
Heber, R., Doncker, F., Bung, R., 1990, “Vibration Attenuation by Passive Stiffness Switching Mounts”, Journal of Sound Vibration, Vol. 138, 47~57.
Hoffman, R. L., 1974, “Discontinuous and Dilatants Viscosity Behavior in Concentrated Suspensions. II. Theory and Experimental tests”, Journal of Rheology, Vol. 42, 111~123
Laun, H. M., Bung, R., Schmidt, F., 1991, “Rheology of Extremely Shear Thickening Polymer Dispersions”, Journal of Rheology, Vol. 35, 999~1034。
Lee, D. I., Reder, A. S., 1972, “The Rheological Properties of Clay Suspensions, Latexes and Clay-Latex Systems.” TAPPI Coating Conference Proceedings, pp 201~231.
Norman, M. W., Li Pang, “ Nondimensional Analysis of Semi-Active Electrorheological and Magnetorheological Dampers Using Approximate Parallel Plate Models”, 1998, Smart Material, Struct. 7, 732~743.
Norman, M. W., Jason, L., Nicjolas, R., Choi, Y. T., 2004, “ Biviscous Damping Behavior in Electrorheological Shock Absorbers”, Smart Material, Structure. 13, 743~752.
Reinhorn, A. M., Li, C., and Constantinou, M. C., 1995, “Experimental and Analytical Investigation of Seismic Retrofit of structures with Supplemental Damping, Part 1 – Fluid Viscous Damping Devices”, Publish as Report NCEER-95-0001, by the National Center of Earthquake Engineering Research, State University of New York at Buffalo.
Spencer B.F., Jr., Dyke S.J., Sain M.K. and Carlson J.D. (1997). 'Phenomenological model of a magnetorheological damper.' Journal of Engineering Mechanics, ASCE, 123(3), 230-238
Spencer B.F., Jr., Yang G., Carlson J.D. and Sain M.K. (1998). ''Smart' dampers for seismic protection of structures: a full-scale study.' Proc., 2nd World Conf. Struct. Control, Vol. 1, 417-426
Tsopelas, P., Okamoto, S., Constantinou, M. C., Ozaki, D., and Dujii, S., 1994 “Experimental and Analytical Study of Systems Consisting of Sliding Bearing, Rubber Restoring force Devices, and Fluid Dampers”, Publish as Report NCEER-94-0002, by the National Center of Earthquake Engineering Research, State University of New York at Buffalo.
Whorlow, R. W., “Rheology Techniques”, Ellis Horwood Limited.
Yang G., Spencer B.F., Jr., Carlson J.D. and Sain M.K., 2002, 'Large-scale MR fluid dampers: modeling and dynamic performance considerations.' Engineering Structures, 24(3), 309-323.
Young, S. L., Norman, J. Wanger, 2003, “Dynamic Properties of Shear Thickening Colloidal Suspensions”, Rheol Acta, Vol. 42, 100~208.
Yao-J.T.P., “Concept of Structure Control”, Journal of the Structure Division, ASCE, Vol.98, NO. ST7, July, 1972, pp.1567~1674.
林家銘, “磁流變阻尼器之結構物半主動模糊控制”, 2004, 國立成功大學土木工程研究所碩士論文,徐德修老師指導。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44396-
dc.description.abstract本論文主要研究之目的在於,將新式智慧型剪切增稠流體,應用於傳統的黏性阻尼器,並且自材料試驗以及理論推討之結果,研究此新式阻尼器應用於結構物被動控制上之可行性。
剪變增稠流體的特性為:當流體受到一剪切應力時,其黏滯度會在低剪應變率(或是流體截面之速度梯度)時隨著剪應力之增增加而迅速的抬升,而當流體超過某一臨界剪應變率後,黏滯度又會隨著剪應力增大而逐漸變小,最後則黏滯度則會維持在一定值上呈牛頓流體的型態。若將此種流體之特性應用於構造簡單的流動型(Flow Mode)阻尼器當中,則可以產生非線性且α值小於1之阻尼器出力效果(F = CVα);而α值小於1的黏性阻尼器亦有許多研究證明其消能之效果與經濟性優於α值等於1或是大於1的阻尼器。故若可以只利用改變流體黏滯度的方式,即可設計出不同C值與α值之黏性阻尼器,再加上由於其行為簡單且易於定性分析及評估,在設計工作上,優於傳統上利用改變機械性質的方法來設計之黏性阻尼器。
本論文所採用之材料為聚乙烯乙二醇(PPG)和粒徑為12奈米的二氧化矽微粒(12nm Fumed Silica Particle),其材料取得容易,成本較傳統黏性阻尼器所使用之矽油低。另一方面,流體的製作程序亦非常簡單,僅需充分的混和此兩種材料即可,且其成品不具有揮發性、對於溫度之敏感性極低,非常適合填充於阻尼器中,供結構物消能所使用。
本論文將流體的行為理論和阻尼器的運動機制結合,推導出由STF流體所填充之黏性阻尼器的理論行為模式,並證明其遲滯迴圈及阻尼器出力與速度之關係皆類似α值小於1之黏性阻尼器。另外,論文中亦有對於STF流體之實際製作與測試,其結果也符合流體特性。
zh_TW
dc.description.abstractThe study focus on theoretical analysis of the behavior of viscous damper utilizing smart material, which is so called Shear Thickening Fluid. By the result of material testing and theory derivation, study the feasibility of installing this kind of new type viscous dampers into real structures.
The viscosity behavior of the shear thickening fluid is that, while the fluid is under low shear rate range, the viscosity will rise steeply with shear rate; while the fluid is under middle shear rate range, the viscosity will decrease slowly; and in the end, while the fluid is under much higher shear rate range, the viscosity will maintains in a stable value and behaves like a Newtonian fluid. Fill the Shear Thickening Fluid into simply flow mode damper, so that the damper could behaves like the traditional viscous damper with α<1 (F = CVα), which has been proved have much more ability to dissipate energy from earthquake then other viscous dampers with α≧1. The advantages of Shear Thickening Fluid filled dampers are that the design method is only to change the thickness of fluid and size of dampers. It is much more convenience than traditional viscous dampers.
The study use 12nm fumed silica particles and Polypropylene Glycol (PPG) to produce Shear Thickening Fluid. These two kind of material are easily to obtain and have low cost. The produce process is very simple. The only thing need to do is to mix these two materials together and stir sufficiently. The advantage of this fluid is that it has low sensitivity to temperature. This advantage makes the Shear Thickening Fluid suitable to work in the dampers.
The study combined the theory of fluid and the mechanism of dampers, and furthermore derived out the behavior of Shear Thickening Fluid filled dampers, and proved that both of the relation between damper force and velocity and hysteresis loop are very like the behavior of traditional viscous dampers with α<1. On the other hand, the experiment presented in this study showed that the Shear Thickening Fluid is easily to produce and the properties of behavior is quite reasonable.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:55:09Z (GMT). No. of bitstreams: 1
ntu-98-R96521220-1.pdf: 10694249 bytes, checksum: 9839ee38acbc661b1212649bd612107a (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口式委員會審定書..........................................i
誌 謝...................................................ii
中文摘要................................................iii
Abstract..................................................iv
第一章 緒論 ..............................................1
1.1 研究背景............ .............................1
1.2 研究動機............ .............................2
1.3 論文架構............ .............................4
第二章 文獻回顧 ..........................................6
2.1 前言..............................................6
2.2 結構物控制概念....................................6
2.3 黏性阻尼器介紹....................................9
2.4 磁流變阻尼器介紹.................................14
2.5 小結.............................................24
第二章 流體理論 .........................................25
3.1 前言.............................................25
3.2 流變學簡介.......................................25
3.3 流體之分類與行為.................................29
3.3.1 流體的基本行為.............................29
3.3.2 流體之分類.................................31
3.3.3 穩態下流體之行為與公式.....................33
3.4 剪切增稠流體介紹.................................37
3.5 小結.............................................39
第四章 剪切增稠流體之製作與測定 .........................41
4.1 前言.............................................41
4.2 流變儀量測理論...................................41
4.2.1 流變儀量測應注意之要點.....................42
4.2.2 流變儀之分類與簡介.........................44
4.3 STF流體之製作....................................52
4.3.1 材料介紹...................................52
4.3.2 實驗步驟...................................55
4.4 STF流體測試結果..................................60
4.5 結果討論.........................................63
第五章 剪切增稠流體應用於阻尼器之行為研究 ...............65
5.1 前言.............................................65
5.2 阻尼器之運作機制.................................65
5.3 各種流體於阻尼器中之運動理論.....................67
5.3.1 Poiseuille Flow............................68
5.3.2 含牛頓流體阻尼器之理論推導.................70
5.3.3 含賓漢流體阻尼器之理論推導.................76
5.3.4 含雙黏性流體阻尼器之理論推導...............84
5.3.5含賓漢雙塑性流體阻尼器之理論推導............96
5.4 各種流體應用於阻尼器中之特性比較................110
5.4.1 流體特性比較..............................110
5.4.2 阻尼器出力與速度關係之比較................113
5.4.3 阻尼器出力與阻尼係數關係之比較............116
5.4.4 遲滯迴圈行為比較..........................119
5.4.5 黏滯度影響................................125
5.4.6 賓漢效應之影響............................133
5.5 STF流體填充阻尼器之運動行為.....................139
5.5.1 阻尼器行為分析程式解說....................140
5.5.2 STF流體填充阻尼器之運動行為...............156
5.6 小結............................................166
第六章 結論與未來展望 ..................................167
6.1 結論與可行性評估................................167
6.2 未來展望........................................168
dc.language.isozh-TW
dc.subject剪切增稠流體zh_TW
dc.subject流變學zh_TW
dc.subject被動控制zh_TW
dc.subject智慧型材料zh_TW
dc.subject黏性阻尼器zh_TW
dc.subjectShear Thickening Fluid (STF)en
dc.subjectRheologyen
dc.subjectPassive Controlen
dc.subjectSmart Materialen
dc.subjectViscous Damperen
dc.title智慧型材料應用於黏性阻尼器之可行性研究-剪切增稠流體zh_TW
dc.titleFeasibility Study of Viscous Dampers Utilizing Smart Material: Shear Thickening Fluiden
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃震興,陳俊杉,蔡孟豪
dc.subject.keyword剪切增稠流體,黏性阻尼器,智慧型材料,被動控制,流變學,zh_TW
dc.subject.keywordShear Thickening Fluid (STF),Viscous Damper,Smart Material,Passive Control,Rheology,en
dc.relation.page169
dc.rights.note有償授權
dc.date.accepted2009-08-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
10.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved