請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44383完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 舒貽忠(Yi-Chung Shu) | |
| dc.contributor.author | Wei-Nien Chou | en |
| dc.contributor.author | 周威年 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:54:24Z | - |
| dc.date.available | 2014-08-06 | |
| dc.date.copyright | 2009-08-06 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-03 | |
| dc.identifier.citation | [1] R. Ahluwalia, T. Lookman, A. Saxena and R. C. Albers. Landau theory for shape memory polycrystals. Acta Materialia, 52 (2004) 209–218.
[2] J. M. Ball and R. D. James. (1987). Fine Phase Mixtures as Minimizers of Energy. Arch. Rat. Mech. Anal.,100:13–52. [3] J. M. Ball and R. D. James. (1992). Proposed Experimental Tests of a Theory of Fine Microstructure and the Two Well Problem. Phil. Trans. Royal Soc. London A.,338:389–450. [4] K. Bhattacharya. Microstructure of Martensite. Oxford: Oxford University Press (2003). [5] K. Bhattacharya and R. D. James. A theory of thin films of martensitic materials with applications to microactuators. J. Mech. Phys. of Solids 47 (1999) 531–576. [6] K. Bhattacharya. Thin films of active materials. In Nonlinear Homogenization and its Applications to Composite, Polycrystals and Smart Materials, ed, P. Ponte Casta~neda et al., p 15–44. Kluwer Academic Publishers (2004). [7] K. Bhattacharya. Comparison of the geometrically nonlinear and linear theories of martensitic transformation. Continuum, Mechanics and Thermodynamics, 5 (1993) 205–242. [8] K. Bhattacharya, A. DeSimone, K. F. Hane, R. D. James and C. J. Palmstrm. Tents and tunnels on martensitic films. Mater. Sci. Eng. A, 273–275 (1999) 685–689. [9] K. Bhattacharya and R. V. Kohn. Symmetry, texture and the recoverable strain of shape-memory polycrystals. Acta Materialia, 44 (1996) 529–542. [10] K. Bhattacharya and R. V. Kohn. Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials. Archive for Rational Mechanics and Analysis, 139 (1997) 99–180. [11] J. S Bowles and J. K. Mackenzie.(1954). The Crystallography of Martensite Transformations 1 and 2. Acta Metall., 2:129–137 [12] J. W. Cahn and J. E. Hilliard (1958) Free Energy of a Nonuniform System. I. [13] J. W. Cahn. (1961) On Spinodal Decomposition. Acta Metallurgica, 9:795-801, 1961. [14] Interfacial Free Energy. J. Chem. Phys., 28:258-267, 1958. [15] L. Q. Chen. Phase-field models for microstructure evolution. Ann. Rev. Mater. Res., 32(2002) 113–140. [16] P. W. Dondl, C. P. Shen and K. Bhattacharya. Computational analysis of martensitic thin films using subdivision surfaces. Int. J. Num. Meth. Eng., 72 (2007) 72–94. [17] Y. Q. Fu, H. J. Du, W. M. Huang, S. Zhang and M. Hu. TiNi-based thin films in MEMS applications: a review. Sensors and Actuators A, 112: 395–408 (2004). [18] A. Ishida, A. Takei and S. Miyazaki. Shape memory thin film of TiNi formed by sputtering. Thin Solid Films, 228 (1993) 210–214. [19] R. D. James and R. Rizzoni. Pressurized shape memory thin films. J. Elasticity, 59(2000) 399–436. [20] Y. M. Jin, A. Artemev and A. G. Khachaturyan. Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: simulation of f02 martensite in AuCd alloys. Acta Materialia, 49 (2001) 2309–2320. [21] A. G. Khachaturyan. Theory of Structural Transformations in Solid. Wiley, New York, 1983. [22] P. Krulevitch, A. P. Lee, P. B. Ramsey, J. C. Trevino, J. Hamilton and M. A. Northrup. Thin film shape memory alloy microactuators. J Microelectromechanical Systems, 5(1996) 270–282. [23] V. I. Levitas, A. V. Idesman and D. L. Preston. Microscale simulation of martensitic microstructure evolution. Physi. Rev. Lett., 93 (2004) 105701. [24] Li J. Y., Liu, D., 2004. On Ferroelectric Crystals with Engineered Domain Configurations. Journal of the Mechanics and Physics of Solids 52, 1719–1742. 8, 10, 22, 34, 36, 44, 111 [25] S. Miyazaki,M. Hirano and T. Yamamoto. Dynamic characteristics of Ti-Ni SMA thin film microactuators. In IUTAM Symposium on Mechanics of Martensitic Phase Transformation in Solids, ed. Q. P. Sun, p. 189–196. Kluwer Academic Publishers (2002). [26] Y. C. Shu and J. H. Yen. Multivariant model of martensitic microstructure in thin films. Acta Materialia, 56 (2008) 3969–3981. [27] Y. C. Shu. Shape-memory micropumps. Mater. Trans., 43 (2002) 1037–1044. [28] Y. C. Shu and K. Bhattacharya. Domain patterns and macroscopic behavior of ferroelectric materials. Phil. Mag. B, 81 (2001) 2021–2054. [29] Y. C. Shu. Heterogeneous thin films of martensitic materials. Archive for Rational Mechanics and Analysis, 153 (2000) 39–90. [30] Y. C. Shu and J. H. Yen. Pattern formation in martensitic thin films. Appl. Phy. Lett., 91 (2007) 021908. [31] Y. C. Shu. Strain relaxation in an alloy film with a rough free surface. J. Elasticity, 66 (2002) 63–92. [32] Y. C. Shu. Shape-memory effect in bulk and thin-film polycrystals. Ph.D. Thesis. California Institute of Technology, 1998. [33] Y. C. Shu and K. Bhattacharya. The influence of texture on the shape-memory effect in polycrystals. Acta Materialia, 46 (1998) 5457–5473. [34] W. Zhang, K. Bhattacharya A computational model of ferroelectric domains. Part II: grain boundaries and defect pinning. Acta Materialia 53 (2005) 199–209 [35] 徐建輝.(2007).新式相場模擬法應用於麻田散鐵微結構之研究 [36] 陳宏志.(2007).平行架構與快速演算法應用於麻田散鐵與磁性材料為結構之研究 [37] 顏睿亨.(2008).以多階層狀結構理論開發鐵電與麻田散鐵材料之微觀及介觀模型 [38] 沈明憲.(2008). 新式相場模擬法應用於鐵電材料微晶域之研究 [39] 林昇旺.(2009).麻田散鐵薄膜或薄膜於基材上具平面法向量異向性之微結構模擬 [40] 張智星.(2000).Matlab 程式設計與應用.青蔚科技股份有限公司 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44383 | - |
| dc.description.abstract | 本團隊提出一套以能量低點拘束理論來建立麻田散鐵微結構演化的理論架構,本理論以演化過程中能量逐步趨小的方式進行收斂,藉由能量最小原理觀察在能量最低點的微結構排列方式。在模擬上,使用快速傅立葉轉換計算應力場。
我們設計了簡單的二維兩晶粒薄膜模型,其中一晶粒以θ 角的轉量有別於另外一晶粒,觀察晶粒界面間的諧和關係。此外,對形狀記憶合金,我們在模型中施以外加應變,再執行模擬,並且對施加的應變和模擬結果內變數繪製成圖,查看外加應變對於微結構造成的影響, 亦持續觀察在單晶和多晶之間的分別。 在多晶中,晶粒的微結構會隨著θ 角轉量而旋轉,理論上其轉動的量也是θ,但是模擬結果中顯示晶粒彼此界面上缺乏諧和性,雖然如此,內部微結構的演化結果造成宏觀來看整塊模型沒有變形,並且處於能量最小的情況。 外加應變和內變數繪製成遲滯曲線圖,我們比較了單晶和多晶在不同厚度的結果,發現受到厚度的影響不大;而其他條件一樣時,多晶的狀況越複雜,需要越大的應變來驅使內變數轉換,也就是遲滯曲線圖轉換較晚。 | zh_TW |
| dc.description.abstract | Our team proposed a framework based on constrained theory, to establish evolution of microstructure in martensitic polycrystalline films. In this theory, the evolution converges by energy restraining gradually. We observed the arrangement of the microstructure of the bottom energy. We study the microstructure according to the arrangement as well as its evolutionary process of polycrystalline, and compute the stress with fast algorithm (FFT). We design a simple model which is two-dimensional two crystals film, and give one angle θ degree rotation to distinguish from another, we observe the compatibility of the grain boundary.
In addition, we carry on the numerical simulation in another case, the thin film model is exerted by each kind of strain. We draw up with the strain and the result of simulation, and keep observing the difference between the single crystal and poly crystal micro structure. In poly crystal, the grain micro structure change depend on the θ degree rotation, but the grain boundary lack for compatibility, for all this, there is no strain of hole model attribute to the evolution of micro structure inside, under the bottom energy. The exerted strain and the variant can be drawn up the hysteresis loop. We have compared the single crystal and the poly crystals in the different thickness, and find the the influence of thickness is not conspicuous. And in the same other conditions, the crystals are more complex, more exerted strain is needed to urge the switch. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:54:24Z (GMT). No. of bitstreams: 1 ntu-98-R96543070-1.pdf: 1669354 bytes, checksum: 5604ce41287cb5c996cf6bb0fd38bc4e (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 謝誌 .................................................... I
摘要 ................................................... II Abstract ............................................... III 第1 章 導論 ............................................. 1 1-1 研究動機 .......................................... 1 1-2 簡介麻田散鐵材料 .................................. 3 1-3 多晶薄膜 .......................................... 4 1-4 相場法簡介 ........................................ 6 1-5 文章架構 .......................................... 7 第2 章 理論架構 ......................................... 8 2-1 微結構兄弟晶 ...................................... 8 2-2 麻田散鐵材料諧和條件 ............................. 12 2-3 能量極小原理 ..................................... 14 2-4 演化方程式 ....................................... 19 2-5 二維應力場 ........................................ 21 第三章 數值方法 ........................................ 30 3-1 微分方程式的數值計算 ............................. 30 3-2 能量的離散型式 .................................. 34 V 第4 章 數值模擬結果 .................................... 36 4-1 模擬參數設定 ..................................... 36 4-2 多晶材料微結構模擬結果 ........................... 38 4-3 改變D 值對結果的影響 ............................. 49 4-4 遲滯現象 ......................................... 63 第5 章 結論與未來展望 ................................... 71 5-1 結論 ............................................. 71 5-2 未來展望 ......................................... 72 參考文獻 ............................................... 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 遲滯曲線 | zh_TW |
| dc.subject | 微結構 | zh_TW |
| dc.subject | 多晶薄膜 | zh_TW |
| dc.subject | Microstructure | en |
| dc.subject | Hysteresis loop | en |
| dc.subject | Polycrystalline Film | en |
| dc.title | 二維麻田散鐵多晶薄膜微結構模擬 | zh_TW |
| dc.title | Simulation of Microstructure in Two-Dimensional Martensitic Polycrystalline Films | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉進賢(Chein-Shan Liu),陳國慶(K.C.Chen) | |
| dc.subject.keyword | 微結構,多晶薄膜,遲滯曲線, | zh_TW |
| dc.subject.keyword | Microstructure,Polycrystalline Film,Hysteresis loop, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
