Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44274
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡崇德
dc.contributor.authorNan-Hong Kuoen
dc.contributor.author郭南宏zh_TW
dc.date.accessioned2021-06-15T02:48:24Z-
dc.date.available2009-08-14
dc.date.copyright2009-08-14
dc.date.issued2009
dc.date.submitted2009-08-06
dc.identifier.citation[1]. H. Bethe, Zur Theorie der Metalle I. Eigenwerte und Eigenfunktionen der Linear Atomkette, Zeitschrift für Physik 71, 205-26, (1931).
[2]. Emery, V. J.(1979). New York and London, pp. 247. Plenum press.
[3]. A. Klümper, A. Schadschneider and J. Zittarg; Z. Phys. B87,281 (1992).
[4]. Affeck, I. (1988). In Fields, Strings and Critical Phenomena (ed. E. Brezin and J. Zinn-Justin), Amsterdam, pp.563. Elsevier Science.
[5]. R. K. Bullough, Journal of Modern Optics (2000), vol. 47, No. 11, pp. 2029-2065. Erratum: idbd. (2001), vol. 48, No. 4, pp. 747-748.
[6]. W. P. Su; J. R. Schrieffer and A. J. Heeger; Phys. Rev. Lett. 42, 1698 (1979)
[7]. Thierry Dauxois & Michel Peyrard, Physics of Solitons, Cambridge University Press 2006.
[8]. Kerson Huang, Quantum Field Theory:From Operators to Path integrals,John Wiley & sons, Inc. (1998).
[9]. Lewis H. Ryder, Quantum Field Theory, Section edition, Cambridge University Press (1996).
[10]. Anthony Osborne, Journal of Mathematical Physics, 19(7), pp.1573, July 1978.
[11]. Alan C. Bryan, etc., Letters in Mathematical Physics 3,pp.265(1979).
[12]. Alan C. Bryan, etc., Letters in Mathematical Physics 2,pp.445(1978).
[13]. A. C. Bryan,etc., IL Nuovo Cimento, Vol. 58B, N.1, pp.1(1980).
[14]. Alan. C. Bryan, etc. Complex extensions of a submanifold of solutions of the Sine-Gordon Equation. no press. search in computer.
[15]. Ryogo Hirota, Journal of the Physical Society of Japan, Vol. 33, No. 5, 1459, November, 1972.
[16]. Graham Bowtell & Allan E. G. Stuart, Physical Review D15, No. 12, 3580(1977).
[17]. Sidney Coleman, Physical Review D11, 2088(1975).
[18]. S. Mandelstam, Physical Review D11, 3026(1975).
[19]. M. G. Forest, etc. SIAM J. Appl. Math. vol.52, No.3, pp. 746-761 (1992).
[20]. A.M.Wazwaz, Applied Mathematics and Computation 177,755(2006)
[21]. D. J. Thouless, Phy. Rev. B27, 6083 (1983).
[22]. Q. Niu and D. J. Thouless, J. Phys. A, 17, 2453 (1984).
[23]. P. W. Brouwer, Phys. Rev. B58, 10135 (1998).
[24]. T. A. Shutenko, I. L. Aleiner and B. L. Altshuler, Phys. Rev. B61, 10366 (2000).
[25]. Y. Levinson, Entin-O.Wohlman and P. Wolfe, Physica A302, 335 (2001); Wohlman-O.Entin and A. Aharony, Phys. Rev. B66, 35329 (2002).
[26]. M. Blaauboer, Phys. Rev. B65, 235318 (2002).
[27]. J. Wang and B. Wang, Phys. Rev. B65, 153311 (2002); B. Wang and J. Wang, Phys. Rev. B66, 201305 (2002).
[28]. P. Sharma and C. Chamon, Phys. Rev. Lett. 87, 96401 (2001) and cond-mat/0209291.
[29]. R. Citro, N. Anderi and Q. Niu, cond-mat/0306181.
[30]. D. J. Thouless, M. Kohmoto, M. P. Nightingale and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).
[31]. B. I. Halperin, Phys. Rev. B25, 2185 (1982).
[32]. Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993)
[33]. Y. Hatsugai, Phys. Rev. B48, 1185 (1993).
[34]. R. Shindou, J. Phys. Soc.Jpn. 74, 1214 (2005).
[35]. C. L. Kane and E. J. Mele , Phys. Rev. Lett. 95, 146802 (2005).
[36]. L. Fu and C. L. Kane, Phys. Rev. B74, 195312 (2006).
[37]. E. Fradkin, 'Field Theories of Condensed Matter Systems', Addison-Wesley, Redwood City, CA (1991).
[38]. N. Nagaosa, 'Quantum Field Theory in Stongly Correlated Electronic Systems', Springer-Verlag, Berlin (1999).
[39]. A. O. Gogolin, A. A. Nersesyan and A. M. Tsvelik,
'Bosonization and Strongly Correlated Systems', Cambridge University Press (1998).
[40]. T. Giamarchi, 'Quantum Physics in One Dimension', Oxford University Press (2004).
[41]. G. Costabile et. al., App. Phys. Lett. 32, 587 (1978).
[42]. R. M. DeLeonardis et. al., J. App. Phys. 51, 1211(1980).
[43]. R. M. DeLeonardis et. al., J. App. phys. 53, 699 (1982).
[44]. Derek. F. Lawden, 'Elliptic Function and Application', Springer-Verlag NY (1989).
[45]. R.B.Laughlin, Physical Review B23, 5632 (1981).
[46]. Xiao-Liang Qi,etc. arXiv: cond-mat/0604071v2[cond-mat.mes-hall]5 Apr 2006
[47]. Quantum spin pump on a finite antiferromagnetic chain through bulk states. Nan-Hong Kuo, etc,
arXiv:0809.2185v1, [cond-mat.str-el] 12 Sep 2008..
[48]. Double sine-gordon chain,C.A.Condat,etc.,Physical Review B,vol.27,number 1,pp.474,1983.
[49]. Kink-antikink interactions in the Double sine-gordon equation,D.C.Campbell,etc.,Physica 19D,165(1986)
[50]. Zuntao,Fu,etc.Z.Naturforsch.60a,301(2005).
[51]. R. K. Bullough and P. J. Caudrey,'Solitons', Springer-Verlag Berlin Heidelberg (1980).
[52]. G.Mussardo;V.Riva;G.Sotkov,Nuclear Physics B687,pp.189(2004)
[53]. G.Takacs;F.Wagner,Nuclear Physics B741,pp.353(2006)
[54]. G.Delfino,etc.,Nuclear Physics B516,pp.675(1998)
[55]. G.Delfino,etc.,Nuclear Physics B473,pp.469(1996)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44274-
dc.description.abstract我研究一維自旋1/2反鐵磁系統的量子自旋傳輸機制. 我先將此自旋鏈轉換成費米子,再做玻色化近似。最後變成(雙) Sine-Gordon方程式,在第二章我證明解的等價性。考慮外場的變化,我加入絕熱相位並考慮在不同的邊界條件下此方程式的解。還原此解到原來的自旋鏈物理系統. 我觀察到在一般的固定邊界條件下有自旋=1通過整個系統。而此結論不同於一般的結論──自旋是由邊界態來傳輸。這寫在第三章。而在其他等價性不同的邊界條件下,自旋是累積在邊界。其機制不同於前,我也提出一個拓樸圖像。這是第四章的內容。最後在第五章,我利用Möbius轉換找到雙Sine-Gordon方程式含絕熱相位的數值精確解。在有限與無限系統,相對應解也有不同。另外我也討論微擾解的方法。zh_TW
dc.description.abstractWe studied the spin transport mechanism in a S=1/2 antiferromagnetic chain. The spin chain is mapped into a fermion system, where equation of motion is transformed into a (Double) Sine-Gordon Equation ((D)SGE) with the approach of bosonization. We studied first, the non-interacting case. By varying adiabatically a phase angle ϕ which comes from external fields, the spin states change between the Néel state and dimer state and a quantized spin S=1 is transported by the bulk state from one end of the spin chain to the other. We have also considered the interacting case. I found that it is equivalent to the situation of twisted boundary condition. The spin states possess topological meaning. I also transform the solutions of SGE in Wazwaz [20] into another form we are familiar with. Finally, I use Möbius transformation to numerically solve asymmetric DSGE, which was not solved before.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:48:24Z (GMT). No. of bitstreams: 1
ntu-98-D91222008-1.pdf: 1840941 bytes, checksum: 9bd13b0e598bd970d4a1bfe260265721 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsTable of contents:
Chapter1: Introduction (4)
1.1: Quantum physics in one dimension and bosonization
1.1.1: Quantum physics in one dimension
1.1.2: Luttinger liquids and Bosonization
1.1.3: Construct soliton operator for the quantized Sine-Gordon Equation
1.2: Introduction of Sine-Gordon Equation
1.2.1 Traveling solution of Sine-Gordon Equation
1.2.2: The separability of Sine-Gordon Equation
1.2.3: Separable solution of Sine-Gordon Equation and its complex extension
1.2.3.2: complex extension
1.2.4: Exact N-Soliton Solitons of Sine-Gordon Equation
1.2.5: Algebraic Geometry ( finite-zone) solutions of Sine-Gordon Equation
Chapter 2: Sine-Gordon equation with asymmetric phase (22)
2.1: Introduction
2.1.1: List Wazwaz’s solutions
2.2: Further study of the states of solitons
2.2.1: Mathematics calculation and lemmas
2.2.2: Conclusions and Results of this section
Chapter 3: Evident of spin pump through bulk state by solving (28)
asymmetric Sine-Gordon Equation
3.0: Introduction
3.1: Hamiltonian and Continuum field theoretical studies
3.2: Analysis of sine-Gordon equation on a finite chain
3.3: Detailed analysis of the static soliton case
3.3.1: The solutions fit the fixed boundary conditions and the energy
3.3.2: Other solutions with the same Ath, x0, energy
3.4: Spin transport
3.5: Spin transport phenomena connecting to source and drain
Chapter 4: Sine-Gordon Equation with twisted boundary condition (47)
4.0:Introduction
4.1: Hamiltonian
4.2: Different views of relation between beta and Ath
4.3: Twisted boundary condition of Sine-Gordon Equation
4.4: Real solutions in the forbidden region
4.4.1: Arguments that the state in the forbidden region is real
4.4.2: The energy formula in twised boundary condition SGE
4.5: Another observation in the forbidden region
4.6: Arguments that the spin state in the forbidden region is edge state
and the topology view of this case
4.7: Conclusions
Chapter 5: Asymmetrical double-sine-Gordon equation (59)
2
5.1: Introduction:
5.2: Classical solutions of Double Sine-Gordon Equation
5.2.1: List of classical solutions of DSGE
5.2.2: List of energies of classical solutions in DSGE
5.2.3: A method to construct solutions and action E of
Double Sine-Gordon Equation
5.3: General Mathematical Analysis include easier case: eta<1/4
5.3.1: Potential analysis and related topi
5.3.2: The equation to be solved
5.3.3: Function form and equations for infinite systems
5.3.4: Particular problem occur in eta<1/4
5.3.5.Another method to solve asymmetric Double Sine-Gordon Equation:
5.3.6 Discuss and Conclusion of DSGE in an infinite system
5.4: asymmetric Double Sine-Gordon Equation in finite system (87)
5.4.1: Equations of asymmetric DSGE in a finite system
5.4.2: The particular problem: two sets of parameters for the
solutions in finite system
5.5: Perturbation method for approach 0:
5.5.1: Introduction:
5.5.2: Perturbation for a finite system
5.5.3: Three examples of perturbation method
5.6: Discussion and Conclusion of DSGE in an infinite and a finite system
Chapter 6: Conclusions (105)
Appendix A: Basic properties of Jacobi Elliptic Functions
Appendix B: Periodic theorem of static soliton of SGE
Appendix C: Introdction to Mo
References:
dc.language.isoen
dc.subject(雙) Sine-Gordon方程式zh_TW
dc.subjectbius轉換zh_TW
dc.subjectM&amp;oumlzh_TW
dc.subject量子自旋傳輸zh_TW
dc.subjectSine-Gordon Equationen
dc.subjectDouble Sine-Gordon Equationen
dc.subjectQuantum spin transporten
dc.title一維Sine-Gordon方程式和量子自旋傳輸zh_TW
dc.titleSine-Gordon Equation and Quantum spin transport in one-dimensionen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee郭光宇,高英哲,吳文欽,栗育文,栗育力,朱仲夏
dc.subject.keyword(雙) Sine-Gordon方程式,量子自旋傳輸,M&amp;ouml,bius轉換,zh_TW
dc.subject.keywordDouble Sine-Gordon Equation,Sine-Gordon Equation,Quantum spin transport,en
dc.relation.page112
dc.rights.note有償授權
dc.date.accepted2009-08-06
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved