Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44289
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor譚義績(Yih-Chi Tan)
dc.contributor.authorGuan-Ru Chenen
dc.contributor.author陳冠儒zh_TW
dc.date.accessioned2021-06-15T02:49:11Z-
dc.date.available2009-08-11
dc.date.copyright2009-08-11
dc.date.issued2009
dc.date.submitted2009-08-06
dc.identifier.citation[1] Dey S. Free overfall in open channels: state-of-the-art review. Flow measurement and Instrumentation 2002; 13: 247-264.
[2] Chanson H. Comparison of energy dissipation between nappe and skimming flow regimes on stepped chutes. Journal of Hydraulic Research 1994; 32(2): 213-218.
[3] Lin C, Hsieh SC, Kuo KJ, Chang KA. Periodic oscillation caused by a flow over a vertical drop pool. Journal of Hydraulic Engineering 2008; 134(7): 948-960.
[4] Rouse H. Discharge characteristics of the free overfall. Civil Engineering 1936; 6(4): 257-260.
[5] Rajaratnam N, Muralidhar D, Beltaos S. Roughness effects on rectangular free overfall. Journal of the Hydraulics Division Proceedings of the ASCE 1976; 102(HY5): 599-614
[6] Keller RJ, Fong SS. Flow measurement with trapezoidal free overfall. Journal of Irrigation and Drainage Engineering 1989; 115(1): 125-136.
[7] Ferro V. Flow measurement with rectangular free overfall. Journal of Irrigation and Drainage Engineering 1992; 118(6): 956-964.
[8] Marchi E. On the free overfall. Journal of Hydraulic Research 1993; 31(6): 777-790.
[9] Bhallamudi SM. End depth in trapezoidal and exponential channels. Journal of Hydraulic Research 1994; 32(2): 219-232.
[10] Sturm TW, Asdiq A. Water surface profiles in compound channel with multiple critical depths. Journal of Hydraulic Engineering 1996; 122 (12): 703-709.
[11] Davis AC, Jacob RP, Ellett GS. Estimating trajectory of free overfall nappe. Journal of Hydraulic Engineering 1999; 125 (1): 79-82.
[12] Ferro V. Theoretical end-depth-discharge relationship for free overfall. Journal of Irrigation and Drainage Engineering 1999; 125(1): 40-44.
[13] Sterling M, Knight DW. The free overfall as a flow-measuring device in a circular channel. Waters Management 2001; 148:235–243.
[14] Ramamurthy AS, Zhai C, Qu J. End depth-discharge relation at free overfall of trapezoidal channels. Journal of Irrigation and Drainage Engineering 2004; 130(5): 432-436.
[15] Dey S. End depth in U-shaped channels: A simplified approach. Journal of Hydraulic Engineering 2005; 131(6): 513-516.
[16] Dey S, Lambert MF. Discharge prediction in compound channels by end depth method. Journal of Hydraulic Research 2006; 44(6): 767-776.
[17] Tigrek S, Firat CE, Ger AM. Use of brink depth in discharge measurement. Journal of Irrigation and Drainage Engineering 2008; 134(1): 89-95.
[18] Gill MA. Hydraulics of rectangular vertical drop structures. Journal of Hydraulic Research 1979; 17(4): 289-302.
[19] Robinson KM. Stress distribution at an overfall. Transactions of the ASAE 1989; 32(1): 75-80.
[20] Robinson KM. Hydraulics stresses on an overfall boundary. Transactions of the ASAE 1989; 32(4): 1269-1274.
[21] Robinson KM. Predicting stress and pressure at an overfall. Transactions of the ASAE 1992; 35(2): 561-569.
[22] Wu S, Rajaratnam N. Impinging jet and surface flow regimes at drop. Journal of Hydraulic Research 1998; 36 (1): 69-74.
[23] Robinson KM, Cook KR, Hanson GJ. Velocity field measurements at an overfall. Transacitions of the ASAE 2000; 43(3): 665-670.
[24] Lin C, Hwung WY, Hsieh SC, Chang KA. Experimental study on mean velocity characteristics of flow over vertical drop. Journal of Hydraulic Research 2007; 45(1): 33-42.
[25] Adrian RJ. Particle-imaging techniques for experimental fluid mechanics. Annual Reviews in Fluid Mechanics 1991; 23: 261-304.
[26] Jähne B, Klinke J, Waas S. Imaging of short ocean wind waves: a critical theoretical review. Journal of the Optical Society of America. A, Optics and Image Science 1994; 11(8): 2197-2209.
[27] Adrian RJ. Twenty years of particle image velocimetry. Experiments in fluids 2005; 39(2): 159-169.
[28] Nicolas KR, Lindenmuth WT, Weller CS, Anthony DG. Radar imaging of water surface flow fields. Experiments in fluids 1997; 23: 14-19.
[29] Craeye C, Sobieski PW, Bliven LF, Guissard A. Ring-waves generated by water drops impacting on the water surfaces at rest. Journal of Oceanic Engineering 1999; 24(3): 323-332.
[30] Dabiri D, Gharib M. Interaction of a shear layer with a free surface. 9TH. International Symposium On Flow Visualization 2000; 72: 1-12.
[31] Kouyi GL, Vazquez J, Poulet JB. 3D free surface meausrement and numerical modelling of flows in storm overflows. Flow Measurement and Instrumentation 2003; 14: 79-87.
[32] Douxchamps D, Devriendt D, Capart H, Craeye C, Macq B, Zech Y. Stereoscopic and velocimetric reconstructions of the free surface topography of antidune flows. Experiments in fluids 2005; 39: 533-551.
[33] Ni WJ, Capart H. Groundwater drainage and recharge by networks of irregular channels. Journal of Geophysical Research 2006; 111: 1-33.
[34] Soares-Frazao S, Le Grelle N, Spinewine B, Zech Y. Dam-break induced morphological changes in a channel with uniform sediments: measurements by a laser-sheet imaging technique. Journal of Hydraulic Research 2007; 45: 87-95.
[35] Gardasson SM, Yeh H. Hysteresis in shallow water sloshing. Journal of Engineering Mechanics 2007; 133(10): 1093-1100.
[36] Stilwell D, Pilon RO. Directional specta of surface waves from photographs. Journal of geophysical research 1974; 79(9):1277-1284.
[37] Lin J, Kamotani Y, Ostrach S. An experimental study of free surface deformation in oscillatory thermocapillary flow. Acta Astronautica Journal; 1995 35(8): 525-536.
[38] Mossa M, Petrillo A, Chanson H. Tailwater level effects on flow conditions at an abrupt drop. Journal of Hydraulic Research 2002; 40(4): 1-13.
[39] Lin C, Juang RH, Hsieh SC. Study on the characteristics of periodic oscillation flow over a vertical drop energy-dissipator. Journal of the Chinese Institute of Civil and Hydraulic Engineering 2003; 15(1): 107-124. (in Chinese)
[40] Jain R, Kasturi R, Schunck BG. Machine Vision. McGraw-Hill, New York 1995.
[41] Capart H, Young DL, Zech Y. Voronoi imaging methods for the measurement of granular flows. Experiments in fluids 2002; 32: 121-135.
[42] Cleveland WS. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association. 1979; 74: 829-836.
[43] http://www.mathwork.com
[44] Rajaratnam N, Chamani MR. Energy loss at drops. Journal of Hydraulic Research 1995; 33(3): 373-384.
[45] Nezu, I, Onitsuka, K Turbulent structures in partly vegetated open-channel flows with LDA and PIV measurements. Journal of Hydraulic Research 2001;39(6):629-642.
[46] 邱泳仁,“垂直式單階跌水工與跌水消能池之流場特性探討”,國立中興大學土木工程研究所碩士論文,2001。
[47] Adrian RJ. Bibliography of particle velocimetry using imaging method. Technical report 817 University of Illinois 1996; 1917-1995.
[48] Nezu I, Nakayama T Space-time correlation structures of horizontal coherent vortices in compound channel flows by using particle-tracking velocimetry. Journal of Hydraulic Research 1997; 35:191-208.
[49] 林 呈、莊仁合、謝世圳,“垂直式跌水工靜水池內週期性振盪流特性之實驗探討”,中國土木水利工程學刊,2002; Vol. 15, No. 1, pp. 107 ~ 124。
[50] 楊勝嘉,“垂直式消能池之尾檻尺寸對振盪流場之頻率”,國立中央大學土木工程研究所碩士論文,2002
[51] 吳榮峰,“大尺度質點影像量測法之應用-分析水面流場”,國立成功大學水利及海洋工程研究所博士論文,2003。
[52] 李明靜,“河川表面流速與流量非接觸式量測方法之發展及應用”, 國立成功大學水利及海洋工程研究所博士論文,2003。
[53] 陳義芳, “波浪通過斜坡底床上雙列潛堤之流場研究”, 國立成功大學水利及海洋工程研究所碩士論文,2004。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44289-
dc.description.abstract本研究主要量測與分析自由跌水在不同靜水池長度時發生滑流、舌流及週期性振盪流之水理及觀察背向穴室存在時對水理之影響。本系列試驗於壓克力水槽中設置自由跌水模型,並於跌水垂直側壁後方建置矩形空間之背向穴室,下游處設置尾檻以形成靜水池。為造成不同流況,試驗之靜水池長度(Lp) 則為5至30 cm間。研究中僅針對單一入流量進行試驗。試驗中以水尺及雷射光頁影像技術量測穩定及振盪流況時之水位。於週期性振盪流況下,水位振盪週期隨靜水池長度增加而增加,然而水位振幅隨靜水池長度增加而減少。滑流與舌流時水位於有無背向穴室時之差異微小,然而明顯差異表現則於週期性振盪流況時,包括水位振盪週期及振幅。背向穴室之存在使造成週期性振盪流況之靜水池長度範圍改變,振盪週期變長振幅變小。此外,應用跌水水深(end-depth)於振盪流況時之流量推估亦被檢查。跌水處之最高與最低水位之平均水深仍可應用於流量推估。試驗中發現當靜水池長度為14.5及15 cm且無背向穴室時,水舌下方之氣室將逐漸消失,但此長度下且背向穴室存在時氣室則持續存在。當氣室消失時振盪流況之週期明顯增加且振幅減少,所推估流量之誤差值亦明顯增加。最後利用PIV (Particle Image Velocimetry)將流場可視化,主要說明有無背向穴室與不同靜水池長度下靜水池內部流況變化。量測結果顯示各流況時之流場皆非穩態。背向穴室之存在影響靜水池流場明顯,並使靜水池內主渦流之形狀變的較扁長,且渦心位置則較靠近底床。zh_TW
dc.description.abstractThis study mainly measures and analyzes the flow field of skimming, napped and periodic oscillatory flow of free overfall with a plunge pool in various lengths (Lp). It also discusses the influences of backward cavity in the plunge pool on flow conditions. Series of experiments are carried out in a rectangular flume made of acrylic material. Single approaching flow rate is considered and the length of the plunge pool is adjustable to create required flow conditions (Lp = 5 – 30 cm). Point gauge and the laser-sheet imaging technique are used to measure the steady and oscillating water surface. In addition, the PIV (Particle Image Velocimetry) is applied to visualize the flow field in the plunge pool. For periodic oscillatory flow, oscillation period increases with the increasing plunge pool length. On the other hand, the water stage amplitude decreases while the plunge pool length stretching. The backward cavity evidently influences the range of plunge pool for periodic oscillatory flow. However, for skimming and napped flow, the measured water stages are rather similar in spite of the plunge pool with/without the backward cavity. Obvious influences by backward cavity are investigated in the periodic oscillatory flow. The oscillation period and water stage amplitude become longer and smaller, respectively, comparing with the same plunge pool length. Regarding air pocket beneath the falling jet, it appears except Lp = 14.5 and 15 cm without backward cavity. To application of end depth method to flow rate estimation, the mean value of the maximum and minimum water depth at the brink of the drop used as the end depth is workable. However, the huge deviation of flow rate estimation is found as the air pocket disappearing. The visualized velocity field in the plunge pool shows unstable phenomena. In addition, the backward cavity significantly affects the flow field. For example, the major vortex in the plunge pool shows narrow shape and its centre position locates closing to the vertical wall.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:49:11Z (GMT). No. of bitstreams: 1
ntu-98-R95622032-1.pdf: 12933729 bytes, checksum: acc539c9c8378f3e8526e1e0ec680090 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents誌謝 I
中文摘要 II
Abstract III
章節目錄 V
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 本文組織 5
第二章 試驗佈置與案例 8
2.1 試驗佈置 8
2.2 案例規劃 11
第三章 量測技術 13
3.1 雷射光頁影像技術 13
3.2 流場量測 20
第四章 流況觀測 32
4.1 滑流流況 32
4.2 舌流流況 35
4.3 週期性振盪流況 37
4.4 氣室消失之現象 40
第五章 水位分析 42
5.1 穩定流況水位描述 42
5.2 振盪流況水位描述 44
5.3 振盪流況水位特性 49
5.4 振盪流況水位之週期與振幅 54
5.5 振盪流況於跌水處水深推估流量之適用性 60
第六章 流場量測結果 62
6.1 滑流流況 62
6.2 舌流流況 71
6.3 週期性振盪流流況 79
第七章 結論與建議 106
7.1 結論 106
7.2 建議 106
參考文獻 108
符號說明 113
dc.language.isozh-TW
dc.subject雷射光頁影像技術zh_TW
dc.subjectPIVzh_TW
dc.subject週期性振盪流況zh_TW
dc.subject滑流zh_TW
dc.subject自由跌水zh_TW
dc.subject舌流zh_TW
dc.subjectPIV(Particle Image Velocimetry)en
dc.subjectLaser-sheet imaging techniqueen
dc.subjectPeriodic oscillation flowen
dc.subjectNapped flowen
dc.subjectSkimming flowen
dc.subjectFree overfallen
dc.title靜水池長度與背向穴室對自由跌水池內流況影響之試驗研究zh_TW
dc.titleInfluences of plunge pool length and backward cavity on flow field in plunge pool of free overfallen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.coadvisor賴進松(Jihn-Sung Lai)
dc.contributor.oralexamcommittee陳建謀(Jiann-Mou Chen),欉順忠(Shuen-Jong Tsorng)
dc.subject.keyword自由跌水,滑流,舌流,週期性振盪流況,雷射光頁影像技術,PIV,zh_TW
dc.subject.keywordFree overfall,Skimming flow,Napped flow,Periodic oscillation flow,Laser-sheet imaging technique,PIV(Particle Image Velocimetry),en
dc.relation.page113
dc.rights.note有償授權
dc.date.accepted2009-08-06
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
12.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved