請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44368完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊家榮(Chia-Ron Yang) | |
| dc.contributor.author | Pei-Hsuan Chen | en |
| dc.contributor.author | 陳姵璇 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:53:34Z | - |
| dc.date.available | 2011-09-15 | |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-04 | |
| dc.identifier.citation | Part A
1.Pitti, R. M., S. A. Marsters, D. A. Lawrence, M. Roy, F. C. Kischkel, P. Dowd, A. Huang, C. J. Donahue, S. W. Sherwood, D. T. Baldwin, P. J. Godowski, W. I. Wood, A. L. Gurney, K. J. Hillan, R. L. Cohen, A. D. Goddard, D. Botstein, A. Ashkenazi. 1998. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 396: 699-703. 2.Yu, K. Y., B. Kwon, J. Ni, Y. Zhai, R. Ebner, B. S. Kwon. 1999. A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis. J. Biol. Chem. 274: 13733-13736. 3.Migone, T. S., J. Zhang, X. Luo, L. Zhuang, C. Chen, B. Hu, J. S. Hong, J. W. Perry, S. F. Chen, J. X. Zhou, Y. H. Cho, S. Ullrich, P. Kanakaraj, J. Carrell, E. Boyd, H. S. Olsen, G. Hu, L. Pukac, D. Liu, J. Ni, S. Kim, R. Gentz, P. Feng, P. A. Moore, S. M. Ruben, P. Wei. 2002. TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity 16: 479-492. 4.Tsuji, S., R. Hosotani, S. Yonehara, T. Masui, S. S. Tulachan, S. Nakajima, H. Kobayashi, M. Koizumi, E. Toyoda, D. Ito, K. Kami, T. Mori, K. Fujimoto, R. Doi, M. Imamura. 2003. Endogenous decoy receptor 3 blocks the growth inhibition signals mediated by Fas ligand in human pancreatic adenocarcinoma. Int. J. Cancer 106: 17-25. 5.Chang, Y. C., Y. H. Chan, D. G. Jackson, S. L. Hsieh. 2006. The glycosaminoglycan-binding domain of decoy receptor 3 is essential for induction of monocyte adhesion. J. Immunol. 176: 173-180. 6.You, R. I., Y. C. Chang, P. M. Chen, W. S. Wang, T. L. Hsu, C. Y. Yang, C. T. Lee, S. L. Hsieh. 2008. Apoptosis of dendritic cells induced by decoy receptor 3 (DcR3). Blood 111: 1480-1488. 7.Hsu, T. L., Y. C. Chang, S. J. Chen, Y. J. Liu, A. W. Chiu, C. C. Chio, L. Chen, S. L. Hsieh. 2002. Modulation of dendritic cell differentiation and maturation by decoy receptor 3. J. Immunol. 168: 4846-4853. 8.Chang, Y. C., T. L. Hsu, H. H. Lin, C. C. Chio, A. W. Chiu, N. J. Chen, C. H. Lin, S. L. Hsieh. 2004. Modulation of macrophage differentiation and activation by decoy receptor 3. J. Leukoc. Biol. 75: 486-494. 9.Yang, C. R., J. H. Wang, S. L. Hsieh, S. M. Wang, T. L. Hsu, W. W. Lin. 2004. Decoy receptor 3 (DcR3) induces osteoclast formation from monocyte/macrophage lineage precursor cells. Cell Death Differ. 11 Suppl 1: S97-S107. 10.Ka, S. M., H. K. Sytwu, D. M. Chang, S. L. Hsieh, P. Y. Tsai, A. Chen. 2007. Decoy receptor 3 ameliorates an autoimmune crescentic glomerulonephritis model in mice. J. Am. Soc. Nephrol. 18: 2473-2485. 11.Shi, G., Y. Wu, J. Zhang, J. Wu. 2003. Death decoy receptor TR6/DcR3 inhibits T cell chemotaxis in vitro and in vivo. J. Immunol. 171: 3407-3414. 12.Lee, C. S., C. Y. Hu, H. F. Tsai, C. S. Wu, S. L. Hsieh, L. C. Liu, P. N. Hsu. 2008. Elevated serum decoy receptor 3 with enhanced T cell activation in systemic lupus erythematosus. Clin. Exp. Immunol. 151: 383-390. 13.Tang, C.H., T. L. Hsu, W. W. Lin, M. Z. Lai, R. S. Yang, S. L. Hsieh, W. M. Fu. 2007. Attenuation of bone mass and increase of osteoclast formation in decoy receptor 3 transgenic mice. J. Biol. Chem. 282: 2346-2354. 14.Yang, C. R., S. L. Hsieh, F. M. Ho, W. W. Lin. 2005. Decoy receptor 3 increases monocyte adhesion to endothelial cells via NF-kappa B-dependent up-regulation of intercellular adhesion molecule-1, VCAM-1, and IL-8 expression. J. Immunol. 174: 1647-1656. 15.Ohshima, K., S. Haraoka, M. Sugihara, J. Suzumiya, C. Kawasaki, M. Kanda, M. Kikuchi. 2000. Amplification and expression of a decoy receptor for Fas ligand (DcR3) in virus (EBV or HTLV-I) associated lymphomas. Cancer Lett. 160: 89-97. 16.Takahama, Y., Y. Yamada, K. Emoto, H. Fujimoto, T. Takayama, M. Ueno, H. Uchida, S. Hirao, T. Mizuno, Y. Nakajima. 2002. The prognostic significance of overexpression of the decoy receptor for Fas ligand (DcR3) in patients with gastric carcinomas. Gastric. Cancer 5: 61-68. 17.Wu, Y., B. Han, H. Sheng, M. Lin, P. A. Moore, J. Zhang, J. Wu. 2003. Clinical significance of detecting elevated serum DcR3/TR6/M68 in malignant tumor patients. Int. J. Cancer 105: 724-732. 18.Li, H., L. Zhang, H. Lou, I. Ding, S. Kim, L. Wang, J. Huang, P. A. Di Sant'Agnese, J. Y. Lei. 2005. Overexpression of decoy receptor 3 in precancerous lesions and adenocarcinoma of the esophagus. Am. J. Clin. Pathol. 124: 282-287. 19.Roth, W., S. Isenmann, M. Nakamura, M. Platten, W. Wick, P. Kleihues, M. Bahr, H. Ohgaki, A. Ashkenazi, M. Weller. 2001. Soluble decoy receptor 3 is expressed by malignant gliomas and suppresses CD95 ligand-induced apoptosis and chemotaxis. Cancer Res. 61: 2759-2765. 20.Chang, Y. C., T. C. Chen, C. T. Lee, C. Y. Yang, H. W. Wang, C. C. Wang, S. L. Hsieh. 2008. Epigenetic control of MHC-II expression in tumor-associated macrophages by decoy receptor 3. Blood 111: 5054-5063. 21.Yang, C.R., S. L. Hsieh, C. M. Teng, F. M. Ho, W. L. Su, W. W. Lin. 2004. Soluble decoy receptor 3 induces angiogenesis by neutralization of TL1A, a cytokine belonging to tumor necrosis factor superfamily and exhibiting angiostatic action. Cancer Res. 64: 1122-1129. 22. O’Reilly, E. M., G. K. Abou-Alfa. 2007. Cytotoxic therapy for advanced pancreatic adenocarcinoma. Semin. Oncol. 34: 347-353. 23. Russo, S., J. Butler, R. Ove, A. W. Blackstock. 2007. Locally advanced pancreatic cancer: a review. Semin. Oncol. 34: 327-334. 24. Walker, P. R., P. Saas, P. Y. Dietrich. 1997. Role of Fas ligand (CD95L) in immune escape: the tumor cell strikes back. J. Immunol. 158: 4521-4524. 25. Kim, S., A. Fotiadu, K. Vassiliki. 2005. Increased expression of soluble decoy receptor 3 in acutely inflamed intestinal epithelia. Clin. Immunol. 115: 286-294. 26. Ciardiello, F., G. Tortora. 2008. EGFR antagonists in cancer treatment. N. Engl. J. Med. 358: 1160-1174. 27. Hartog, H., J. Wesseling, H. M. Boezen, W. T. van der Graaf. 2007. The insulin-like growth factor 1 receptor in cancer: old focus, new future. Eur. J. Cancer 43: 1895-1904. 28. Igney, F. H., P. H. Krammer. 2005. Tumor counterattack: fact of fiction? Cancer Immunol. Immunother. 54: 1127-1136. 29. Xerri, L., E. Devilard, J. Hassoun, P. Haddad, F. Birg. 1997. Malignant and reactive cells from human lymphomas frequently express Fas ligand but display a different sensitivity to Fas-mediated apoptosis. Leukemia 11: 1868-1877. 30. Vivanco, I., C. L. Sawyers. 2002. The phosphatidylinositol 3-Kinase-AKT pathway in human cancer. Nat. Rev. Cancer 2: 489-501. 31. Tokunaga, E., E. Oki, A. Egashira, N. Sadanaga, M. Morita, Y. Kakeji, Y. Maehara. 2008. Deregulation of the Akt pathway in human cancer. Curr. Cancer Drug Targets 8: 27-36. 32. Fresno Vara, J. A., E. Casado, J. de Castro, P. Cejas, C. Belda-Iniesta, M. Gonzalez-Baron. 2004. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 30: 193-204. 33. Sell, C., G. Dumenil, C. Deveaud, M. Miura, D. Coppola, T. DeAngelis, R. Rubin, A. Efstratiadis, R. Baserga. 1994. Effect of a null mutation of the insulin-like growth factor 1 receptor gene on growth and transformation of mouse embryo fibroblasts. Mol. Cell Biol. 14: 3604-3612. 34. Bondar, V. M., B. Sweeney-Gotsch, M. Andreeff, G. B. Mills, D. J. McConkey. 2002. Inhibition of the phosphatidylinositol 3’-kinase-AKT pathway induced apoptosis in pancreatic carcinoma cells in vitro and in vivo. Mol. Cancer Ther. 1: 989-997. 34. Bondar, V. M., B. Sweeney-Gotsch, M. Andreeff, G. B. Mills, D. J. McConkey. 2002. Inhibition of the phosphatidylinositol 3’-kinase-AKT pathway induced apoptosis in pancreatic carcinoma cells in vitro and in vivo. Mol. Cancer Ther. 1: 989-997. 35. Arlt, A., A. Gehrz, S. Muerkoster, J. Norndamm, M. L. Kruse, U. R. Folsch, H. Schafer. 2003. Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene 22: 3243-3251. 36. Datta, S. R., H. Dudek, X. Tao, S. Masters, H. Fu, Y. Gotoh, M. E. Greenberg. 1997. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 231-241. 37. Cardone, M. H., N. Roy, H. R. Stennicke, G. S. Salvesen, T. F. Franke, E. Stanbridge, S. Frisch, J. C. Reed. 1998. Regulation of cell death protease caspase-9 by phosphorylation. Science 282: 1318-1321. 38. Brunet, A., A. Bonni, M. J. Zigmond, M. Z. Lin, P. Juo, L. S. Hu, M. J. Anderson, K. C. Arden, J. Blenis, M. E. Greenberg. 1999. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857-868. 39. Mayo, L.D., D. B. Donner. 2001. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl. Acad. Sci. USA 98: 11598-11603. 40. Romashdova, J. A., S. S. Makarov. 1999. NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401: 86-90. 41. Holcomb, B., M. Yip-Schneider, C. M. Schmidt. 2008. The role of nuclear factor kappa B in pancreatic cancer and the clinical applications of targeted therapy. Pancreas 36: 225-235. 42. Wang, C. Y., M. W. Mayo, R. G. Korneluk, D. V. Goeddel, A. S. Jr. Baldwin. 1998. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 28: 1680-1683. 43. Kajino, S., M. Suganuma, F. Teranishi, N. Takahashi, T. Tetsuka, H. Ohara, M. Itoh, and T. Okamoto. 2000. Evidence that de novo protein synthesis is dispensable for anti-apoptotic effects of NF-kappaB. Oncogene 19: 2233-2239. 44. Hanahan, D., R. A. Weinberg. 2000. The hallmarks of cancer. Cell 100: 57-70. 45. von Bernstorff, W., R. A. Spanjaard, A. K. Chan, D. C. Lockhart, N. Sadanaga, I. Wood, M. Peiper, P. S. Goedegebuure, T. J. Eberlein. 1999. Pancreatic cancer cells can evade immune surveillance via nonfunctional Fas (APO-1/CD95) receptors and aberrant expression of functional Fas ligand. Surgery 125: 73-84. 46. Li, W., C. Zhang, C. Chen, G. Zhuang. 2007. Correlation between expression of DcR3 on tumor cells and sensitivity to FasL. Cell Mol. Immunol. 4: 455-460. 47. Shen, H. W., S. L. Gao, Y. L. Wu, S. Y. Peng. 2005. Overexpression of decoy receptor 3 in hepatocellular carcinoma and its association with resistance to Fas ligand-mediated apoptosis. World J. Gastroenterol. 11: 5926-5930. Part B 1.Smigal, C., A. Jemal, E. Ward, V. Cokkinides, R. Smith, H. L. Howe, M. Thun. 2006. Trends in breast cancer by race and ethnicity: update 2006. CA Cancer J. Clin. 56: 168-183. 2.2006. Ten leading cancer ranked by incidence and mortality rate in Taiwan. Taiwan Cancer Registry, Bureau of Health Promotion, Department of Health. 3.Lacroix, M. 2006. Significance, detection and markers of disseminated breast cancer cells. Endocr. Relat. Cancer 13: 1033-1067. 4.Hayat, M. J., N. Howlader, M. E. Reichman, B. K. Edwards. 2007. Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program. Oncologist 12: 20-37. 5.Sainsbury, J. R., J. R. Farndon, A. L. Harris, G. V. Sherbet. 1985. Epidermal growth factor receptors on human breast cancers. Br. J. Surg. 72: 186-188. 6.Ferrero, J. M., A. Ramaioli, R. Largillier, J. L. Formento, M. Francoual, F. Ettore, M. Namer, G. Milano. 2001. Epidermal growth factor receptor expression in 780 breast cancer patients: a reappraisal of the prognostic value based on an eight-year median follow-up. Ann. Oncol. 12: 841-846. 7.Tsutsui, S., S. Ohno, S. Murakami, Y. Hachitanda, S. Oda. 2002. Prognostic value of epidermal growth factor receptor (EGFR) and its relationship to the estrogen receptor status in 1029 patients with breast cancer. Breast Cancer Res. Treat 71: 67-75. 8.Summy, J. M., G. E. Gallick. 2003. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev. 22: 337-358. 9.Jones, R. J., E. Avizienyte, A. W. Wyke, D. W. Owens, V. G. Brunton, M. C. Frame. 2002. Elevated c-Src is linked to altered cell-matrix adhesion rather than proliferation in KM12C human colorectal cancer cells. Br. J. Cancer 87: 1128-1135. 10.Frame, M. C. 2002. Src in cancer: deregulation and consequences for cell behaviour. Biochim. Biophys. Acta 1602: 114-130. 11.Koster, A., S. Landgraf, A. Leipold, R. Sachse, E. Gebhart, A. H. Tulusan, G. Ronay, C. Schmidt, T. Dingermann. 1991. Expression of oncogenes in human breast cancer specimens. Anticancer Res. 11: 193-201. 12.Biscardi, J. S., A. P. Belsches, S. J. Parsons. 1998. Characterization of human epidermal growth factor receptor and c-Src interactions in human breast tumor cells. Mol. Carcinog. 21: 261-272. 13.Biscardi, J. S., R. C. Ishizawar, C. M. Silva, S. J. Parsons. 2000. Tyrosine kinase signalling in breast cancer: epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Res. 2: 203-210. 14.Martin, G. S. 2001. The hunting of the Src. Nat. Rev. Mol. Cell Biol. 2: 467-475. 15.Talamonti, M. S., M. S. Roh, S. A. Curley, G. E. Gallick. 1993. Increase in activity and level of pp60c-src in progressive stages of human colorectal cancer. J. Clin. Invest. 91: 53-60. 16.Irby, R. B., T. J. Yeatman. 2000. Role of Src expression and activation in human cancer. Oncogene 19: 5636-5642. 17.Wiener, J. R., T. C. Windham, V. C. Estrella, N. U. Parikh, P. F. Thall, M. T. Deavers, R. C. Bast, G. B. Mills, G. E. Gallick. 2003. Activated SRC protein tyrosine kinase is overexpressed in late-stage human ovarian cancers. Gynecol Oncol. 88: 73-79. 18.Hynes, N. E. 2000. Tyrosine kinase signalling in breast cancer. Breast Cancer Res. 2: 154-157. 19.Alvarez, R. H., H. M. Kantarjian, J. E. Cortes. 2006. The role of Src in solid and hematologic malignancies: development of new-generation Src inhibitors. Cancer 107: 1918-1929. 20.Rucci, N., M. Susa, A. Teti. 2008. Inhibition of protein kinase c-Src as a therapeutic approach for cancer and bone metastases. Anticancer Agents Med. Chem. 8: 342-349. 21.Garcia, R., N. U. Parikh, H. Saya, G. E. Gallick. 1991. Effect of herbimycin A on growth and pp60c-src activity in human colon tumor cell lines. Oncogene 6: 1983-1989. 22.Yu, H., R. Jove. 2004. The STATs of cancer--new molecular targets come of age. Nat. Rev. Cancer 4: 97-105. 23.Whitman, M., C. P. Downes, M. Keeler, T. Keller, L. Cantley. 1988. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332: 644-646. 24.Chang, J. H., S. Gill, J. Settleman, S. J. Parsons. 1995. c-Src regulates the simultaneous rearrangement of actin cytoskeleton, p190RhoGAP, and p120RasGAP following epidermal growth factor stimulation. J. Cell Biol. 130: 355-368. 25.Coluccia, A. M., D. Benati, H. Dekhil, A. De Filippo, C. Lan, C. Gambacorti-Passerini. 2006. SKI-606 decreases growth and motility of colorectal cancer cells by preventing pp60(c-Src)-dependent tyrosine phosphorylation of beta-catenin and its nuclear signaling. Cancer Res. 66: 2279-2286. 26.Aligayer, H., D. D. Boyd, M. M. Heiss, E. K. Abdalla, S. A. Curley, G. E. Gallick. 2002. Activation of Src kinase in primary colorectal carcinoma: an indicator of poor clinical prognosis. Cancer 94: 344-351. 27.Masaki, T., M. Okada, M. Tokuda, Y. Shiratori, O. Hatase, M. Shirai, M. Nishioka, M. Omata. 1999. Reduced C-terminal Src kinase (Csk) activities in hepatocellular carcinoma. Hepatology 29: 379-384. 28.Jackson, J. G., T. Yoneda, G. M. Clark, D. Yee. 2000. Elevated levels of p66 Shc are found in breast cancer cell lines and primary tumors with high metastatic potential. Clin. Cancer Res. 6: 1135-1139. 29.Slack, J. K., R. B. Adams, J. D. Rovin, E. A. Bissonette, C. E. Stoker, J. T. Parsons. 2001. Alterations in the focal adhesion kinase/Src signal transduction pathway correlate with increased migratory capacity of prostate carcinoma cells. Oncogene 20: 1152-1163. 30.Irby, R. B., T. J. Yeatman. 2002. Increased Src activity disrupts cadherin/catenin-mediated homotypic adhesion in human colon cancer and transformed rodent cells. Cancer Res. 62: 2669-2674. 31.Yeatman, T. J. 2004. A renaissance for SRC. Nat. Rev. Cancer 4: 470-480. 32.Golas, J. M., K. Arndt, C. Etienne, J. Lucas, D. Nardin, J. Gibbons, P. Frost, F. Ye, D. H. Boschelli, F. Boschelli. 2003. SKI-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice. Cancer Res. 63: 375-381. 33.Blake, R. A., M. A. Broome, X. Liu, J. Wu, M. Gishizky, L. Sun, S. A. Courtneidge. 2000. SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol. Cell Biol. 20: 9018-9027. 34.Shakespeare, W. C., C. A. Metcalf, 3rd, Y. Wang, R. Sundaramoorthi, T. Keenan, M. Weigele, R. S. Bohacek, D. C. Dalgarno, T. K. Sawyer. 2003. Novel bone-targeted Src tyrosine kinase inhibitor drug discovery. Curr. Opin. Drug Discov. Devel. 6: 729-741. 35.Chen, H. Y., M. S. Shiao, Y. L. Huang, C. C. Shen, Y. L. Lin, Y. H. Kuo, C. C. Chen. 1999. Antioxidant principles from Ephemerantha lonchophylla. J. Nat. Prod. 62: 1225-1227. 36.Lee, Y. H., J. D. Park, N. I. Baek, S. I. Kim, B. Z. Ahn. 1995. In vitro and in vivo antitumoral phenanthrenes from the aerial parts of Dendrobium nobile. Planta Med. 61: 178-180. 37.Lin, T. H., S. J. Chang, C. C. Chen, J. P. Wang, L. T. Tsao. 2001. Two phenanthraquinones from Dendrobium moniliforme. J. Nat. Prod. 64: 1084-1086. 38.Chen, C. C., Y. L. Huang, C. M. Teng. 2000. Antiplatelet aggregation principles from Ephemerantha lonchophylla. Planta Med. 66: 372-374. 39.Huang, Y. C., J. H. Guh, C. M. Teng. 2005. Denbinobin-mediated anticancer effect in human K562 leukemia cells: role in tubulin polymerization and Bcr-Abl activity. J. Biomed. Sci. 12: 113-121. 40.Yang, K. C., Y. H. Uen, F. M. Suk, Y. C. Liang, Y. J. Wang, Y. S. Ho, I. H. Li, S. Y. Lin. 2005. Molecular mechanisms of denbinobin-induced anti-tumorigenesis effect in colon cancer cells. World J. Gastroenterol. 11: 3040-3045. 41.Kuo, C. T., M. J. Hsu, B. C. Chen, C. C. Chen, C. M. Teng, S. L. Pan, C. H. Lin. 2008. Denbinobin induces apoptosis in human lung adenocarcinoma cells via Akt inactivation, Bad activation, and mitochondrial dysfunction. Toxicol. Lett. 177: 48-58. 42.Chen, T. H., S. L. Pan, J. H. Guh, C. C. Chen, Y. T. Huang, H. C. Pai, C. M. Teng. 2008. Denbinobin induces apoptosis by apoptosis-inducing factor releasing and DNA damage in human colorectal cancer HCT-116 cells. Naunyn. Schmiedebergs. Arch. Pharmacol. 378: 447-457. 43.Muthuswamy, S. K., W. J. Muller. 1994. Activation of the Src family of tyrosine kinases in mammary tumorigenesis. Adv. Cancer Res. 64: 111-123. 44.Maa, M. C., T. H. Leu, D. J. McCarley, R. C. Schatzman, S. J. Parsons. 1995. Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: implications for the etiology of multiple human cancers. Proc. Natl. Acad. Sci. USA 92: 6981-6985. 45.Mao, W., R. Irby, D. Coppola, L. Fu, M. Wloch, J. Turner, H. Yu, R. Garcia, R. Jove, T. J. Yeatman. 1997. Activation of c-Src by receptor tyrosine kinases in human colon cancer cells with high metastatic potential. Oncogene 15: 3083-3090. 46.Tice, D. A., J. S. Biscardi, A. L. Nickles, S. J. Parsons. 1999. Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc. Natl. Acad. Sci. USA 96: 1415-1420. 47.Wells, A., J. Kassis, J. Solava, T. Turner, D. A. Lauffenburger. 2002. Growth factor-induced cell motility in tumor invasion. Acta Oncol. 41: 124-130. 48.Kruger, J. S., K. B. Reddy. 2003. Distinct mechanisms mediate the initial and sustained phases of cell migration in epidermal growth factor receptor-overexpressing cells. Mol. Cancer Res. 1: 801-809. 49.Gonzalez, L., M. T. Agullo-Ortuno, J. M. Garcia-Martinez, A. Calcabrini, C. Gamallo, J. Palacios, A. Aranda, J. Martin-Perez. 2006. Role of c-Src in human MCF7 breast cancer cell tumorigenesis. J Biol Chem 281: 20851-20864. 50.Nam, J. S., Y. Ino, M. Sakamoto, S. Hirohashi. 2002. Src family kinase inhibitor PP2 restores the E-cadherin/catenin cell adhesion system in human cancer cells and reduces cancer metastasis. Clin. Cancer Res. 8: 2430-2436. 51.Johnson, L. N., M. E. Noble, D. J. Owen. 1996. Active and inactive protein kinases: structural basis for regulation. Cell 85: 149-158. 52.Zamir, E., B. Geiger. 2001. Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 114: 3583-3590. 53.McLean, G. W., N. O. Carragher, E. Avizienyte, J. Evans, V. G. Brunton, M. C. Frame. 2005. The role of focal-adhesion kinase in cancer - a new therapeutic opportunity. Nat. Rev. Cancer 5: 505-515. 54.Cance, W. G., J. E. Harris, M. V. Iacocca, E. Roche, X. Yang, J. Chang, S. Simkins, L. Xu. 2000. Immunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: correlation with preinvasive and invasive phenotypes. Clin. Cancer Res. 6: 2417-2423. 55.Recher, C., L. Ysebaert, O. Beyne-Rauzy, V. Mansat-De Mas, J. B. Ruidavets, P. Cariven, C. Demur, B. Payrastre, G. Laurent, C. Racaud-Sultan. 2004. Expression of focal adhesion kinase in acute myeloid leukemia is associated with enhanced blast migration, increased cellularity, and poor prognosis. Cancer Res. 64: 3191-3197. 56.Hiscox, S., L. Morgan, T. P. Green, D. Barrow, J. Gee, R. I. Nicholson. 2006. Elevated Src activity promotes cellular invasion and motility in tamoxifen resistant breast cancer cells. Breast Cancer Res. Treat 97: 263-274. 57.Schaller, M. D., J. D. Hildebrand, J. D. Shannon, J. W. Fox, R. R. Vines, J. T. Parsons. 1994. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol. Cell Biol. 14: 1680-1688. 58.Calalb, M. B., T. R. Polte, S. K. Hanks. 1995. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol. Cell Biol. 15: 954-963. 59.Cary, L. A., R. A. Klinghoffer, C. Sachsenmaier, J. A. Cooper. 2002. SRC catalytic but not scaffolding function is needed for integrin-regulated tyrosine phosphorylation, cell migration, and cell spreading. Mol. Cell Biol. 22: 2427-2440. 60.Mitra, S. K., D. A. Hanson, D. D. Schlaepfer. 2005. Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell Biol. 6: 56-68. 61.Brunton, V. G., E. Avizienyte, V. J. Fincham, B. Serrels, C. A. Metcalf, 3rd, T. K. Sawyer, M. C. Frame. 2005. Identification of Src-specific phosphorylation site on focal adhesion kinase: dissection of the role of Src SH2 and catalytic functions and their consequences for tumor cell behavior. Cancer Res. 65: 1335-1342. 62.Brugnera, E., L. Haney, C. Grimsley, M. Lu, S. F. Walk, A. C. Tosello-Trampont, I. G. Macara, H. Madhani, G. R. Fink, K. S. Ravichandran. 2002. Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat. Cell Biol. 4: 574-582. 63.Zrihan-Licht, S., Y. Fu, J. Settleman, K. Schinkmann, L. Shaw, I. Keydar, S. Avraham, H. Avraham. 2000. RAFTK/Pyk2 tyrosine kinase mediates the association of p190 RhoGAP with RasGAP and is involved in breast cancer cell invasion. Oncogene 19: 1318-1328. 64.Parsons, J. T. 2003. Focal adhesion kinase: the first ten years. J. Cell Sci. 116: 1409-1416. 65.Chang, Y. M., L. Bai, S. Liu, J. C. Yang, H. J. Kung, C. P. Evans. 2008. Src family kinase oncogenic potential and pathways in prostate cancer as revealed by AZD0530. Oncogene 27: 6365-6375. 66.Schaller, M. D. 2001. Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20: 6459-6472. 67.Subauste, M. C., O. Pertz, E. D. Adamson, C. E. Turner, S. Junger, K. M. Hahn. 2004. Vinculin modulation of paxillin-FAK interactions regulates ERK to control survival and motility. J. Cell Biol. 165: 371-381. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44368 | - |
| dc.description.abstract | Part A
Many cancers develop different means of escaping destruction by the immune system, such as resistance to FasL-Fas interaction-mediated apoptotic signals. Decoy receptor 3 (DcR3), a soluble receptor for FasL, is highly expressed in cancer cells and plays a significant role in immune suppression and tumor progression. However, how DcR3 expression is modulated is unclear. In this study, immunoprecipitation and ELISA assays using human pancreatic cancer cells showed the presence of high levels of DcR3 protein in AsPC-1 cells, but not in PANC-1 cells. Treatment with herbimycin A (a tyrosine kinase inhibitor), LY294002 or wortmannin (PI3K inhibitors), PDTC (an NF-kappa B inhibitor), or AG1024 (an IGF-1 inhibitor) significantly reduced endogenous DcR3 levels in AsPC-1 cells. Furthermore, transfection of AsPC-1 cells with Akt or I-kappa-B dominant negative plasmids also markedly reduced DcR3 levels. In contrast, 48 h transfection of PANC-1 cells with a constitutively active Akt induced DcR3 expression. Flow cytometry assays indicated that apoptosis was not seen in AsPC-1 cells incubated with sFasL or membrane-bound FasL, but was seen when DcR3 siRNA-transfected AsPC-1 cells underwent the same treatment. In addition, PANC-1 cells incubation with conditioned medium from AsPC-1 cells transfected with dominant negative Akt or I-kappa-B plasmids or DcR3 siRNA showed increased sFasL-mediated apoptosis compared to the control group. Our results show that IGF-1-induced activation of the PI3K/Akt/NF-kappa B signaling pathway is involved in the modulation of endogenous DcR3 expression in AsPC-1 cells and that reducing endogenous DcR3 levels increases FasL-induced apoptosis of human pancreatic cancer cells. Part B Breast cancer is the most common malignancy of women, and the highly metastasis ability of breast cancer is now a major problem of therapy. Src is a non receptor tyrosine kinase protein, plays an important role in tumor progression such as cell survival, adhesion, motility, invasion and metastasis, and researchers found that Src is overexpressed and activated in breast cancer. Recently, Src becomes a target of anti-breast cancer therapy. Denbinobin, a bioactive compound isolated from E. lonchophylla, has been reported to induce cell death in many cancer cells, and the xenograft model shows that denbinobin has anticancer efficacy in vivo. Src kinase activity is elevated in many cancers, including breast cancer, and is often associated with progressive disease. In this study, we examined the anti-metastatic effect of denbinobin. Using EGF to induce Src and downstream protein activation in breast cancer cells, denbinobin reduced the phosphorylation of Src and downstream signals such as FAK, CAS130 and paxillin, whereas this effect could be prevented by constant active of Src kinase. Furthermore, denbinobin inhibits Src kinase activity and breast cancer cell migration in a dose-dependent manner. Then we labeled cells with FITC-antibodies against the phosphorylation Src, FAK and paxillin, and found the immunofluorescence intensity of phosphorylated Src decreases significantly. In addition, the 4T1/luc metastatic mouse model revealed antimetastatic activity effect of denbinobin, and we further proved that Src/FAK pathway mediated the effect of denbinobin in vivo. In summary, our study demonstrates that denbinobin inhibits breast cancer cell migration, reduces the Src/FAK signaling pathway with no changes in cell proliferation, and shows in vivo efficacy in the mouse metastatic model to prevent tumor migration. Our results show that, acting as a potent Src inhibitor, denbinobin inhibits signaling pathways involved in controlling breast cancer migration and metastasis, suggesting that it has therapeutic potential in breast cancer treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:53:34Z (GMT). No. of bitstreams: 1 ntu-98-R96423003-1.pdf: 2713695 bytes, checksum: bbb78f21d7b6779387a11e64284374a1 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Part A. 第三號誘餌受體經由PI3K/Akt/NF-kappa B的訊號路徑調控在AsPC-1人類胰臟癌細胞株的表現之研究
Decoy receptor 3 expression in AsPC-1 human pancreatic adenocarcinoma cells via the phosphatidylinositol 3-kinase-, Akt-, and NF-kappa B-dependent pathway 中文摘要... 2 Abstract... 3 Introduction... 4 Materials and Methods... 6 Results... 12 Discussion... 16 References... 18 Figures... 23 Part B. Denbinobin 藉由Src 去活性化抑制乳癌細胞移行及轉移作用之研究 Denbinobin inhibits breast cancer migration and metastasis via Src inactivation 中文摘要... 46 Abstract... 47 Materials and Methods... 50 Results... 54 Discussion... 57 References... 59 Figures... 65 | |
| dc.language.iso | en | |
| dc.subject | 人類胰臟癌 | zh_TW |
| dc.subject | 乳癌細胞移行 | zh_TW |
| dc.subject | Src | zh_TW |
| dc.subject | denbinobin | zh_TW |
| dc.subject | 第三號誘餌受體 | zh_TW |
| dc.subject | NF-kappa B | zh_TW |
| dc.subject | denbinobin | en |
| dc.subject | NF-kappa B | en |
| dc.subject | pancreatic cancer | en |
| dc.subject | Decoy receptor 3 | en |
| dc.subject | Src | en |
| dc.subject | breast cancer migration | en |
| dc.title | Part A. 第三號誘餌受體經由PI3K/Akt/NF-kappa B的訊號路徑調控在AsPC-1人類胰臟癌細胞株的表現之研究
Part B. Denbinobin 藉由Src 去活性化抑制乳癌細胞移行及轉移作用之研究 | zh_TW |
| dc.title | Part A. Decoy receptor 3 expression in AsPC-1 human pancreatic adenocarcinoma cells via the phosphatidylinositol 3-kinase-, Akt-, and NF-kappa B-dependent pathway
Part B. Denbinobin inhibits breast cancer migration and metastasis via Src inactivation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊春茂,蕭哲志,黃聰龍 | |
| dc.subject.keyword | 第三號誘餌受體,人類胰臟癌,NF-kappa B,denbinobin,Src,乳癌細胞移行, | zh_TW |
| dc.subject.keyword | Decoy receptor 3,pancreatic cancer,NF-kappa B,denbinobin,Src,breast cancer migration, | en |
| dc.relation.page | 71 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-04 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
