請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44286完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏溪成(Shi-Chern Yen) | |
| dc.contributor.author | Yu-Shu Chang | en |
| dc.contributor.author | 張祐書 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:49:01Z | - |
| dc.date.available | 2012-08-20 | |
| dc.date.copyright | 2011-08-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-16 | |
| dc.identifier.citation | Alegria, Y., F. Liendo, O. Nunez, “On the Fenton degradation mechanism. The role of oxalic acid,” Arkivoc, 10, 538-549 (2003).
Anotai, J., M.C. Lu, P. Chewpreecha, “Kinetics of aniline degradation by Fenton and electro-Fenton processes,” Water Research, 40, 1841-1847 (2006). Bigda, R.J. “Consider Fenton's chemistry for wastewater treatment,” Chemical Engineering Progress, 12, 62-66 (1995). Blomeke, B., R. Brans, P.J. Coenraads, H. Dickel, T. Bruckner, D.W. Hein, M. Heesen, H.F. Merk, Y. Kawakubo, “Para-phenylenediamine and allergic sensitization: risk modification by N-acetyltransferase 1 and 2 genotypes,” British Journal of Dermatology, 1130-1135 (2009). Brillas, E., R.M. Bastida, and E. Llosa, “Electrochemical destruction of aniline and 4-chloroaniline for wastewater treatment using a carbon-PTFE O2-fed cathode,” Journal of the Electrochemical Society, 142, 1733-1741 (1995). Brillas, E., E. Mur, J. Casado, “Iron(II) catalysis of the mineralization of aniline using a carbon-PTFE O2-fed cathode,” Journal of the Electrochemical Society, 143 (3), L49-L53 (1996). Brillas, E., E. Mur, R. Sauleda, L. Sanchez, J. Peral, X. Domenech, “Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photo-electro-Fenton processes,” Applied Catalysis B-Environmental, 16, 31-42 (1998). Brillas, E., J.C. Calpe, J. Casado, “Minerallization of 2,4-D by advanced electrochemical oxidation process.” Water Research, 41, 2253-2262 (2000). Brillas, E., J. Casado, “Aniline degradation by Electro-FentonR and peroxi-coagulation processes using a flow reactor for wastewater treatment,” Chemosphere, 47, 241-248 (2002). Brillas, E., M.A. Banos, J.A. Garrido, “Mineralization of herbicide 3,6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton,” Electrochim Acta, 48, 1697-1705 (2003). Brillas, E., B. Boye, I. Sires, J.A. Garrido, R.M. Rodriguez, C. Arias, P.L. Cabot and C. Comninellis, “Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode,” Electrochimica Acta, 49, 4487-4496 (2004). Chen, Y.H., Y.Y. Liu, R.H. Lin, F.S. Yen, “Photocatalytic degradation of p-phenylenediamine with TiO2-coated magnetic PMMA microspheres in an aqueous solution,” Journal of Hazardous Materials, 163, 973-981 (2009). Corbett, J.F., “Hair colorants: Chemistry and Toxicology,” Cosmetic Science Monographs, No. 2 (1998). Dai Q., Wang D. and Yuan C.,“novel method for detecting ∙OH radicals generated by photoexited nanoparticles”, supramolecular Science, 5, 469-473(1998). Devi, L.G., S.G. Kumar, K. M. Reddy, C. Munikrishnappa, “Photo degradation of Methyl Orange an azo dye by Advanced Fenton Process using zero valent metallic iron: Influence of various reaction parameters and its degradation mechanism,” Journal of Hazardous Materials, 164, 459-467 (2009). Duesterberg, C., T.D. Waite, “Process optimization of Fenton oxidation using kinetic modeling,” Environmental Science & Technology, 40, 4189-4195 (2006). Faust, BC., J. Hoigne, “Photolysis of Fe(III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain,” Atmospheric Environment, 24, 79-89 (1990). Fenton, H.J.H., “Oxidation of tartaric acid in the presence of iron,” Journal of the Chemical Society, 65, 899-910 (1984). Flox, C., S. Ammar, C. Arias, E. Brillas, A.V. Vargas-Zavala, R. Abdelhedi, “Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium,” Applied Catalysis B: Environmental, 67, 93–104 (2006). Galindo, C., P. Jacques, A. Kalt, “Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2 Comparative mechanistic and kinetic investigations,” Journal of Photochemistry and Photobiology A: Chemistry, 130, 35–47 (2000). Gil, A.F., L. Salgado, L. Galicia and I. Gonzalez, “Predominance-zone Diagrams of Fe(Ⅲ) and Fe(Ⅱ) Sulfate Complexes in Acidic Media Voltammetric and Spectrophotometric Studies,” Talanta,Vol. 42, No. 3, 407-414 (1995). Glaze, W.H., J.W. Kang, D.H. Chapin, “Chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation,” Science and Engineering, Vol. 9, Issue 4, 335-352 (1987). Goi, A., Y. Veressinina, M. Trapido, “Degradation of salicylic acid by Fenton and modified Fenton treatment”, Chemical Engineering Journal, 143, 1-9 (2008). Gozmen, B., M.A. Oturan, N. Oturan, and O. Erbatur, “Indirect electrochemical treatment of bisphenol A in water via electrochemically generated Fenton's reagent,” Environmental Science and Technology, 37, 3716-3723 (2003). Guinea, E., C. Arias, P.L. Cabot, J.A. Garrido, R.M. Rodriguez, F. Centellas, E. Brillas, “Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide,” Water Research, 42, 499-511 (2008). Haber, F., J. Weiss, “The catalytic decomposition of hydrogen peroxide by iron salts,” Proceedings of the Royal Society London, Series A 147, 332–351 (1934). Hebert, M., D. Rochefort, “Electrode passivation by reaction products of the electrochemical and enzymatic oxidation of p-phenylenediamine,” Electrochimica Acta, 53, 5272-5279 (2008). Hirakawa, T. and Y. Nosaka, “Properties of OH• formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions,” Langmuir, 18, 3247-3254 (2002). Hirakawa, T., K. Yawata, Y. Nosaka, “Photocatalytic reactivity for O2•- and OH• adical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition”, Applied Catalysis A: General, 325, 105-111 (2007). Hirayama, K., N. Unohara, “Spectrophotometric catalytic determination of an ultratrace amount of iron(II) in water based on the oxidation of N ,N-dimethyl-p-phenylenediamine by hydrogen peroxide,” American Chemical Society, 60, 2573-2577 (1988). Holze, R. and W. Vielstich, “Kinetic of oxygen reduction at porous teflon-bonded fuel cell electrodes,” Journal of the Electrochemical Society, 131, 2298-2303 (1984). Hsiao, Y.L. and K. Nobe, “Hydroxylation of chlorobenzene and phenol in a packed bed flow reactor with electro-generated Fenton's reagent,” Journal of Applied Electrochemistry, 23, 943-946 (1993). Huang, C.P., C. Dong, Z. Tang, “Advanced chemical oxidation: its present role and potential future in hazardous waste treatment,” Waste Manage, 13, 361-377 (1993). Huang, Y.H., S. Chou, M.G. Perng, G.H. Huang, S.S. Cheng, “Case study on the bioeffluent of petrochemical wastewater by electro-Fenton method,” Water Science and Technology Vol. 39, No. 10-11, 145-149 (1999). Hu, T., R.E. Bailey, S.W. Morrall, M.J. Aardema, L.A. Stanley, J.A. Skare, “Dermal penetration and metabolism of p-aminophenol and p-phenylenediamine: Application of the EpiDermTM human reconstructed epidermis model,” Toxicology Letters, 188, 119–129 (2009). Jazen E.G., Y.Kotake, R.D. Hinton, “ Stabilities of hydroxyl radical spin adducts of PBN-type spin traps”, Free radical Biology and Medicine, 12, 169-173. Juan, Casado., Jordi, Fornaguera., Maria Isabel Galen, “mineralization of Aromatics in water by sunlight-assisted electro-Fenton technology in a pilot reactor”, Enviro.Sci.Technol, 39, 1843-1847 (2005). Kavitha, V., K. Palanivelu, “The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol,” Chemosphere, 55, 1235-1243 (2004). Kim, S., A. Vogelpohl, “Degradation of organic pollutants by the photo-Fenton process,” Chemical Engineering & Technology, 21, 187-197 (1998). La, V.C., A. Tavani, “Epidemiological evidence on hair dyes and the risk of cancer in humans,” European Journal of Cancer Prevention, 4(1), 31-43 (1995). Legan, R.W., “Ultraviolet light takes on CPI role,” Chemical Engineering (New York), 89, 95-100 (1982). Legrini, O., E. Oliveros, A. M. Braun, “Photochemical processes for water treatment,” Chemical Reviews, 93(2), 671-698 (1993). Leng, W.H., W.C. Zhu, J. Ni, Z. Zhang, J.Q. Zhang, C.N. Cao, “Photoelectrocatalytic destruction of organics using TiO2 as photo-anode with simultaneous production of H2O2 at cathode,” Applied Catalysis A: General, 300, 24-35 (2006). Li, M.H., “Globalization environmental pollution,” Science Development, 400, 23-29 (2009). Li, J., Z. Ai, L. Zhang, “Design of a neutral electro-Fenton system with Fe@Fe2O3/ACF composite cathode for wastewater treatment,” Journal of Hazardous Materials, 164, 18–25 (2009). Lipczynskakochany, E., “Novel method for a photocatalytic degradation of 4-nitrophenol in homogeneous aqueous-solution,” Environmental Technology, 12, 87-92 (1991). Liu, H., X.Z. Li, Y.J. Leng, C. Wang, “Kinetic modeling of electro-Fenton reaction in aqueous solution,” Water Research, 41, 1161-1167 (2007). Liu, D.X., Liu, J., Wen.J, “Elevation of hydrogen peroxide after spinal cord injury detected by using the Fenton reaction”, Free Radical Biol. Med. 27, 478-482 (1999). Magat, E.E., “Fibers from extended chain aromatic polyamides, new fibers and their composites,” Philosophical Transactions of the Royal Society of London, Series A 294, 463–472 (1980). Malato, S., J. Caceres, A. Aguera, M. Mezcua, D. Hernando, J. Vial, “Degradation of imidacloprid in water by photo-Fenton and TiO2 photocatalysis at a solar pilot plant: acomparative study,” Environmental Science & Technology, 35, 4359-4366 (2001). Maletzky, P. and R. Bauer, “The Photo-Fenton method - Degradation of nitrogen containing organic compounds,” Chemosphere, 37, 899-909 (1998). Mason T.J., J.P. Lorimer, D.M. Bates and Y. Zhao, “Dosimetry in sonochemistry: the use of aqueous terephthalate ion as a fluorescence monitor”, Ultrasonics-Sonochemistry, 1, S91-S95, (1994). Neyens, E., Baeyens, J, “A review of classic Fenton peroxidation as an advanced oxidation technique,” Journal of Hazardous Materials, B98, 33-50 (2003). Nosaka Y., M. Kishimoto, J.Nishino, “ Factors governing the initial process of TiO2 photocatalysis studied by means of in-situ electron spin resonance measurements”, Journal of Physical Chemistry B,102,10279-10283, (1998). Oturan, M.A., N. Oturan, C. Lahitte, S. Trevin, “Production of hydroxyl radicals by electrochemically assisted Fenton's reagent: Application to the mineralization of an organic micropollutant, pentachlorophenol,” Journal of Electroanalytical Chemistry, 507, 96-102 (2001). Ozcan, A.,Y. Sahin , M.A. Oturan, “Removal of propham from water by using electro-Fenton technology:Kinetics and mechanism,” Chemosphere,73, 737–744 (2008). Panizza, M., G. Cerisola, “Electrochemical generation of H2O2 in low ionic strength media on gas diffusion cathode fed with air,” Electrochimica Acta, 54, 876-878 (2008). Panizza, M., G. Cerisola, “Electro-Fenton degradation of synthetic dyes,” Water Research, 43, 339-344 (2009). Pignatello, J.J., E. Oliveros, A. MacKay, “Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry,” Critical Reviews in Environmental Science and Technology, 36, 1-84 (2006). Pourbaix, M., “Atlas of Electrochemical Equilibria in Aqueous Solutions,” National Association of Corrosion Engineers, Houston, Texas, USA (1966). Qiang, Z.M., J.H. Chang, C.P. Huang, “Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions,” Water Research, 36, 85-94 (2002). Qiang Z.M., J.H. Chang, C.P. Huang, “Electrochemical regeneration of Fe2+ in Fenton oxidation processes,” Water Research, 37, 1308-1319 (2003). Ravichandran, L., K. Selvam, M. Swaminathan, “Photo-Fenton defluoridation of pentafluorobenzoic acid with UV-C light,” Journal of Photochemistry and Photobiology A: Chemistry, 188 , 392-398 (2007). Safarzadeh, A., JR. Bolton, SR. Cater, “Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water,” Water Research, 31, 787-798 (1997). Saha, M.S., Y. Nishiki, T. Furuta, T. Ohsaka, “Electrolytic synthesis of peroxyacetic acid using in situ generated hydrogen peroxide on gas diffusion electrodes,” Journal of the Electrochemical Society, 151, D93-D97 (2004). Sires, I., C. Arias, P.L. Cabot, F. Centellas, J.A. Garrido, R.M. Rodriguez, E. Brillas, “Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton,” Chemosphere, 66, 1660–1669 (2007). Skoog, D. and D.M. West, “Fundamentals of analytical chemistry,” CBS College Publishing, 4th, 381-382 and 669-676 (1982). Sun L. and J.R. Bolton, “ Determination of the quantum yield for the phtochemical generation of hydroxyl radicals in TiO2 suspensions” , Journal of Physical Chemistry, 100, 4127-4134,(1996). Sundstrom, D.W., B.A. Weir, and H.E. Klei, “Destruction of Aromatic Pollutants by UV Light Catalyzed Oxidation with Hydrogen Peroxide,” Environmental Progress, 8, 6-11 (1989). Ting, W.P., M.C. Lu, Y.H. Huang, “Kinetics of 2,6-dimethylaniline degradation by electro-Fenton process,” Journal of Hazardous Materials, 161, 1484–1490 (2009). Weir, B.A. and D.W. Sundstrom, “Destruction of trichloroethylene by UV light-catalyzed oxidation with hydrogen peroxide,” Chemosphere, 27, 1279-1291 (1993). Wilson, R., “Risks posed by various components of hair dyes,” Archives of Dermatologyical Research, 278, 165-170 (1985). Yamano, T., M. Shimizu, “Skin sensitization potency and cross-reactivity of p-phenylenediamine and its derivatives evaluated by non-radioactive murine local lymph node assay and guinea-pig maximization test,” Contact Dermatitis, 60, 193–198 (2009). Yue P.L., “Modelling of kinetics and reactor for water purification by photo-oxidation,” Chemical Engineering Science, 48, 1-11 (1993). Zepp, R.G., B.C. Faust, J. Hoigne, “Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron(II) with hydrogen peroxide: The Photo-Fenton reaction,” Environmental Science and Technology, 26, 313-319 (1992). Zhang, G., F. Yang, L. Liu, “Comparative study of Fe2+/H2O2 electro-oxidation systems in the degradation of amaranth using anthraquinone/polypyrrole composite film modified graphite cathode,” Journal of Electroanalytical Chemistry, 632, 154-161 (2009). Zongo, I., A.H. Maiga, J. Wethe, G. Valentin, J.P. Leclerc, “Electrocoagulation for the treatment of textile wastewaters with Al or Fe electrodes: Compared variations of COD levels, turbidity and absorbance,” Journal of Hazardous Materials, 169, 70-76 (2009). Zuo, Y. and J. Hoigne, “Formation of hydrogen peroxide and depletion of oxalic acid on atmospheric water by photolysis of iron(III)-oxalato compounds,“ Environmental Science and Technology, 26, 4-22 (1992). 陳庭悅, “Degradation Treatment of Salicylic Acid by Photo-assisted Electrochemical Method” 國立台灣大學化學工程研究所碩士論文(2009). 謝維哲, “Degradation Treatment of p-Phenylenediamine by Self Electro-generative Fenton Process” 國立台灣大學化學工程研究所碩士論文(2010). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44286 | - |
| dc.description.abstract | 在廢水處理中以高級氧化程序成效最佳,依據不同的反應機制分類,其中又以Electro-Fenton Process與Photocatalysis Process最為廣泛。本篇論文研究以Electro-Fenton Process為主,陽極為白金線與白金鈦網,且陰極為碳布的系統簡稱AP(T)-CC,首先預備實驗藉由陰極碳布通入氧氣並外加電壓進行電化學反應產生H2O2,接著著重在亞鐵離子之還原反應,而後討論一般Electro-Fenton Process程序。接著討論於陰極碳布不通入氧氣,並純粹靠陽極水解反應提供O2,不同陽極面積大小的影響。最後將鐵片自身氧化反應與Fenton Process作結合,以鐵片作為陽極並提供亞鐵離子,且不需外加即可自我產生電流簡稱AF-CC-Shunt。利用此一系統自發性持續提供電流與不斷生成亞鐵離子,使反應可以持續進行並將有機物分解。
陰極過氧化氫生成實驗主要以氧氣進料流量、施加電流、起始pH值以及反應溫度等變因做探討。得知施加電流與過氧化氫初始生成速率成正比關係,並將電極與整個反應器系統作結合,進一步將過氧化氫濃度隨反應時間增加現象做動力學推導與實驗印證。 陰極亞鐵離子還原實驗,主要以起始pH值以及施加電流等變因探討最佳還原效率的條件。在較低pH值的條件下,可以避免氫氧化鐵與氧化鐵的生成所導致之還原效率不佳。 人造纖維合成以及染髮劑等染料中,對苯二胺的應用相當廣泛,但當其排放至環境中除了對水質造成嚴重污染之外,對於人體的傷害,嚴重可能導致乳癌以及膀胱癌等。故本研究以200 ppm對苯二胺作為降解反應中主要降解物。 在AP-CC-Fe2+實驗系統中選擇pH2.5作為最佳的反應背景條件,針對亞鐵離子濃度與施加電流作為主要探討的部分,最佳Fe2+添加初始濃度為3mM。 進一步討論不同陽極表面積對於降解效果之影響。較大之陽極表面積會混淆並且阻礙Fenton Process ,主要原因在於p-Phenylenediamine 於陽極被電解而主導了整個降解反應. 至於Self Electro-generative Fenton Process(AF-CC-Shunt)的研究則針對溫度對於反應的影響。發現提高溫度可促使Fe2+離子迅速自鐵片氧化並產生較大的電流以提供陰極碳布足夠電子來源以生成過氧化氫。相較於其他系統,其優點為不需要施加電流,亦不需要添加Fenton試劑,只須通入氧氣即可自行反應生成電流、亞鐵離子以及過氧化氫,僅此即可達到相當不錯的降解速率。 | zh_TW |
| dc.description.abstract | Advanced oxidation process is the best method for wastewater treatment. According to the different classification of reaction mechanisms, Electro-Fenton process and Photo-catalytic reaction have most widely applications. In this study, the AP-CC represented that the anode was Platinum (Pt) or Platinum Titanium mesh (Ti/Pt) ,and the cathode was carbon cloth which was fed with oxygen. The applied current was set to produce H2O2 at the cathode. When the Fe2+ was added into the solution, the system was called AP(T)-CC-Fe2+ system in this research. Next, without O2 injection to cathode, O2 was produced by electrolysis of water from various size of anode to provide to the cathode. Afterward, the iron (Fe) replaced the Pt as the anode with zero applied current, which is the system named AF-CC-Shunt. Besides, the Fe was oxidized to generate current and Fe2+, and the organics would be decomposed by Fenton process.
The flow rate of oxygen, the initial pH value, the applied current , and the reaction temperature were discussed in the H2O2 formation. The initial formation rate of H2O2 is proportional to the applied current. Moreover, electrode reaction and overall reaction system were combined to make derive kinetic derivation and fit the data of H2O2 formation. The initial pH value and the applied current were discussed in the Fe2+ reduction to find out the optimal current efficiency. Under pH<3, the formation of Fe(OH)3 and Fe2O3 would be prohibited to increase the efficiency. Due to its popular applications in hair dye and artificial fiber synthetic industry, p-Phenylenediamine causes the quite serious environmental pollution and destroys the metabolism of human being. The initial pH value of reaction system was 2.5. The initial Fe2+ concentration and the applied current were discussed in AP-CC-Fe2+ system. The optimal concentration of Fe2+ is 3mM. Higher anodic surface area would interrupt Fenton process due to the domination of p-Phenylenediamine oxidation on the surface of Platinum Titanium mesh. According to the AF-CC-Shunt system in the self electro-generative process, the influences of the temperature on degradation and self-generative current were studied. The degradation efficiency was enhanced, due to higher current generated by rapid oxidation of Fe at higher temperature. Compared with other Electro-Fenton processes, in AF-CC-Shunt system, p-phenylenediamine can be degraded by self electro-generative process without applied current and Fenton reagents. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:49:01Z (GMT). No. of bitstreams: 1 ntu-100-R98524090-1.pdf: 1949301 bytes, checksum: 07c3ff2b66435f9f51faaff506fcf15d (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要 I
Abstract III 目錄 V 圖目錄 VII 表目錄 X 符號 XI 第一章 序論 1 1-1 研究緣起 1 1-2 研究動機 3 第二章 文獻回顧 5 2-1 對苯二胺(PPD) 5 2-2 高級氧化程序(AOPs) 7 2-3 Fenton Process 10 2-4 自放電之Electro-Fenton法(Self Generative Electro-Fenton Process) 18 第三章 實驗 23 3-1 實驗藥品與儀器 23 3-2 實驗架構與流程圖 28 3-3 電極前處理 29 3-4 對苯二胺降解反應系統裝置 30 3-5 對苯二胺濃度測定 35 3-6 過氧化氫濃度測定 39 3-7 亞鐵離子濃度測定 40 3-8 一般Electro-Fenton動力學分析 41 3-9 電化學分析 44 3-10 實驗符號 46 第四章 結果與討論 47 4-1 陰極過氧化氫生成 47 4-2 亞鐵離子還原實驗 64 4-3 電化學分析 67 4-4 對苯二胺降解反應背景實驗 69 4-5 Anode-Pt/Cathode-Carbon cloth/Fe2+(AP-CC-Fe2+)系統 75 4-6 Effect of Anodic Surface Area to AP-CC-Fe2+(no O2 injection) 84 4-9 Self Electro-generative Fenton (AF-CC-Shunt) 97 第五章 結論 101 參考資料 104 | |
| dc.language.iso | zh-TW | |
| dc.subject | 自生成電流 | zh_TW |
| dc.subject | 對苯二胺 | zh_TW |
| dc.subject | 高級氧化程序 | zh_TW |
| dc.subject | 鐵陽極氧化 | zh_TW |
| dc.subject | Electro-Fenton程序 | zh_TW |
| dc.subject | Advanced oxidation process | en |
| dc.subject | self electro-generative current | en |
| dc.subject | anodic oxidation of iron | en |
| dc.subject | Electro-Fenton process | en |
| dc.subject | p-phenylenediamine | en |
| dc.title | 以Electro-Fenton程序處理對苯二胺溶液之研究 | zh_TW |
| dc.title | Electrochemical Destruction of p-Phenylenediamine in Aqueous Solution by Electro-Fenton Methods | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 何國川(Kuo-Chuan Ho),周正堂(Cheng-Tung Chou) | |
| dc.subject.keyword | 高級氧化程序,對苯二胺,Electro-Fenton程序,鐵陽極氧化,自生成電流, | zh_TW |
| dc.subject.keyword | Advanced oxidation process,p-phenylenediamine,Electro-Fenton process,anodic oxidation of iron,self electro-generative current, | en |
| dc.relation.page | 116 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
