Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44341
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張慶源(Ching-Yuan Chang)
dc.contributor.authorYu-Ying Linen
dc.contributor.author林育瑩zh_TW
dc.date.accessioned2021-06-15T02:52:03Z-
dc.date.available2011-08-05
dc.date.copyright2009-08-05
dc.date.issued2009
dc.date.submitted2009-08-04
dc.identifier.citation1. Abdullah, A.Z., M.Z. A. Bakar and S. Bhatia, Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium-copper supported on modified H-ZSM-5 catalyst. J. Hazard. Mater., 129(1-3), 39-49 (2006).
2. Anna, M., S. Krydtyna and M. Bozena, Catalytic oxidation of organic compounds including polycyclic aromatic hydrocarbons (PAHs) from motor exhaust gases. environmental protection engineering, 24(1), 13-132 (1998).
3. Air Quality Guidelines-Second Edition, WHO regional office, Copenhagen, Denmark (2000).
4. Babayan, S.E., J.Y. Jeong, V.J. Tu, J. Park, G.S. Selwyn and R. F. Hicks, Deposition of silicon dioxide films with an atmospheric-pressure plasma jet. Plasma Sources Sci. T., 7(3), 286-288 (1998).
5. Benoit-Marquié, F., U. Wilkenhöner, V. Simon, A.M. Braun, E. Oliveros, M. T. Maurette, VOC photodegradation at the gas–solid interface of a TiO2 photocatalyst Part I: 1-butanol and 1-butylamine. J. Photoch. Photobio. A, 132(3), 225-232 (2000).
6. Chae, J.O., V. Demidiouk, M. Yeilash, I.C. Choi and T.G. Jung, Experimental Study for Indoor Air Control by Plasma–Catalyst Hybrid System. IEEE T. Plasma Sci., 32(2), 493-497 (2004).
7. Chang, J.S., Recent development of plasma pollution control technology: a critical review. Sci. Technol. Adv. Mat., 2(3-4), 571-576 (2001).
8. Chernyak, V., V. Naumov and V. Yukhimenko, Spectroscopy of atmospheric pressure air jet plasma in transverse arc discharge. 12th International Congress on Plasma Physics, 25-29 (2004).
9. Chintawar, P.S. and H.L. Greene, Decomposition characteristics of chlorinated ethylenes on metal loades zeolite Y and γ-Al2O3. Appl. Catal. B-Environ., 13(2), 81-92 (1997).
10. Chronic toxicity summary, naphthalene, CAS Registry Number: 91-20-3.
11. Conrads H. and M. Schmidt, Plasma generation and plasma sources. Plasma Sources Sci. T., 9(4), 441-454 (2000).
12. CTS Laboratory, http://www.cts-lab.com/big5/pahs.htm.
13. Demidiouk, V. and J.O. Chae, Decomposition of volatile organic compounds in plasma-catalytic system. IEEE T. Plasma SCI., 33(1), 157- 161 (2005).
14. Dimmick, W.F., EPA programs of vinyl chloride monitoring in ambient air. Environ. Health Persp., 41, 203-206 (1981).
15. Dresvin S.V. and J. Amouroux, Heat and Mass Transfer in plasma jets. Advances in Heat Transfer, 40, 451-521 (2007).
16. Fauchais P. and G. Montavon, Plasma spraying: from plasma generation to coating structure. Advances in Heat Transfer, 40, 205-344 (2007).
17. Fridman, A., A. Chirokov and A. Gutsol, Non-thermal atmospheric pressure discharges. J. Phys. D Appl. Phys., 38(2), R1-R24 (2005).
18. Fridman A., A. Gutsol and Y.I. Cho, Non-thermoal atmospheric pressure plasma. Advances in Heat Transfer, 40, 1-142 (2007).
19. GonzaÂlez-Velasco J.R., A. Aranzabal, J.I. GutieÂrrez-Ortiz, R. LoÂpez-Fonseca and M.A. GutieÂrrez-Ortiz, Activity and product distribution of alumina supported platinum and palladium catalysts in the gas-phase oxidative decomposition of chlorinated hydrocarbons. Appl. Catal. B-Environ., 19(3-4), 189-197 (1998).
20. Harling, A.M., H.H. Kim, S. Futamura and J.C. Whitehead, Temperature dependence of plasma-catalysis using a nonthermal, atmospheric pressure packed bed; the destruction of benzene and toluene. J. Phys. Chem. C, 111(13), 5090-5095 (2007).
21. Haslinger S., J. Laimer and H. Stori, Stability conditions of argon and helium gas mixtures in an atmospheric pressure plasma jet. Vacuum, 82(2), 142-145 (2008).
22. Hong, Y.C., H.S. Uhm and W.J. Yi, Atmospheric pressure nitrogen plasma jet: observation of striated multilayer discharge patterns. Appl. Phys. Lett., 93(5), 051504-1-051504-3 (2008).
23. Jeon, S.G., K.H. Kim, D.H. Shin, N.S. Nho and K.H. Lee, Effective combination of non-thermal plasma and catalyst for removal of volatile organic compounds and NOx. Korean J. Chem. Eng., 24(3), 522-526 (2007).
24. Jones, J.H., Worker exposure to vinyl chloride and poly(vinyl chloride). Environ. Health Persp., 41, 129-136 (1981).
25. Kielhorn, J., C. Melber, U. Wahnschaffe, A. Aitio and I. Mangelsdorf, Vinyl chloride: still a cause for concern. Environ. Health Persp., 108(7), 579-588 (2000).
26. Kuzuya, M. and O. Mikami, Effect of argon pressure on spectral emission of a plasma produced by a laser microprobe. J. Anal. Atom. Spectrom., 7(3), 493-497 (1992).
27. Lee, C.C., J.C. Bhandari, J.M. Winston, W.B. House, P.J. Peters, R.L. Dixon and J.S. Woods. Inhalation toxicity of vinyl chloride and vinylidene chloride, Environ. Health Persp., 21, 25-32 (1977).
28. Lommatzsch U., D. Pasedag, A. Baalmann, G. Ellinghorst and H.E. Wagner. Atmospheric pressure plasma jet treatment of polyethylene surfaces for adhesion improvement, Plasma Process. Polym., 4, S1041-S1045 (2007).
29. Lu, X.P., Z. Jiang, Q. Xiong, Z. Tangm X. Hu and Y. Pan, An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine. Appl. Phys. Lett., 92(8), 081502-1-081502-2 (2008).
30. Minnesota department of health (MDH), http://www.health.state.mn.us/divs/eh/indoorair/voc/
31. Mori, T., D. Tomikawa, Y. Katano, J. Kubo and Y. Morikawa, Reduction of chloroacetone over silica-supported noble metal catalysts. Appl. Catal. A-Gen., 271(1-2), 77-84 (2004).
32. Moon, S.Y. and Q. Choe, A uniform glow discharge plasma source at atmospheric pressure. Appl. Phys. Lett., 84(2), 188-190 (2004).
33. Mostaghimi J. and S. Chandra, Heat transfer in plasma spray coating processes. Advances in Heat Transfer, 40, 143-204 (2007).
34. Nie, Q.Y., C.S. Ren, D.Z. Wang and J.L. Zhang, A simple cold Ar plasma jet generated with a floating electrode at atmospheric pressure. Appl. Phys. Lett., 93(1), 011503-1-011503-3 (2008).
35. Nunez C.M., Ramsey G.H., Ponder W.H., Abbott I.H., Hamel L.E. and Kariher P.H., Corona destruction: An innovative control technology for VOCs and air toxics. J. Air Waste Manage, 43(2), 242-247 (1993).
36. Oda T., Non-thermal plasma processing for environmental protection:decomposition of dilute VOCs in air. J. Electrostat., 57(3-4), 293-311 (2003).
37. Park, J., I. Henins, H.W. Hermann and G.S. Selwyn, An atmospheric pressure plasma source. Appl. Phys. Lett., 76(3), 288-290 (2000).
38. Pfender E. and J. Heberlein, Heat transfer processes and modeling of arc discharges. Advances in Heat Transfer, 40, 345-450 (2007).
39. Report on carcinogens, eleventh edition, vinyl chloride, CAS no. 75-01-4 (1980).
40. Sass, J.B., B. Castleman and D. Wallinga, Vinyl Chloride: A case study of data suppression and misrepresentation. Environ. Health Persp., 113, 809-812 (2005).
41. Schütze, A., J.Y. Jeong, S.E. Babayan, J. Park, G.S. Selwyn and R.F. Hicks, The atmospheric-pressure plasma jet: a review and comparison toother plasma sources. IEEE T. Plasma Sci., 26(6), 1685-1694 (1998).
42. Selwyn, G.S., H.W. Herrmann, J. Park and I. Henins, Materials processing using an atmospheric-pressure plasma. Physics Division Progress Report, Operated by Los Alamos National Security, Limited Liability Companies (LLC) for the U.S. Department of Energy's NNSA, 189-197 (1999-2000).
43. Shenton, M.J. and G.C. Stevens, Optical emission from atmospheric pressure nonequilibrium plasma. IEEE T. Plasma Sci., 30(1), 184-185 (2002).
44. Shie, J.L., C.Y. Chang, J.H. Chen, W.T. Tsai, Y.H. Chen, C.S. Chiou and C.F. Chang, Catalytic oxidation of naphthalene using a Pt/Al2O3 catalyst. Appl. Catal. B-Environ., 58(3-4), 289-297 (2005).
45. Shih, S.I., T.C. Lin and M. Shih, Decomposition of benzene in the RF plasma environment Part II. Formation of polycyclic aromatic hydrocarbons. J. Hazard. Mater., B117(2-3), 149-159 (2005).
46. Snyder, S.C., G.D. Lassahn and J.D. Grandy, Direct determination of gas velocity and gas temperature in an atmospheric-pressure argon–hydrogen plasma jet. J. Quant. Spectrosc. Ra., 107(2), 217-225 (2007).
47. Sobachi, M.G., A.V. Saveliev, A.A. Fridman, A.F. Gutsol and L.A. Kennedy, Experimental assessment of pulsed corona discharge for treatment of VOC emissions. Plasma Chem. Plasma P., 23(2), 347-370 (2003).
48. Song, H., B.W. Wang and G.H. Xu, Progress in treatment of volatile organic compounds by non-thermal plasma. Chemical Industry And Engineering, 24(4), 356-369 (2007).
49. Subrahmanyam, C.H., M. Magureanu, A. Renken and L. Kiwi-Minsker, Catalytic abatement of volatile organic compounds assisted by non-thermal plasma Part 1. A novel dielectric barrier discharge reactor containing catalytic electrode. Appl. Catal. B-Environ., 65(1-2), 150-156 (2006).
50. Sun, W.T., G.Li, H.P. Li, C.Y. Bao, H.B. Wang, S. Zeng and X. Gao, Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol. J. Appl. Phys., 101(12), 123302-1-123302-6 (2007).
51. Tendero, C., C. Tixier, P. Tristant, J. Desmaison and P. Leprince, Atmospheric pressure plasmas: A review. Spectrochimica. Acta Part B, 61(1), 2-30 (2006).
52. Wakefield, J., Compendium of Chemical Hazards, Naphthalene. CHAPD HQ, HPA 2007 Version 1 (2007).
53. Wang, B., W.C. Zhu and Y.K. Pu, Observation of the emission spectra of an atmospheric pressure radio-frequency plasma jet. Plasma Sci. Technol., 7(5), 3045-3047 (2005).
54. Wikipedia, http://zh.wikipedia.org/w/index.php?title=%E4%B9%99%E7%83%AF&variant=zh-tw
55. Zhang, X.W., S.C. Shen, L.E. Yu, S. Kawi, K. Hidajat and K.Y.S. Ng, Oxidative decomposition of naphthalene by supported metal catalysts. Appl. Catal. A-Gen., 250(2), 341-352 (2003).
56. 李灝銘、張木彬,電漿處理技術於環境工程之應用與發展趨勢,空氣污染控制新技術推廣講習會,台北 (2005)。
57. 李灝銘,「以低溫電漿去除揮發性有機物之研究」,國立中央大學環境工程研究所博士論文 (2001)。
58. 胡恩德,「真空中直流電氣銀接點電弧特性和損耗形成機制之研究」,國立中山大學機械工程研究所碩士論文 (2001)。
59. 鐘鶴崋,「電氣接點電弧特性與損耗形態機制之基礎研究」,國立中山大學機械與機電工程學系博士論文 (2003)。
60. 陳家豪,「以觸媒分解氣相中萘之研究」,國立台灣大學環境工程學研究所碩士論文 (2004)。
61. 楊明松,「應用於電暈放電之電源供應器與研製」,私立中原大學電機工程學系碩士論文 (2004)。
62. 史順益,「苯於高週波電漿中之反應」,國立成功大學環境工程學系博士論文 (2004)。
63. 李灝銘、張木彬,氣態污染物控制新技術-非熱電漿技術,工業污染防治,第89期,169-191 (2004)。
64. 王曉萍,「大氣電漿束之特性分析」,國立清華大學物理學系碩士論文 (2005)。
65. 李佳香,「發光二極體結合改質光觸媒處理室內揮發性有機污染物之研究」,國立台灣大學環境工程學研究所碩士論文 (2006)。
66. 張家豪、魏鴻文、翁政輝、柳克強、李安平、寇崇善、吳敏文、曾錦清、蔡文發、鄭國川,電漿源原理與應用之介紹,物理雙月刊,28(2), 440-451 (2006)。
67. 楊宇傑,「生質廢棄物電漿熱裂解之研究」,國立台灣大學環境工程學研究所碩士論文 (2007)。
68. 謝瑜芬,「以SCR 觸媒破壞氣相中戴奧辛之初步探討」,國立中央大學環境工程學研究所碩士論文 (2003)。
69. 楊家正,「釩鈦觸媒催化分解氣相戴奧辛之研究」,國立中央大學環境工程學研究所碩士論文 (2006)。
70. 陳詩韻,「觸媒濕式催化分解DMP之研究」,國立台灣大學環境工程學研究所碩士論文 (2008)。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44341-
dc.description.abstract本研究主要是以大氣電漿束(atmospheric pressure plasma jet, APPJ) 反應器結合鉑觸媒探討揮發性有機物(volatile organic compounds, VOCs)的分解成效。選擇的分解目標為萘(naphthalene, Nap)、氯乙烯(vinyl chloride, VC)及乙烯(ethylene, Eth)。前者為多環芳香碳氫化合物(poly aromatic hydrocarbons, PAHs)中化學結構最簡單且揮發性最高者,故其在氣相PAHs污染物中最具有代表性。Nap溶於正丁醇(n-butanol, BOH)中,通入空氣產生含Nap及BOH之空氣,故n-butanol在系統中的分解效率也一併討論。後二者則為製造聚氯乙烯(polyvinyl chloride, PVC)類塑膠製品的主要原料。Nap為一持久性有機汙染物,具有致癌性及致突變性,亦屬於環境荷爾蒙。VC及乙烯對於生活環境及人體健康將造成危害。故進行該二者之分解反應並做比較。
研究中探討APPJ反應系統中主要參數,如輸入電功率(input power, PWI)、氣體組成、觸媒、及空間流速(space velocity, SV)等與分解效率 (efficiency of decomposition)的關係。本研究所使用的觸媒為Pt/γ-Al2O3,並結合大氣電漿束進行電漿催化氧化分解。結果顯示,僅以大氣電漿束在PWI = 250 W及工作氣體為air,分解效率分別為XVC = XEth = 10%、XBOH = 33%及XNap = 21%。結合觸媒(mS = 10.64 g )後,其分解效率分別增為XVC = 50%、XEth = 78%、XBOH = 99%及XNap = 99%
比較不同觸媒的影響,結果顯示Al2O3、TiO2/Al2O3及Pt/Al2O3三種觸媒在APPJ反應器中,以Pt/Al2O3觸媒具有最高的分解反應能力。當工作氣體為Ar、PWI = 250 W、而SV為17,400 h-1時,其XBOH及XNap皆高於99.9%。此外當Ar系統之PWI = 250 W、SV= 52,100、26,400及17,400 h-1時,其XBOH = 56.1、75.1及96.6%,XNap = 57.0、74.9及98.2%。結果顯示SV降低時(停留時間增長),其分解效率增高。故結合APPJ與貴金屬氧化觸媒可有效分解正丁醇及萘。
zh_TW
dc.description.abstractThis study investigated the application of atmospheric pressure plasma jet (APPJ) reactor combined with catalyst (catalytic atmospheric pressure plasma jet, CAPPJ) to decompose the volatile organic compounds (VOCs). The target compounds are naphthalene (Nap), vinyl chloride (VC) and ethylene (Eth). The Nap which has the low toxic and high volatility among the poly aromatic hydrocarbons (PAHs). The Nap was mixed with n-butanol (BOH) in gas generator to produce gaseous Nap/BOH. The working gases for generating the plasma in APPJ reactor are Ar, Air and N2. Both Nap and VC are hazardous to human health and exihibit carcinogenicity. Therefore, the decompositions of Nap and VC and their accompanied compounds of BOH and Eth via APPJ reactor were discussed.
The effects of system parameters such as the input power (PWI), gas composition, types of catalysts, and space velocity (SV) on the efficiency of decomposition of n-butanol (XBOH) and Nap (XNap) were studied and elucidated. Pt/γ-Al2O3 was used as catalysts in this study and combined with APPJ. The results show that the function of APPJ alone at PI = 250 W and in air gives the efficiencies of decomposition of XVC = XEth = 10%, XBOH = 33% and XNap = 21%, respectively. On the other hand, the efficiencies of decomposition with CAPPJ are XVC = 50%, XEth = 78%, XBOH = 99% and XNap = 99%, respectively.
Comparing the catalysts of Al2O3, TiO2/Al2O3 and Pt/Al2O3, the Pt/Al2O3 has the highest reactivity among the three catalysts tested in APPJ system. For the Ar system with the presence of Pt/Al2O3 catalyst at SV of 17,400 h-1 and PWI of 250 W, both XNap and XBOH can reach as high as 99.9%. For the other cases of air/Ar with SV of 52,100, 26,400 and 17,400 h-1, the values of XBOH are 56.1, 75.1 and 96.6%, while those of XNap are 57.0, 74.9, and 98.2%, respectively. Thus, combining the APPJ with Pt/Al2O3 catalyst can effectively decompose both the n-butanol and naphthalene.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:52:03Z (GMT). No. of bitstreams: 1
ntu-98-R96541113-1.pdf: 2587033 bytes, checksum: 07db0bdc7c4e5ea252132b73a2f13b16 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 xiv
符號說明 xvii
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 研究內容 3
第二章 文獻回顧 4
2.1 電漿 4
2.1.1 電漿產生之基本原理 4
2.1.2 電漿之種類 6
2.1.3 大氣電漿放電原理 9
2.1.4 大氣電漿之應用 12
2.1.5 影響電漿分解效能的因素 17
2.2 揮發性有機物 19
2.2.1 含氯揮發性有機物 20
2.2.2多環芳香烴 21
2.2.3 乙烯 22
2.2.4 正丁醇 23
2.3 熱催化氧化技術 26
2.3.1 基本原理 26
2.3.2 觸媒失活 27
第三章 研究方法 28
3.1 實驗材料 30
3.2 實驗設備 32
3.3 分析方法 37
3.3.1 氣相層析儀/火焰離子偵測器(GC/FID) 37
3.3.2 氣相層析儀/熱傳導偵測器(GC/TCD) 37
3.3.3熱重分析儀(TGA) 38
3.4 實驗程序 39
3.4.1 大氣電漿流程 39
3.4.2 檢量線製作 40
3.4.3 大氣電漿噴射束實驗 42
3.4.4 電漿觸媒實驗 43
3.4.5 實驗條件 43
第四章 結果與討論 45
4.1 觸媒性質 45
4.2電漿熱反應行為探討 46
4.3氯乙烯電漿分解反應 50
4.3.1電漿分解反應 50
4.3.2 電漿催化氧化反應 52
4.4乙烯電漿分解反應 63
4.4.1 電漿分解反應 63
4.4.2 電漿催化氧化反應 65
4.5 正丁醇電漿分解反應 76
4.5.1 電漿分解反應 76
4.5.2 電漿催化氧化反應 79
4.5.3 Nap分解反應 82
4.6 綜合比較 90
第五章 結論與建議 111
5.1 結論 111
5.2 建議 112
參考文獻 114
附錄
A. 檢量線 A-1
B. 實驗數據 B-1
dc.language.isozh-TW
dc.subject揮發性有機物zh_TW
dc.subject氧化鋁擔體zh_TW
dc.subject鉑觸媒zh_TW
dc.subject大氣電漿噴射束zh_TW
dc.subject非熱電漿zh_TW
dc.subject氯乙烯zh_TW
dc.subject萘zh_TW
dc.subject多環芳香烴zh_TW
dc.subjectVolatile organic compounds (VOCs)en
dc.subjectPt catalysten
dc.subjectatmospheric pressure plasma jet (APPJ)en
dc.subjectaluminaen
dc.subjectnon-thermal plasmaen
dc.subjectvinyl chloride (VC)en
dc.subjectnaphthalene (Nap)en
dc.subjectpolycyclic aromatic hydrocarbons (PAHs)en
dc.title應用鉑觸媒結合大氣電漿系統催化分解揮發性有機污染物之研究zh_TW
dc.titleApplication of Atmospheric Pressure Plasma Jet Assited with Platinum Catalyst for the Treatment of Volatile Organic Compoundsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張奉文(Feg-Wen Chang),張瓊芬(Chiung-Fen Chang)
dc.subject.keyword揮發性有機物,多環芳香烴,萘,氯乙烯,非熱電漿,大氣電漿噴射束,鉑觸媒,氧化鋁擔體,zh_TW
dc.subject.keywordVolatile organic compounds (VOCs),polycyclic aromatic hydrocarbons (PAHs),naphthalene (Nap),vinyl chloride (VC),non-thermal plasma,atmospheric pressure plasma jet (APPJ),Pt catalyst,alumina,en
dc.relation.page146
dc.rights.note有償授權
dc.date.accepted2009-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved