Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44235
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳凱儀(Kai-Yi Chen)
dc.contributor.authorSheng-Shan Wangen
dc.contributor.author王聖善zh_TW
dc.date.accessioned2021-06-15T02:46:23Z-
dc.date.available2010-08-18
dc.date.copyright2009-08-18
dc.date.issued2009
dc.date.submitted2009-08-09
dc.identifier.citationAdamczyk BJ, Fernandez DE (2009) MIKC* MADS Domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol 149: 1713–1723
Agrawal KG, Abe K, Yamazaki M, Miyao A, Hirochika A (2005) Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-offunction mutants of the OsMADS1 gene. Plant Mol Biol 59: 125–135.
Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS, Ribas de Pouplana L, Martinez-Castilla, Yanofsky MF (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA 97: 5328-5333
Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RF (2000) Molecular and genetic analyses of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell 5: 569-579.
Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8: 242
Bai X, Wang Q, Chu C (2008) Excision of a selective marker in transgenic rice using a novel Cre/loxP system controlled by a floral specific promoter. Transgenic Res 17: 1035-1043
Cardon G, Hohmann S, Nettesheim K, Saedler H, Huijser P (1997) Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3, a novel gene involved in the floral transition. Plant J 12: 367-377
Cardon G, Hohmann S, Klein J, Nettesheim K, Saedler H, Huijser P (1999) Molecular characterisation of the Arabidopsis SBP-box genes. Gene 237: 91-104.
Doebley J, STEC A, Wendel J, Edwards M (1990) Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize. Proc Natl Acad Sci USA 87: 9888-9892
Henschel K, Kofuji R, Hasebe M, Saedler H, Münster T, Theißen G (2002) Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol Biol Evol 19: 801-814
Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525–529
Ikeda K, Sunohara H and Nagato Y (2004) Developmental course of inflorescence and spikelet in rice. Breeding Sci 54: 147-156
International Rice Genome Sequencing Project (2005) The map-based of the rice genome. Nature 436: 793-800
Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Comm 345:646-651
Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee SH (2000) Leafy hull sterile 1 is a homeotic mutation in a rice MADS Box gene affecting rice flower development. Plant Cell 128: 871-884.
Kater MM, Dreni1 L and Colombo L (2006) Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot 57: 3433-3444
Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125: 1198-1205
Kinoshita T, Hidano Y, Takahashi M (1976) A mutant ‘long hull sterile’ found out in the rice variety, ‘Sorachi’- Genetical studies on rice plant. LXVII Mem Fac Agric Hokkaido Univ 10:247-268
Klein J, Saedler H, Huijser P (1996) A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol Gen Genet 250: 7–16
Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6: 688-698
Lander E, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L (1987) MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174-181.
Lee DY, Lee J, Moon S, Park SY, An G (2006) The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. Plant J 49: 64-78
Lin YR, Wu YP,Wei FJ, Lu PC, Huang YC, Chang CH, Hour AL, Kou SC, Hsieh JS, Hsing YI (2008) construction of the Website ‘The Resource of Rice Genetic Markers in Taiwan’. Crop Environ Bioinformatics 5: 1-21
Lincoln S, Daly M, Lander E (1992) Constructing genetic maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report, 3rd edn. Whitehead Institute, Cambridge, Mass.
Liu CL (2003) Studies on the agronomic characteristics and gene expression of rice mutant with stunted lemma and palea. Master Thesis. Department of Agronomy, National Taiwan University (in Chinese with English abstract)
Luo Q, Zhou K, Zhao X, Zeng Q, XiaH, ZhaiW, Xu J,Wu X, YangH, Zhu L (2005) Identification and fine mapping of a mutant gene for palealess spikelet in rice. Planta 221: 222-230
Ma H, Yanofsky MF, Meyerowitz EM (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev 5: 484-495
Malcomber ST, Kellogg EA (2005) SEPALLATA gene diversification: brave new whorls. Trends Plant Sci 10: 427-435
Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8: 4321-4326
Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y (2003) SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130: 705-718
Nam J, Kim J, Lee S, An G, Ma H, Ne M (2004) Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proc Natl Acad Sci USA 101: 1910-1915
Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek R-L, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res 35: 883-887
Pelucchi N, Fornara F, Favalli C, Masiero S, Lago C, Pè ME, Colombo L, Kater MM (2002) Comparative analysis of rice MADS-box genes expressed during flower development. Sex Plant Reprod 15: 113-122
Rozen and Skaletsky (2000) Primer3 on the WWW for general users and for biologist programmers. In: Methods in Molecular Biology vol. 132: Bioinformatics Methods and Protocols, Ed. Krawetz S, Misener S, Humana Press Inc., Totowa, NJ, USA, pp 365-386
Sakamoto T, Matsuoka M (2008) Identifying and exploiting grain yield genes in rice. Curr Opin Plant Biol 11: 209-214
Shore P, Sharrocks AD (1995) The MADS-box family of transcription factors. Eur J Biochem 229: 1-13
Till BJ, Colbert T, Tompa R, Enns LC, Codomo CA, Johnson JE, Reynolds SH, Henikoff JG, Greene EA, Steine MN, Comai L, Henikoff S (2003) High-throughput TILLING for functional genomics. In: Methods in Molecular Biology vol. 236: Plant Functional Genomics: Methods and Protocols, Ed. Grotewold E, Humana Press Inc., Totowa, NJ, USA, pp 205-220
Unte US, Sorensen AM, Pesaresi P, Gandikota M, Leister D, Saedler H, Huijser P (2003) SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis. Plant Cell 15:1009-1019
Verelst W, Twell D, de Folter S, Immink R, Saedler H, Münster T (2007) MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biol 8: R249
Wang CS, Tseng TH, Lin CY (2002) Rice biotech research at the Taiwan Agriculture Research Institute. Asia Pacific Biotech News 6: 950-956
Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Q, Faller M, Bomblies-Yant K, Lukens L, Doebley J (2005) The origin of the naked grains of maize. Nature 436: 714-719
Xie K, Wu C, Xiong L (2006) Genomic organization, differential expression, and interaction of SQUAMOSA Promoter-Binding-Like transcription factors and microRNA156 in rice. Plant Physiol 142: 280-293.
Yang Z, Wang X1, Gu S, Hu Z, Xu H, Xu C (2008) Comparative study of SBP-box gene family in Arabidopsis and rice. Gene 407: 1-11
Yoshimura A, Ideta O, Iwata N (1997) Linkage map of phenotype and RFLP markers in rice. Plant Mol Biol 35: 49-60
Yuan Z, Gao S, Xue DW, Luo D, Li LT, Ding SY, Yao X, Wilson ZA, Qian Q, Zhang DB (2009) Retarded palea1 controls palea development and floral zygomorphy in ric. Plant Physiol 149: 235-244
Zhang Q, Xu J, Li Y, Xu P, Zhang H, Wu X (2007) Morphological, Anatomical and Genetic analysis for a rice mutant with abnormal hull. J Genet Genom 34:519-526
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44235-
dc.description.abstractStunted lemma/palea (slp) 為一由疊氮化鈉誘變所得之水稻突變品系,其外表型呈現矮株、內外穎退化與不稔。藉由SLP的選殖與功能分析將有助於探討禾本科植物內外穎的發育與起源。在本論文中,遺傳分析結果證實slp為單一基因控制的突變,此突變並多方面地影響了水稻株高、花穗發育、與其他的外表性狀。除株高外,slp等位基因座對於多數性狀皆呈現不完全顯性的遺傳。本論文以82個具多型性的SSR分子標誌,針對42株由slp突變系與台中在來一號雜交所獲得的F2族群,進行SLP的基因定位。此結果將SLP基因定位於水稻第八條染色體末端介於分子標誌RM23477與RM23652之間的區域。隨後以134株F2植株對此區間進行遺傳圖譜分析,將SLP基因的定位區間縮小至分子標誌RM447與D275之間。接著以982株F2植株進行高解析度的遺傳圖譜分析,將SLP基因定位於一段46.4 kb的染色體區間內。此區間經基因比對及註解後,發現有三個候選基因: OsSPL16、OsMADS45 (OsMADS7) 與 OsMADS37。針對此三個候選基因,進行SLP/SLP與slp/slp基因型個體之間的核酸序列比對以及基因表現量的比較。結果顯示影響slp突變外表型最可能的原因是OsSPL16 蛋白序列的第六個胺基酸產生錯義突變。zh_TW
dc.description.abstractStunted lemma/palea (slp) is a sodium azide-induced rice mutant displaying dwarf, shorten panicle length, seriously degenerated lemma/palea, and sterility. Cloning and characterization of the SLP locus may shed light on the molecular basis and evolutionary history of glume development in grass. Genetic analysis confirmed that slp phenotype was controlled by a single gene with pleiotropic effect on plant height and several traits related to inflorescence architecture. The slp mutant allele was incomplete dominant to the normal allele for most of affected traits but plant height. Genetic mapping based on the genotypes of 82 polymorphic SSR markers in 42 F2 plants which was derived from the cross between SLP/slp (Oryza sativa subsp. japonica) and Taichung native 1 (O. sativa subsp. indica), suggested that the SLP locus was mapped between markers RM23477 and RM23652 in the distal region of the long arm chromosome 8. Additional 134 F2 individuals were used to delimit the SLP locus in a smaller chromosomal region between marker RM447 and D275. A high-resolution genetic map surrounding the SLP locus was developed using 8 recombinant F2 individuals screened from 982 F2 plants. The SLP locus was eventually delimited in a 46.4 kb genomic region containing three putative genes, OsSPL16, OsMADS45 (also known as OsMADS7)and OsMADS37. Detection of single nucleotide polymorphism and comparisons of gene expression level between the SLP/SLP and slp/slp genotypes for three candidate genes suggested that a missense mutation at the sixth amino acid of the OsSPL16 protein was likely responsible for the slp mutant phenotypes.en
dc.description.provenanceMade available in DSpace on 2021-06-15T02:46:23Z (GMT). No. of bitstreams: 1
ntu-98-R94621118-1.pdf: 3340774 bytes, checksum: 3e3da412aa1113b8d8e2223d28017631 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書…………………………………………………… i
誌 謝………………………………………………………………… ii
中 文 摘 要 …………………………………………………………iii
英 文 摘 要 …………………………………………………………iv
縮 寫 字 對 照………………………………………………………viii
Introduction …………………………………………………9
Material and Method …………………………………… 14
2.1 Mutants and mapping population …………………………14
2.2 Phenotypic characterization………………………………14
2.3 Genomic DNA extraction………………………….………..15
2.4 Development of DNA markers…….…………………………16
2.5 DNA marker analysis……………………………………… 17
2.6 Statistical analyses……………………………………… 19
2.7 DNA Re-sequencing………………………… ……………… 20
2.8 RNA extraction……………………………………………… 21
2.9 cDNA synthesis……………………………………………… 23
2.10. RT-PCR analysis…………………………………………… 23
Result…………………………………………………………………25
3.1 Genetic analysis of the slp mutat…………………… 26
3.2 Phenotypic characterization of the slp mutant…… 26
3.3 Genetic mapping of the SLP gene.……………………… 26
3.4 analyses of candidate genes………………..………… 28
Discussion………………………………………………………… 30
4.1 The MADS-box candidate genes are unlikely the SLP gene………………………………………………………………… 30
4.2 The SBP candidate gene is likely the SLP gene……… 31
參考文獻……………………………………………………….…… 34
圖 表 目 錄
Figure 1…………………………………………………………… 38
Figure 2…………………………………………………………… 39
Figure 3…………………………………………………………… 40
Figure 4…………………………………………………………… 41
Figure 5…………………………………………………………… 42
Figure 6…………………………………………………………… 43
Table. 1…………………………………………………………… 44

附表目錄
Appendix 1………………………………………………………… 45
Appendix 2………………………………………………………… 49
Appendix 3………………………………………………………… 50
Appendix 4………………………………………………………… 51
Appendix 5………………………………………………………… 52
Appendix 6………………………………………………………… 53
Appendix 7………………………………………………………… 54
Appendix 8………………………………………………………… 55
Appendix 9………………………………………………………… 56
Appendix10………………………………………………………… 57
dc.language.isoen
dc.subject突變zh_TW
dc.subject內外穎zh_TW
dc.subject水稻zh_TW
dc.subject遺傳圖譜zh_TW
dc.subjectgenetic mappingen
dc.subjectmutanten
dc.subjectglumesen
dc.subjectriceen
dc.title控制水稻內外穎發育SLP 基因座之
高解析度遺傳定位與候選基因鑑定
zh_TW
dc.titleHigh Resolution Genetic Mapping and Candidate Gene Identification of the SLP Locus Controlling Glume Development in Riceen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡凱康(Kai-Kang Hu),王強生(Chan-Sen Wang),胡哲明(Jer-Ming Hu)
dc.subject.keyword內外穎,水稻,遺傳圖譜,突變,zh_TW
dc.subject.keywordglumes,rice,genetic mapping,mutant,en
dc.relation.page57
dc.rights.note有償授權
dc.date.accepted2009-08-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
3.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved