Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44261
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳佩燁
dc.contributor.authorChun-Chieh Hsuen
dc.contributor.author許淳傑zh_TW
dc.date.accessioned2021-06-15T02:47:44Z-
dc.date.available2009-08-19
dc.date.copyright2009-08-19
dc.date.issued2009
dc.date.submitted2009-08-06
dc.identifier.citationAbbruzzetti, S., Carcelli, M., Rogolino, D. and Viappiani, C. (2003) Deprotonation yields, pKa, and aci-nitro decay rates in some substituted o-nitrobenzaldehydes. Photochemical & Photobiological Sciences, 2, 796-800.
Anfinsen, C.B. and Haber, E. (1961) Studies on the reduction and re-formation of protein disulfide bonds. Journal of Biological Chemistry, 236, 1361-1363.
Arabaci, G., Guo, X.-C., Beebe, K.D., Coggeshall, K.M. and Pei, D. (1999) α-Haloacetophenone derivatives as photoreversible covalent inhibitors of protein tyrosine phosphatases. Journal of the American Chemical Society, 121, 5085-5086.
Avery, O.T., MacLeod, C.M. and McCarty, M. (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Inductions of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. The Journal of Experimental Medicine, 79, 137-158.
Baneyx, F. and Mujacic, M. (2004) Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology, 22, 1399-1408.
Bolli, G.B. and Owens, D.R. (2000) Insulin glargine. Lancet, 356, 443-445.
Borges dos Santos, R.M., Lagoa, A.L.C. and Martinho Simõs, J.A. (1999) Photoacoustic calorimetry. An examination of a non-classical thermochemistry tool. The Journal of Chemical Thermodynamics, 31, 1483-1510.
Bosques, C.J. and Imperiali, B. (2003) The interplay of glycosylation and disulfide formation influences fibrillization in a prion protein fragment. Proceedings of the National Academy of Sciences USA, 100, 7593-7598.
Brookmeyer, R., Johnson, E., Ziegler-Graham, K. and Arrighi, M.H. (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimer's and Dementia 186–191.
Camilloni, C., Sutto, L., Provasi, D., Tiana, G. and Broglia, R.A. (2008) Early events in protein folding: Is there something more than hydrophobic burst? Protein Science, 17, 1424-1433.
Chan, C.K., Hofrichter, J., Eaton, A., W., Winkler, J.R. and Gray, H.B. (1996) Optical triggers of protein folding. Science, 274, 628-629.
Chan, H.S. and Dill, K.A. (1998) Protein folding in the landscape perspective: chevron plots and non-Arrhenius kinetics. Proteins, 30, 2-33.
Chen, R.P., Huang, J.J., Chen, H.L., Jan, H., Velusamy, M., Lee, C.T., Fann, W., Larsen, R.W. and Chan, S.I. (2004) Measuring the refolding of beta-sheets with different turn sequences on a nanosecond time scale. Proceedings of the National Academy of Sciences USA, 101, 7305-7310.
Chen, X., Ma, C., Kwok, W.M., Guan, X., Du, Y. and Phillips, D.L. (2006) A theoretical investigation of p-hydroxyphenacyl caged phototrigger compounds: an examination of the excited state photochemistry of p-hydroxyphenacyl acetate. The Journal of Physical Chemistry A, 110, 12406-12413.
Chen, Y., Ding, F., Nie, H., Serohijos, A.W., Sharma, S., Wilcox, K.C., Yin, S. and Dokholyan, N.V. (2008) Protein folding: then and now. Archives of Biochemistry and Biophysics, 469, 4-19.
Dimitriadis, G., Drysdale, A., Myers, J.K., Arora, P., Radford, S.E., Oas, T.G. and Smith, D.A. (2004) Microsecond folding dynamics of the F13W G29A mutant of the B domain of staphylococcal protein A by laser-induced temperature jump. Proceedings of the National Academy of Sciences USA, 101, 3809-3814.
Duan, Y. and Kollman, P.A. (1998) Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science, 282, 740-744.
Duan, Y., Wang, L. and Kollman, P.A. (1998) The early stage of folding of villin headpiece subdomain observed in a 200-nanosecond fully solvated molecular dynamics simulation. Proceedings of the National Academy of Sciences USA, 95, 9897-9902.
Eaton, W.A., Muñz, V., Thompson, P.A., Chan, C.-K. and Hofrichter, J. (1997) Submillisecond kinetics of protein folding. Current Opinion in Structural Biology, 7, 10-14.
Eckardt, T., Hagen, V., Schade, B., Schmidt, R., Schweitzer, C. and Bendig, J. (2002) Deactivation behavior and excited-state properties of (coumarin-4-yl)methyl derivatives. 2. Photocleavage of selected (coumarin-4-yl)methyl-caged adenosine cyclic-monophosphates with fluorescence enhancement. The Journal of Organic Chemistry, 67, 703-710.
Ferguson, N., Johnson, C.M., Macias, M., Oschkinat, H. and Fersht, A. (2001) Ultrafast folding of WW domains without structured aromatic clusters in the denatured state. Proceedings of the National Academy of Sciences USA, 98, 13002-13007.
Fersht, A.R. (1995) Optimization of rates of protein folding: the nucleation-condensation mechanism and its implications. Proceedings of the National Academy of Sciences USA, 92, 10869-10873.
Fersht, A.R. (1997) Nucleation mechanisms in protein folding. Current Opinion in Structural Biology, 7, 3-9.
Furuta, T., Torigai, H., Osawa, T. and Iwamura, M. (1993) Direct esterification of phosphates with various halides and its application to synthesis of cAMP alkyl triesters. Journal of the Chemical Society, 24, 3139-3142.
Furuta, T., Torigai, H., Sugimoto, M. and Iwamura, M. (1995) Photochemical properties of new photolabile cAMP derivatives in a physiological saline solution. The Journal of Organic Chemistry, 60, 3953-3956.
Furuta, T. and Noguchi, K. (2004) Controlling cellular systems with Bhc-caged compounds. Trends in Analytical Chemistry, 23, 511-519.
Furuta, T., Takeuchi, H., Isozaki, M., Takahashi, Y., Kanehara, M., Sugimoto, M., Watanabe, T., Noguchi, K., Dore, T.M., Kurahashi, T., Iwamura, M. and Tsien, R.Y. (2004) Bhc-cNMPs as either water-soluble or membrane-permeant photoreleasable cyclic nucleotides for both one- and two-photon excitation. Chembiochem, 5, 1119-1128.
Geisler, D., Kresse, W., Wiesner, B., Bendig, J., Kettenmann, H. and Hagen, V. (2003) DMACM-caged adenosine nucleotides: ultrafast phototriggers for ATP, ADP, and AMP activated by long-wavelength irradiation. Chembiochem, 4, 162-170.
Gensch, T. and Viappiani, C. (2003) Time-resolved photothermal methods: accessing time-resolved thermodynamics of photoinduced processes in chemistry and biology. Photochemical & Photobiological Sciences, 2, 699-721.
Givens, R.S., Jung, A., Park, C.-H., Weber, J. and Bartlett, W. (1997) New photoactivated protecting groups. 7. p-Hydroxyphenacyl: a phototrigger for excitatory amino acids and peptides. Journal of the American Chemical Society, 119, 8369-8370.
Givens, R.S., Weber, J.F.W., Conrad, P.G., Orosz, G., Donahue, S.L. and Thayer, S.A. (2000) New phototriggers: p-Hydroxyphenacyl as a C-terminal photoremovable protecting group for oligopeptides. Journal of the American Chemical Society, 122, 2687-2697.
Golan, R., Zehavi, U., Naim, M., Patchornik, A., Smirnoff, P. and Herchman, M. (2000) Photoreversible modulators of Escherichia coli beta-galactosidase. 1-Benzoyl-1-cyano-2-(4,5-dimethoxy-2-nitrophenyl)-ethene and 1,1-dicyano-2-(4,5-dimethoxy-2-nitrophenyl)-ethene. Journal of Protein Chemistry 19, 123-128.
Hansen, K.C., Rock, R.S., Larsen, R.W. and Chan, S.I. (2000) A method for photoinitating protein folding in a nondenaturing environment. Journal of the American Chemical Society, 122, 11567-11568.
Hirota, S., Fujimoto, Y., Choi, J., Baden, N., Katagiri, N., Akiyama, M., Hulsker, R., Ubbink, M., Okajima, T., Takabe, T., Funasaki, N., Watanabe, Y. and Terazima, M. (2006) Conformational changes during apoplastocyanin folding observed by photocleavable modification and transient grating. Journal of the American Chemical Society, 128, 7551-7558.
Huang, Y.-F., Chen, H.-L., Ting, J.W., Liao, C.-S., Larsen, R.W. and Fann, W. (2004) Direct measurement of the triplet quantum yield of poly(3-dodecylthiophene) in solution. The Journal of Physical Chemistry B, 108, 9619-9622.
Kandler, K., Katz, L.C. and Kauer, J.A. (1998) Focal photolysis of caged glutamate produces long-term depression of hippocampal glutamate receptors. Nature Neuroscience, 1, 119-123.
Kaplan, J.H., Forbush, B., 3rd and Hoffman, J.F. (1978) Rapid photolytic release of adenosine 5'-triphosphate from a protected analogue: utilization by the Na:K pump of human red blood cell ghosts. Biochemistry, 17, 1929-1935.
Karplus, M. and Weaver, D.L. (1976) Protein-folding dynamics. Nature, 260, 404-406.
Ko, T.P., Robinson, H., Gao, Y.G., Cheng, C.H., DeVries, A.L. and Wang, A.H. (2003) The refined crystal structure of an eel pout type III antifreeze protein RD1 at 0.62-A resolution reveals structural microheterogeneity of protein and solvation. Biophysical Journal, 84, 1228-1237.
Kubelka, J., Eaton, W.A. and Hofrichter, J. (2003) Experimental tests of villin subdomain folding simulations. Journal of Molecular Biology, 329, 625-630.
Kubelka, J., Hofrichter, J. and Eaton, W.A. (2004) The protein folding 'speed limit'. Current Opinion in Structural Biology, 14, 76-88.
Kubelka, J., Chiu, T.K., Davies, D.R., Eaton, W.A. and Hofrichter, J. (2006) Sub-microsecond protein folding. Journal of Molecular Biology, 359, 546-553.
Larsen, R.W. (2006) Time-resolved thermodynamic profiles for CO photolsysis from the mixed valence form of bovine heart cytochrome c oxidase. Photochemical & Photobiological Sciences, 5, 603-610.
Leopold, P.E., Montal, M. and Onuchic, J.N. (1992) Protein folding funnels: a kinetic approach to the sequence-structure relationship. Proceedings of the National Academy of Sciences USA, 89, 8721-8725.
Levinthal, C. (1968) Are there pathways for protein folding? Journal de Chimie Physique et de Physico-Chimie Biologique, 44-45.
Levitt, M. and Warshel, A. (1975) Computer simulation of protein folding. Nature, 253, 694-698.
Liu, F., Du, D., Fuller, A.A., Davoren, J.E., Wipf, P., Kelly, J.W. and Gruebele, M. (2008) An experimental survey of the transition between two-state and downhill protein folding scenarios. Proceedings of the National Academy of Sciences USA, 105, 2369-2374.
McCray, J.A., Herbette, L., Kihara, T. and Trentham, D.R. (1980) A new approach to time-resolved studies of ATP-requiring biological systems; laser flash photolysis of caged ATP. Proceedings of the National Academy of Sciences USA, 77, 7237-7241.
Mirsky, A.E. and Pauling, L. (1936) On the structure of native, denatured, and coagulated proteins. Proceedings of the National Academy of Sciences USA, 439-447.
Nishimura, C., Jane Dyson, H. and Wright, P.E. (2002) The apomyoglobin folding pathway revisited: structural heterogeneity in the kinetic burst phase intermediate. Journal of Molecular Biology, 322, 483-489.
Nölting, B. (1999) Protein folding kinetic. Springer-Verlag Berlin Heidelberg, New York.
Okuno, T., Hirota, S. and Yamauchi, O. (2000) Folding character of cytochrome c studied by o-nitrobenzyl modification of methionine 65 and subsequent ultraviolet light irradiation. Biochemistry, 39, 7538-7545.
Porter, G. (1968) Flash photolysis and some of its applications. Science, 160, 1299-1307.
Qiu, L., Pabit, S.A., Roitberg, A.E. and Hagen, S.J. (2002) Smaller and faster: the 20-residue Trp-cage protein folds in 4μs. Journal of the American Chemical Society, 124, 12952-12953.
Ramesh, D., Wieboldt, R., Niu, L., Carpenter, B.K. and Hess, G.P. (1993) Photolysis of a protecting group for the carboxyl function of neurotransmitters within 3 microseconds and with product quantum yield of 0.2. Proceedings of the National Academy of Sciences USA, 90, 11074-11078.
Ridley, C., Stern, A.C., Green, T., DeVane, R., Space, B., Miksosvska, J. and Larsen, R.W. (2006) A combined photothermal and molecular dynamics method for determining molecular volume changes. Chemical Physics Letters, 418, 137-141.
Robson, B. and Pain, R.H. (1971) Analysis of the code relating sequence to conformation in proteins: possible implications for the mechanism of formation of helical regions. Journal of Molecular Biology, 58, 237-259.
Rothman, D.M., Vazquez, M.E., Vogel, E.M. and Imperiali, B. (2002) General method for the synthesis of caged phosphopeptides: tools for the exploration of signal transduction pathways. Organic Letters, 4, 2865-2868.
Sadqi, M., Lapidus, L.J. and Munoz, V. (2003) How fast is protein hydrophobic collapse? Proceedings of the National Academy of Sciences USA, 100, 12117-12122.
Scheraga, H.A., Khalili, M. and Liwo, A. (2007) Protein-folding dynamics: overview of molecular simulation techniques. Annual Review of Physical Chemistry, 58, 57-83.
Schmidt, R., Geissler, D., Hagen, V. and Bendig, J. (2005) Kinetics study of the photocleavage of (coumarin-4-yl)methyl esters. The Journal of Physical Chemistry A, 109, 5000-5004.
Schuler, B. and Eaton, W.A. (2008) Protein folding studied by single-molecule FRET. Current Opinion in Structural Biology, 18, 16-26.
Shastry, M.C., Luck, S.D. and Roder, H. (1998) A continuous-flow capillary mixing method to monitor reactions on the microsecond time scale. Biophysical Journal, 74, 2714-2721.
Shastry, M.C. and Roder, H. (1998) Evidence for barrier-limited protein folding kinetics on the microsecond time scale. Nature Structure Biology, 5, 385-392.
Sinha, K.K. and Udgaonkar, J.B. (2009) Early events in protein folding. Current Science, 96, 1053-1070.
Snow, C.D., Nguyen, H., Pande, V.S. and Gruebele, M. (2002) Absolute comparison of simulated and experimental protein-folding dynamics. Nature, 420, 102-106.
Soto, C. (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nature Reviews Neuroscience, 4, 49-60.
Specht, A., Loudwig, S., Peng, L. and Goeldner, M. (2002) p-Hydroxyphenacyl bromide as photoremoveable thiol label: a potential phototrigger for thiol-containing biomolecules. Tetrahedron Letters, 43, 8947-8950.
Stefanova, H.I., East, J.M., Gore, M.G. and Lee, A.G. (1992) Labeling the calcium-magnesium-ATPase of sarcoplasmic reticulum with 4-(bromomethyl)-6,7- dimethoxycoumarin: detection of conformational changes. Biochemistry, 31, 6023-6031.
Takeshita, K., Imamoto, Y., Kataoka, M., Mihara, K., Tokunaga, F. and Terazima, M. (2002) Structural change of site-directed mutants of PYP: new dynamics during pR state. Biophysical Journal, 83, 1567-1577.
Thompson, P.A., Munoz, V., Jas, G.S., Henry, E.R., Eaton, W.A. and Hofrichter, J. (2000) The helix-coil kinetics of a heteropeptide. The Journal of Physical Chemistry B, 104, 378-389.
Tsong, T.Y., Baldwin, R.L. and Elson, E.L. (1971) The sequential unfolding of ribonuclease A: detection of a fast initial phase in the kinetics of unfolding. Proceedings of the National Academy of Sciences USA, 68, 2712-2715.
Wang, X., DeVries, A.L. and Cheng, C.-H.C. (1995) Antifreeze peptide heterogeneity in an antarctic eel pout includes an unusually large major variant comprised of two 7 kDa type III AFPs linked in tandem. Biochimica et Biophysica Acta, 1247, 163-172.
Wang, T., Du, D. and Gai, F. (2003) Helix-coil kinetics of two 14-residue peptides. Chemical Physics Letters, 370, 842-848.
Xu, Y., Oyola, R. and Gai, F. (2003) Infrared study of the stability and folding kinetics of a 15-residue beta-hairpin. Journal of the American Chemical Society, 125, 15388-15394.
Zhou, R., Huang, X., Margulis, C.J. and Berne, B.J. (2004) Hydrophobic collapse in multidomain protein folding. Science, 305, 1605-1609.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44261-
dc.description.abstract為了進一步了解蛋白質摺疊,所以我們必須要對於摺疊的過程進行系統性的研究。我們利用蛋白質包覆策略(caging-strategy),並結合時間解析的聲波熱卡度計(PAC,photoacoustic calorimetry)研究RD1蛋白質(分子量7 kDa)的摺疊過程──包含摺疊的動力學、焓的變化及體積的變化。在蛋白質包覆策略策略中,為了在RD1序列中創造適合結合的取代基,我們利用定點突變技術將第七號胺基酸(丙氨酸;Ala,alanine)突變為半胱氨酸(Cys,cysteine)(突變後蛋白質縮寫:RD1-A7C),並且利用易受光分解的分子(4-(bromomethyl)-6,7-imethoxycoumarin,BrDMC)與半胱氨酸殘基結合(RD1-A7C-DMC),而破壞蛋白質的摺疊。此外,蛋白質的結構則利用核磁共振(NMR,Nuclear Magnetic Resonance)及圓二色光譜(CD,circular dichroism)技術分析。聲波熱卡度計以一道紫外光雷射(約10-9秒)打斷RD1-A7C-DMC中蛋白質與DMC之間的鍵結,同時引發蛋白質摺疊。由聲波熱卡度計的實驗結果發現,RD1-A7C的摺疊具有兩個過程:第一步為快速的體積收縮(volume contraction),摺疊的時間為20奈秒,並伴隨著-9.7 mL / mol的體積變化;接著為結構上的重新排列(comformational rearrangement),摺疊的時間約為470奈秒,同時伴隨著-1.4 mL / mol的體積變化。zh_TW
dc.description.abstractIn order to understand the intrinsic principle of protein folding, events of the fold-ing process have to be systematically explored. In this work, the folding information of a small protein (RD1, about 7 kDa) including kinetic, enthalpy and volume change were reported by combining the photo-triggered caging-strategy and time-resolved photo-acoustic calorimetry. This strategy required the mutation with Ala-7 to Cys (designated RD1-A7C) that was introduced to incorporate a photolabile cage group, 4-(bromomethyl)-6,7-dimethoxycoumarin, to unfold the protein. The structural proper-ties of the caged protein were analyzed by nuclear magnetic resonance spectroscopy (NMR) and circular dichroism spectroscopy (CD). A pulse UV laser (~10-9 s) was used to break the photolabile cage and two events were observed in the refolding of RD1-A7C toward its native state by using photoacoustic calorimetry (PAC). The fast event, which has a folding time of 20 ns and a volume change of -9.7 mL/mol, was ex-plained as the result of rapid volume contraction. This event was followed by a con-formational rearrangement, which has a folding time ~ 470 ns and small volume change (-1.4 mL/mol).en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:47:44Z (GMT). No. of bitstreams: 1
ntu-98-R96b46022-1.pdf: 3595282 bytes, checksum: 257c2926558a0975fdf36e7b9a49ea37 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsContents
Abbreviations i
Abstract iv
中文摘要 v
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Protein Folding 2
1.2.1 Driving force of protein folding 3
1.2.2 Protein folding models 4
1.3 Significance in protein folding 7
1.3.1 The role of protein folding 9
1.3.2 The diseases related to protein misfolding 10
1.4 The study of early events in protein folding 11
1.5 Ideal target proteins 13
1.5.1 RD1 15
1.6 Denaturation and initiating folding process 17
1.6.1 Photolabile cage strategy 18
1.6.2 2-Nitrobenzyl(NB) caged compounds 22
1.6.3 p-Hydroxyphenacyl (pHP) caged compounds 23
1.6.4 Coumarin-4-ylmethyl caged compounds 24
1.7 Observation of protein folding 27
1.7.1 Laser photoacoustic spectroscopy 28
Chapter 2 Materials and Methods 32
2.1 Materials 32
2.1.1 Water 32
2.1.2 Chemicals 32
2.1.3 Centrifuge 35
2.1.4 Membrane, filters 35
2.1.5 Circular dichroism spectroscopy (CD) 35
2.1.6 Electrophoresis 36
2.1.7 Gel filtration chromatography 36
2.1.8 High performance liquid chromatography (HPLC) 36
2.1.9 Ion exchange chromatography 36
2.1.10 Lyophilizer 37
2.1.11 Mass spectroscopy 37
2.1.12 Photochemical reactor 37
2.1.13 Ultraviolet spectroscopy 38
2.1.14 photoacoustic calorimetry (PAC) 38
2.1.15 Nuclear magnetic resonance (NMR) 38
2.1.16 Peptide synthesizer 39
2.2 Methods 40
2.2.1 Large scale over-expression and purification of RD1-A7C in the soluble form 40
2.2.2 Synthesis of peptide 42
2.2.3 Synthesis of caged protein 43
2.2.5 The proteins and the peptides identification 43
2.2.5 Photolysis of caged-protein and caged-peptide 44
2.2.6 Probing the proteins conformational change 44
2.2.7 PAC signals of caged-peptide and caged-protein 46
Chapter 3 Results (Ⅰ) 48
3.1 Large scale over-expression, purification and identification of RD1-A7C 48
3.2 Synthesis, purification and identification of RD1-A7C-DMC 53
3.3 Synthesis, purification and identification of caged-peptide 56
Chapter 4 Results ( Ⅱ ) 59
4.1 Examining the conformational change within secondary structure of protein after cage-addition by CD 59
4.2 Examining the conformational change within tertiary structure of protein after cage-addition by NMR spectroscopy 61
4.3 Photolysis of caged-protein 63
4.4 Examining the conformational change within secondary structure of protein after photolysis by CD 68
4.5 Refolding kinetics of the peptide and protein by photoacoustic calorimetry 70
Chapter 5 Discussion 75
5.1 RD1-A7C is a compact protein with a cavity, but without characteristic secondary structures 75
5.2 RD1-A7C-DMC is unfolded, but spontaneously refolds by photolysis 76
5.3 Two distinct events within caged protein photolysis 77
5.4 Enthalpy change in the refolding of RD1-A7C 80
5.5 The first step: fast volume contraction 82
5.6 The second step: structural rearrangement 83
5.7 Two-step folding model 85
5.8 BrDMC is an ideal cage group for caging-strategy 86
Chapter 6 Conclusions 87
References 88
dc.language.isoen
dc.subject動力學zh_TW
dc.subject摺疊zh_TW
dc.subjectRD1zh_TW
dc.subject包覆策略zh_TW
dc.subject聲波熱卡度計zh_TW
dc.subjectkineticsen
dc.subjectfoldingen
dc.subjectRD1en
dc.subjectcageen
dc.subjectphotolabileen
dc.subjectphotoacoustic calorimetryen
dc.title偵測快速摺疊動力學:藉由對光不穩定的包覆策略和雷射光解裝置來研究抗凍蛋白RD1的折疊動力學zh_TW
dc.titleProbing the Fast Folding Kinetics:Folding Studies of an Antifreeze Protein RD1 by Using Photolabile Caging Strategy and Laser Flash Photolysisen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊健志,林俊宏,黃人則,陳韻如
dc.subject.keyword摺疊,RD1,包覆策略,聲波熱卡度計,動力學,zh_TW
dc.subject.keywordfolding,RD1,cage,photolabile,photoacoustic calorimetry,kinetics,en
dc.relation.page95
dc.rights.note有償授權
dc.date.accepted2009-08-06
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
3.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved