請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44388
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 舒貽忠(Yi-Chung Shu) | |
dc.contributor.author | Po-Jung Chiu | en |
dc.contributor.author | 邱柏榮 | zh_TW |
dc.date.accessioned | 2021-06-15T02:54:42Z | - |
dc.date.available | 2011-08-06 | |
dc.date.copyright | 2009-08-06 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-03 | |
dc.identifier.citation | [1] Y.C. Shu and K. Bhattacharya. Domain Patterns and Macroscopic Behavior of Ferroelectric Materials. Phil. Mag. B, 81:2021–2054. 2001.
[2] Y. C. Shu and J. H. Yen. Novel Phase-Field Simulation of Microstructure in Martensitic Materials. ASME-SMASIS, DOI:10.1115/SMASIS2008-484.2008. [3] Y. C. Shu, J. H. Yen, and H. Z. Chen. A Novel Field Simulation of Microstructure in Ferroelectrics. 2007. [4] Y.C. Shu and J.H. Yen. Pattern Formation in Martensitic Thin Films. Applied Physics Letters 91: 021908, 2007. [5] Y.C. Shu and J.H. Yen. Multivariant Model of Martensitic Microstructure in Thin Films. Acta Materialia 56: 3969–3981, 2008. [6] 顏睿亨. Application of Multirank Lamination Theory to the Modeling of Ferroelectric and Martensitic Materials.台灣大學應用力學所博士班論文, 2008. [7] 陳宏志. The Application of Parallel Computation and Fast Algorithm to The Study of Martensitic.台灣大學應用力學所碩士班論文, 2007. [8] 沈明憲. A Novel Phase Field Simulation of Ferroelectric domain.台灣大學應用力學所碩士班論文, 2008. [9] G. Arlt. Twinning in the Ferroelectric and Ferroelastic Ceramics: Stress Relief. Journal of Materials Science 25:2655-2666 , 1990. [10] J. A. Hooton and W. J. Merz. Etch Patterns and Ferroelctric Domains in BaTiO3 Single Crystal. Physical Review, 98:409-413, 1995. [11] W. R. Cook. Domain Twinning in Barium Titanate Ceramics. Journal of the American Ceramic Society, 39:17-19, 1956. [12] F. Kulcasar. A Microstructure Study of Barium Tinate Ceramics. Journal of the American Ceramic Society, 39:13-17, 1956. [13] E. A. Little. Dynamical Behavior of Domains Walls inBarium Titanate. Physical Review, 98:978-984, 1995. [14] ShinMC, ChungSJ, LeeSG, FeigelsonRS Growth and observation of domain structure of PZN-PT single crystal. 2003. [15]葉潔樺 鐵電晶體在力電耦合下之遲滯表現與電域旋轉:實驗與模擬, 2007 [16] G. Arlt. Twinning in the Ferroelectric and Ferroelastic Ceramics: Stress Relief. Journal of Materials Science, 25:2655-2666, 1990. [17] D. Iannece, A Romano, and E. S. Suhubi. A Thermodynamical Approach to the Structure of Weiss Domains in Deformable Ferroelctric Crystals. Interactions Journal of Engineering Science, 32:1941-1950, 1994. [18]羅克玲 先進記憶體技術向埃米級設計發展, 2005. [19]呂正傑、詹世雄 鐵電記憶體簡介, 2003 [20] J. W. Cahn. (1961) On Spinodal Decomposition. Acta Metallurgica, 9:795-801, 1961. [21] J. W. Cahn and J. E. Hilliard (1958) Free Energy of a Nonuniform System. I. Interfacial Free Energy. J. Chem. Phys., 28:258-267, 1958. [22] S. M. Allen and J. W. Cahn. A Microscopic Theory of Domain Wall Motion and its Experimental Verification in Fe-Al Alloy Domain Growth Kinetics. Journal de Physique. C7:C7-51, 1997. [23] M. J. Haun, E. Furman, S. J. Jang, H. A. McKinstry, and L. E. Cross. Thermodynamic Theory of PbTiO3. Journal of Applied Physics, 62:3331-3338, 1987. [24] H. L. Hu and L. Q. Chen. Computer Simulation of 90 degrees Ferroelectric Domain Formation in Two Dimensions. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 238:182-191, 1997. [25] H. L. Hu and L. Q. Chen. Three-dimensional Computer Simulation of Ferroelectric Domain Formation. Journal of the American Ceramic Society, 81:492-500, 1998. [26] J. Wang, S. Q. Chen, and T.Y. Zhang. The Effect of Mechanical Strains on the Ferroelectric and Dielectric Properties of a Model Single Crystal-Phase Field Simulation. Acta Materialia, 53:2495-2507, 2005. [27] J. Wang, S.Q. Shi, L. Q. Chen , T. Y. Zhang. Phase Field Simulations of Ferroelectric/Ferroelectric Polarization Switching. Acta Materialia, 52:749-764, 2004. [28] J. Wang, Y. Li, L. Q. Chen, and T. Y. Zhang. The Effect of Mechanical strains on the Ferroelectric and Dielectric Properties of a Model Single Crystal-Phase Field Simulation. Acta Materialia, 53:2495-2507, 2005. [29] W. Zhang and K. Bhattacharya. A Computional Model of Ferroelectric Domains. Part1 Model Formulation and Domain Switching. Acta Materialia, 55:185-198, 2005. [30] W. Zhang and K. Bhattacharya. A Computional Model of Ferroelectric Domains. Part2 Grain Boundaries and Defect Pinning. Acta Materialia, 53:2495-2507, 2005. [31] K. Dayal and K. Bhattacharya. Areal-Space Non-Local Phase-Field Model of Ferroelectric Domain Patterns in Complex Geometries. Acta Materialia, 55:199-209, 2005. [32] A. J. Bell Phenomenologically Derived Electric Field-Temperature Phase Diagrams and Piezoelectric Coefficients for Single Crystal Barium Titanate under Fields along Different Axes. Journal of Applied Physics, 89:3907-3914, 2001. [33] Z. Suo and W. Lu. Composition Modulation and Nanophase Separation in Binary Epilayer. Journal of the Mechanics and Physics of Solids, 48:211-232, 2000. [34] J. Y. Li and Liu. On Ferroelectric Crystals with Engineered Domain Configurations. Journal of the Mechanics and Physics of Solids, 52:1719-1742, 2004. [35] Y.C. Shu, K. Bhattacharya. The Influence of Texture on the Shape-Memory Effect in Polycrystals. Acta Materialaia 46:5457-5473 , 1998 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44388 | - |
dc.description.abstract | 由於鐵電材料具有許多特殊的材料性質,近年來成為熱門的研究題材,也被廣泛地應用於感測器、致動器以及傳動元件上。而這些特殊性質是源自於材料內部微結構作演化達成秩序性排列所導致的宏觀反應。因此,為了正確的模擬材料行為並有效地利用這些材料性質,瞭解材料微結構演化機制成為首要的基本工作。本論文藉由能量之描述,建立可用於模擬二維鐵電薄膜微晶域演化的新式相場法數學模型。
穩定態的鐵電微結構其實是系統總能量演化至最低態時的晶域分佈。欲求得此分佈我們需要一套具多變量且適用於各種邊界條件下之微結構模擬的架構,來描述系統在降低能量項的過程中,驅動微結構聚結化、細微化、選擇與校列等相互抗衡的機制。不同於傳統相場法,新式相場法引入「多階層狀結構」的觀念,選擇區域的層狀體積分率作為場變數,來表示晶域的組成狀況。如此一來,系統的能量基態結構便可以用解析的數學式描寫。 過去研究團隊所處理的薄膜問題略可視為薄膜表面之模擬,變數在平面兩軸向上具有無限域之週期性質;相較於過去的研究,我們用不同的視角切入薄膜問題,以薄膜之縱向面作為探討與模擬的研究課題,即是考慮到薄膜上下邊界面所帶造成的影響。 此次研究為使用新式相場法模擬二維鐵電薄膜在正方晶態中所構成的穩定微結構。在薄膜厚度較大的設定下,模擬結果呈現滿足諧和條件且如同非薄膜時的晶域分佈。再以不滿足諧和條件之晶格排列狀況作能量計算,並與 COMSOL軟體之計算結果作比較,驗證理論與模擬程式的正確性。最後,我們調變薄膜厚度與各項參數,由模擬結果來討論薄膜厚度對諧和條件滿足性的影響及其原因。 | zh_TW |
dc.description.abstract | Because ferroelectric materials having many unique features, they have been widely studied and utilized in micro-devices as sensors, actuators and transducers. However, these unique features and behaviors originate from the evolution and arrangement of the underlying microstructures. Therefore, it is essential to investigate the rule of evolution before simulating and taking advantage of these materials. A novel phase-field model for studying and simulating the 2-D domain pattern of ferroelectric materials based on energy arguments is developed in this thesis.
A steady state ferroelectric microstructure is a result as the formation and evolution of microscopic domain patterns in ferroelectrics. This in turn calls for a multivariant framework suitable for microstructure simulation under various boundary conditions to describe the coarsening, refinement, selection, and alignment of microstructure. A different choice of field variables in novel phase-field model, local volume fraction of laminates, is introduced to represent domain configurations by using multirank laminates. As a result, the energy-well structure can be expressed explicitly in a unified fashion. Finally, we observe the domain patterns obtained in simulations by changing the thickness and parameters, and discuss the effect of thickness on compatibility. The variants in the film problem that our team dealt in the past are periodic and infinite in axials. Considering the effect of free boundary is the main subject this time. The framework is applied to domain simulation in two-dimensional ferroelectric thin films in tetragonal phase assuming that polarization is close to one of their ground states. The compatible domain patterns obtained in simulations with thick film and are similar to bulk. And then, we compare the computed energy under non-compatible domain with COMSOL to make sure the accuracy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T02:54:42Z (GMT). No. of bitstreams: 1 ntu-98-R96543063-1.pdf: 3519944 bytes, checksum: 42e436d9c193c2b89157be3e9dfd1c2f (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 iii Abstract iv 目錄 v 表目錄 vii 圖目錄 viii 第1章 導論 1 1-1 背景與研究目的 1 1-2 鐵電材料介紹 2 1-3 相場法(Phase-Field Model)介紹 5 1-4 本文架構 6 第2章 理論架構 7 2-1 鐵電晶體 7 2-1-1 鐵電兄弟晶 7 2-1-2 鐵電兄弟晶諧和條件 9 2-1-3鐵電兄弟晶複合排列 15 2-2 鐵電晶體能量 18 2-3 能量極小原理及熱力學驅動力演化方程式 21 2-4 限制條件下數學模型(Constrained Model) 28 2-5 傅立葉轉換解應力場問題 30 2-5-1 平均應力求解 31 2-5-2 非平均應力求解 31 2-6 傅立葉轉換解電場問題 36 2-6-1 平均電場求解 37 2-6-2 非平均電場求解 38 第3章 數值計算 41 3-1 演化方程式 41 3-1-1 無因次化 41 3-1-2 半隱性法(Semi-Implicit)於時間的積分計算 42 3-2 各項能量之離散型式 45 3-3 計算流程 48 第4章 數值模擬結果 51 4-1 鐵電材料 51 4-2 鐵電靜能量探討 52 4-3 晶域探討 54 4-3-1 限制型數學模型(Constrained Model)於消電場張量為零之演化結果 55 4-3-2 限制型數學模型(Constrained Model)於消電場張量存在之演化結果 57 4-4 晶壁探討 59 4-5 異向性能係數對微結構影響之探討 62 4-6 薄膜厚度探討 65 4-6-1限制型數學模型於消電場張量存在時,模擬不同薄膜厚度之演化結果 65 4-6-2限制型數學模型於消電場張量為零時,模擬不同薄膜厚度之演化結果 67 4-7 薄膜厚度極薄時之晶壁角度探討 69 第5章 結論與未來展望 71 5-1 結論 71 5-2 未來展望 72 參考文獻 74 附錄 78 | |
dc.language.iso | zh-TW | |
dc.title | 二維鐵電薄膜之晶域分佈模擬 | zh_TW |
dc.title | Simulation of Domain Patterns in Two-dimensional Ferroelectric Thin Films | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳俊杉(Chuin-Shan Chen),謝宗霖(Tzong-Lin Jay Shieh) | |
dc.subject.keyword | 鐵電材料,相場法,多階層狀結構, | zh_TW |
dc.subject.keyword | Ferroelectric single crystal,Phase-field models,Multirank lamination, | en |
dc.relation.page | 78 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-08-03 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 3.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。