請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44373完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳育任 | |
| dc.contributor.author | Chih-I Huang | en |
| dc.contributor.author | 黃智怡 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:53:51Z | - |
| dc.date.available | 2009-08-12 | |
| dc.date.copyright | 2009-08-12 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-03 | |
| dc.identifier.citation | [1] [Online]. Available: http://www.cartage.org.lb/en/themes/ Sciences/Physics/SolidStatePhysics/AtomicBonding/CrystalStructure/Crystalline/Crystalline.htm
[2] J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures. Cambridge University Press, 2003. [3] [Online]. Available: http://www.corrosionlab.com/Failure-Analysis- Studies/20030.scc.304hss-pipeline.htm [4] T. Bretagnon, P. Lefebvre, T. Guillet, T. Taliercio, and B. Gil,“Barrier composition dependence of the internal electric field in ZnO/Zn1−xMgxO quantum wells, Appl. Phys. Lett., vol. 90, p.201912, 2007. [5] W. R. L. Lambrecht, S. Limpijumnong, and B. Segall, “Theoretical Studies of ZnO and Related MgxZn1−xO Alloy Band Structures,”J. Nitride Semicond. Res., pp. 596–601, 1999. [6] Q. Xu, X.-W. Zhang, W.-J. Fan, S.-S. Li, and J.-B. Xia, “Electronic structures of wurtzite ZnO, BeO, MgO and p-type dopingin Zn1−xYxO (Y = Mg, Be),” Computational Materials Science, vol. 44, pp. 72–78, 2008. [7] W. E. Bowen, W. Wang, E. Cagin, and J. D. Phillips, “Quantum confinement and carrier localization effects in ZnO/ MgxZn1−xO wells synthesized by pulsed laser deposition,” Journal of Electronic Materials, vol. 37, no. 5, pp. 749–754, May 2008. [8] A. Malashevich and D. Vanderbilt, “First-principles study of polarization in Zn1−xMgxO,” Appl. Phys. Lett., vol. 93, p. 045106, 2008. [9] S. C. Su, Y. M. Lu, Z. Z. Zhang, C. X. Shan, B. H. Li, D. Z. Shen, B. Yao, J. Y. Zhang, D. X. Zhao, and X. W. Fan, “Valence band offset of ZnO/Zn0.85Mg0.15O heterojunction measured by xray photoelectron spectroscopy,” Appl. Phys. Lett., vol. 93, p.082108, 2008. [10] C. X. Cong, B. Yao, Q. J. Zhou, and J. R. Chen, “Effect of growth ambient on the structure and properties of MgxZn1−xO thin films prepared by radio-frequency magnetron sputtering,” Journal of Physics D-Applied Physics, vol. 41, no. 10, p. 105303, May 2008. [11] P. K.Weimer, “The TFT-A new thin film transistor,” Proceedings of the IEEE, vol. 50, p. 1462, 1962. [12] H. Kawamoto, “The History of Liquid-Crystal Displays,” Proceedings of the IEEE, vol. 90, pp. 460-500, 2002. [13] C.-C. Liu, “High Performance ZnO Thin Film Transistors on Both Glass and Plastic Substrates,”Master’s thesis, National Taiwan University, 2007. [14] H. Tampo, H. Shibata, K. Maejima, T.-W. Chiu, H. Itoh, A. Yamada, K. Matsubara, P. Fons, Y. Chiba, T. Wakamatsn, Y. Takeshita, H. Kanie, and S. Niki, “Band profiles of ZnMgO/ZnO heterostructures confirmed by Kelvin probe force microscopy,”Appl. Phys. Lett., vol. 94, p. 242107, 2009. [15] T.-C. Liu, “Transmission Electron Microscopy Studies of GaNbased and ZnO-based Films,” Master’s thesis, National Taiwan University, 2007. [16] M.-C. Lin, “ZnO and ZnO-based Heterojunctions Grown by Fast Pulsed Laser Deposition,” Ph.D. dissertation, National Taiwan University, 2008. [17] Z. Vashaei, T. Minegishi, and T. Yao, “Structural characterization of MgxZn1−xO/ZnO heterostructures,” Journal of Crystal Growth, vol. 306, no. 2, pp. 269–275, Aug 2007. [18] X. Chen and J. Kang, “The structural properties of wurtzite and rocksaltMgxZn1−xO,” Semicond. Sci. Technol., vol. 23, p. 025008, 2008. [19] H. Tampo, K. Matsubara, A. Yamada, H. Shibata, P. Fons, M. Yamagata, H. Kanie, and S. Niki, “High electron mobility Zn polar ZnMgO/ZnO heterostructures grown by molecular beam epitaxy,” Journal of Crystal Growth, vol. 301, pp. 358–361, 2007. [20] A. K. Sharma, J. Narayan, J. F. Muth, C. W. Teng, C. Jin, A. Kvit, R. M. Kolbas, and O. W. Holland, “Optical and structural properties of epitaxialMgxZn1−xO alloys, Appl. Phys. Lett., vol. 75, no. 21, pp. 3327–3329, Nov 1999. [21] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, “Band gap engineering based on MgxZn1−xO and CdyZn1−yO ternary alloy films,” Appl. Phys. Lett., vol. 78, no. 9, pp. 1237-1239, 2001. [22] S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1−xO alloy films,” Appl. Phys. Lett., vol. 80, no. 9, pp. 1529–1531, 2002. [23] W. Yang and S. S. Hullavarad and B. Nagaraj and I. Takeuchi and R. P. Sharma and T. Venkatesan and R. D. Vispute and H. Shen, “Compositionally-tuned epitaxial cubic MgxZn1−xO on Si(100) for deep ultraviolet photodetectors,” Appl. Phys. Lett., vol. 82, no. 20, pp. 3424–3426, 2003. [24] B. P. Zhang and N. T. Binh and K. Wakatsuki and C. Y. Liu and Y. Segawa and N. Usami, “Growth of ZnO/MgZnO quantum wells on sapphire substrates and observation of the two-dimensional confinement effect,” Appl. Phys. Lett., vol. 86, no. 3, p. 032105, 2005. [25] C. X. Cong, B. Yao, G. Z. Xing, Y. P. Xie, L. X. Guan, B. H. Li, X. H. Wang, Z. P. Wei, Z. Z. Zhang, Y. M. Lv, D. Z. Shen, and X. W. Fan, “Control of structure, conduction behavior, and band gap of Zn1−xMgxO films by nitrogen partial pressure ratio of sputtering gases,” Appl. Phys. Lett., vol. 89, no. 26, p. 262108, 2006. [26] H. Shibata, H. Tampo, K. Matsubara, A. Yamada, K. Sakurai, S. Ishizuka, S. Niki, and M. Sakai, “Photoluminescence characterization of Zn1−xMgxO epitaxial thin films grown on ZnO by radical source molecular beam epitaxy,” Appl. Phys. Lett., vol. 90, no. 12, p. 124104, 2007. [27] W. I. Park, G.-C. Yi, and H. M. Jang, “Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1−xMgxO thin films,” Appl. Phys. Lett., vol. 79, no. 13, pp. 2022–2024, 2001. [28] D. Takamizu, Y. Nishimoto, S. Akasaka, H. Yuji, K. Tamura, K. Nakahara, T. Onuma, T. Tanabe, H. Takasu, M. Kawasaki, and S. F. Chichibu, “Direct correlation between the internal quantum efficiency and photoluminescence lifetime in undoped ZnO epilayers grown on Zn-polar ZnO substrates by plasma-assisted molecular beam epitaxy,” J. Appl. Phys., vol. 103, no. 6, p. 063502, 2008. [29] Y. Nishimoto, K. Nakahara, D. Takamizu, A. Sasaki, K. Tamura, S. Akasaka, H. Yuji, T. Fujii, T. Tanabe, H. Takasu, A. Tsukazaki, A. Ohtomo, T. Onuma, S. F. Chichibu, and M. Kawasaki, “Plasma-assisted molecular beam epitaxy of high optical quality MgZnO films on Zn-polar ZnO substrates,” Applied Physics Express, vol. 1, no. 9, p. 091202, Sep. 2008. [30] Y. M. Lu, C. X. Wu, Z. P. Wei, Z. Z. Zhang, D. X. Zhao, J. Y. Zhang, Y. C. Liu, D. Z. Shen, and X. W. Fan, “Characterization of ZnO/Mg0.12Zn0.88O heterostructure grown by plasma-assisted molecular beam epitaxy,” pp. 299–304, May 2005. [31] S. Su, Y. Lu, Z. Zhang, B. Li, D. Shen, B. Yao, J. Zhang, D. Zhao, and X. Fan, “Oxygen flux influence on the morphological, structural and optical properties of Zn1−xMgxO thin films grown by plasma-assisted molecular beam epitaxy,” Applied Surface Science, vol. 254, pp. 4886–4890, 2008. [32] H. Tampo, H. Shibata, K. Maejima, A. Yamada, K. Matsubara, P. Fons, S. Kashiwaya, S. Niki, Y. Chiba, T. Wakamatsu, and H. Kanie, “Polarization-induced two-dimensional electron gases in ZnMgO/ZnO heterostructures,” Appl. Phys. Lett., vol. 93, p. 202104, 2008. [33] D. J. Cohen, K. C. Ruthe, and S. A. Barnett, “Transparent conducting Zn1−xMgxO:Al,In thin films,” J. Appl. Phys., vol. 96, pp. 459–467, 2004. [34] J. Sun, D. A. Mourey, D. Zhao, S. K. Park, S. F. Nelson, D. H. Levy, D. Freeman, P. C. Corvan, L. Tutt, and T. N. Jackson,“ZnO Thin-Film Transistor Ring Oscillators with 31-ns Propagation Delay,” IEEE Electron Dev. Lett., vol. 29, pp. 721–723, 2008. [35] Yuh-RennWu and Madhusudan Singh and Jasprit Singh, “Device Scaling Physics and Channel Velocities in AlGaN-GaN HFETs: Velocities and Effective Gate Length,” IEEE Trans. Electron Dev., vol. 53, pp. 588–593, 2006. [36] Shavkat U. YULDASHEV and Rafael A. NUSRETOV and Irina V. KHVAN and Vadim Sh. YALISHEV and Tae Won KANG, “White Light Emission from ZnO/Zn0.9Mg0.1O Heterostructures Grown on Si Substrates,” J. J. Appl. Phys., vol. 47, pp. 133–135, 2008. [37] Yuh-RennWu and Jasprit Singh, “Transient Study of Self-heating Effects in AlGaN/GaN HFETs: Consequence of Carrier Velocities, Temperature, and Device Performance,” J. Appl. Phys., vol. 101, p. 113712, 2007. [38] B. Guo, U. Ravaioli, and M. Staedele, “Full band Monte Carlo calculations of velocity-field characteristics of wurtzite ZnO,” Computer Physics Communications, vol. 175, pp. 482–486, 2006. [39] R. P. Joshi and A. Srivastava, “Effects of grain boundary scattering on the electron drift velocity behavior in diamond films: A Monte Carlo analysis,” Appl. Phys. Lett., vol. 69, pp. 1786–1788, 1996. [40] D. J. Cohen and S. A. Barnetta, “Predicted electrical properties of modulation-doped ZnO-based transparent conducting oxides,”J. Appl. Phys., vol. 98, p. 053705, 2005. [41] S.-H. Park and D. Ahn, “Spontaneous and piezoelectric polarization effects in wurtzite ZnO/MgZnO quantum well lasers,” Appl. Phys. Lett., vol. 87, p. 253509, 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44373 | - |
| dc.description.abstract | 近年來,由於透明電極和薄膜電晶體在光照和顯示技術上的應
用,關於透明電極和薄膜電晶體的研究變得越來越重要,因此,如 何製造高電子遷移率的透明電極和薄膜電晶體成為業界關注的問 題。在本論文中,我們利用蒙地卡羅的方法分析多晶格的氧化鋅鎂 �氧化鋅薄膜層的電子遷移率,我們的研究考慮了晶格界面散射、 電離雜質散射、聲子散射和合金散射對於的影響,我們利用二維帕 松和漂移擴散方程來計算晶格界面強度、晶粒大小和屏蔽效應對電 子遷移率的影響。此外,我們也提出了氧化鋅鎂薄膜層的臨界厚 度,透過適當的設計,我們可以利用調變摻雜的技術和自發及壓電 極化,降低晶界強度,並提高氧化鋅薄膜層的電子遷移率。 | zh_TW |
| dc.description.abstract | The study of transparent conducting oxide (TCO) and thin film transistor (TFT) has become an important area due to the applications of lighting and display technology. Therefore, finding a high mobility and conductivity TCO materials would be a key issue to the industry. In this paper, we have applied the Monte Carlo method to analyze the mobility of single and poly-crystalline MgZnO/ZnO thin film layer. The effects of grain boundary scattering, ionized impurity scattering, phonon scattering as well as alloy scattering have been included in our program. The grain boundary potential, the grain boundary size and carrier screening effect has been analyzed with our developed 2D Poisson and drift-diffusion solver. The critical depth of the MgZnO layer is also presented in our study. With a careful design of modulation doping and including the effect of spontaneous and piezoelectric polarization, the grain boundary potential can be suppressed and thus the mobility of the ZnO layer can be improved. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:53:51Z (GMT). No. of bitstreams: 1 ntu-98-R96941068-1.pdf: 2338362 bytes, checksum: 73dd9885e48f708add8d66cbca74f72a (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員會審查表. . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Thin film transistor . . . . . . . . . . . . . . . . . . . . 1 1.2 Introduction to ZnO and MgxZn1−xO alloy . . . . . . . 2 1.3 Grain boundary . . . . . . . . . . . . . . . . . . . . . . 5 1.3.1 Screening effect . . . . . . . . . . . . . . . . . . 5 1.3.2 Polarization effect . . . . . . . . . . . . . . . . . 6 1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 2D Poisson and drift-diffusion solver . . . . . . . . . . 10 2.2 Monte Carlo method and the scattering mechanisms . . 15 2.2.1 Monte Carlo method . . . . . . . . . . . . . . . 15 2.2.2 Ionized impurity scattering . . . . . . . . . . . . 19 2.2.3 Grain boundary scattering . . . . . . . . . . . . 21 2.2.4 Other scattering mechanisms . . . . . . . . . . 24 3 Device Design Issues . . . . . . . . . . . . . . . . . . . . . . 28 3.1 The Influence of the grain boundary potential and grain boundary size . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 Modulation doping . . . . . . . . . . . . . . . . . . . . 31 3.2.1 The grain boundary potential . . . . . . . . . . 32 3.2.2 Carrier distribution . . . . . . . . . . . . . . . . 34 3.3 The influence of different Mg composition . . . . . . . 35 3.3.1 The grain boundary potential . . . . . . . . . . 36 3.3.2 Carrier distribution . . . . . . . . . . . . . . . . 39 3.4 The Influence of different trap widths . . . . . . . . . . 42 3.5 The influence of different depth of the MgZnO layer . . 45 3.5.1 The critical depth of the MgZnO layter depends on different polarization charge . . . . . . . . . 48 4 Studies of the Carrier Mobility . . . . . . . . . . . . . . . . . 53 4.1 The influence of polarization charge . . . . . . . . . . . 53 4.2 The influence of different Mg composition and trap width 55 4.3 The average electron mobility of MgZnO/ZnO multilayer. 59 4.4 The velocity versus electric field curve. . . . . . . . . . 62 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 | |
| dc.language.iso | en | |
| dc.subject | 異質結構 | zh_TW |
| dc.subject | 遷移率 | zh_TW |
| dc.subject | 晶格界面 | zh_TW |
| dc.subject | 壓電極化 | zh_TW |
| dc.subject | 蒙地卡羅 | zh_TW |
| dc.subject | 氧化鋅鎂/氧化鋅 | zh_TW |
| dc.subject | MgZnO | en |
| dc.subject | piezoelectric polarization | en |
| dc.subject | Monte Carlo Method | en |
| dc.subject | heterostructure | en |
| dc.subject | ZnO | en |
| dc.subject | mobility | en |
| dc.subject | grain boundary | en |
| dc.title | 以蒙地卡羅方法分析氧化鋅鎂/氧化鋅薄膜層載子遷移率 | zh_TW |
| dc.title | Mobility Study of Polycrystalline MgZnO/ZnO Thin Film Layers with Monte Carlo Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 余沛慈,陳奕君,陳建彰 | |
| dc.subject.keyword | 氧化鋅鎂/氧化鋅,異質結構,蒙地卡羅,壓電極化,晶格界面,遷移率, | zh_TW |
| dc.subject.keyword | MgZnO,ZnO,heterostructure,Monte Carlo Method,piezoelectric polarization,grain boundary,mobility, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-04 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
