Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44234
標題: 以對數線性二分類迴歸模型估算病原體感染之不顯性感染率
Estimating Asymptomatic Ratio of Pathogen Infection by Log-Linear Binomial Regression Model
作者: Te-En Wang
王德恩
指導教授: 李文宗
關鍵字: 不顯性感染率,多重病原體感染,對數線性二分類迴歸模型,羅吉斯迴歸模型,
asymptomatic ratio,multi-pathogen infection,log-linear binomial regression model,logistic regression model,
出版年 : 2009
學位: 碩士
摘要: 不顯性感染率在公共衛生上是一個重要的指標,是計算感染病原體的個案中,未發生症狀的個案比例。然而,被某種病原體感染的個案所產生的症狀不全然發自於該病原體。此外,當個案同時感染多重病原體時,我們也不易分辨導致症狀的真正因素。因此,對同時感染多重病原體的個案,我們很難估計出每一個病原體真正的不顯性感染率。
本研究以對數線性二分類迴歸模型為模型套式,其中自變數為研究病原體感染情形,依變數為個案是否發出可觀察症狀(令發出症狀為0,未發出症狀為1)。我們使用現成的套裝軟體SAS中的PROC GENMOD,求出各自變數的迴歸係數。迴歸係數取自然指數,即為個案感染該種病原體卻不因此發生症狀的機率。我們稱之為該種病原體的病原體特定不顯性感染率。截距項取自然指數後,即為未感染病原體者維持無症狀的機率,我們稱之為背景不顯性感染率。
我們自林[1]研究的1104名學童中,隨機抽出600人為例。我們發現在估計不顯性感染率情況下,對數線性二分類迴歸模型較一般處理二分類依變數的羅吉斯迴歸模型來得直接且有效,並能清楚分辨出背景因素及病原體因素的影響。在比較以上兩迴歸模型對此研究資料的模型適合度上,兩種模型皆能符合未感染及各種感染情況下有無症狀之實際人數,但對數線性二分類迴歸模型較羅吉斯迴歸模型更能符合觀察數值。
Asymptomatic ratio, which is the relation of cases with no symptoms in proportion to cases infected with pathogens, is an important indicator in public health. However, symptoms of infected cases are not altogether caused by the pathogens. What is more, it is difficult to find out the real factor that leads to the symptoms of the case that is infected with multi-pathogen infection at the same time. As a result, we may have trouble estimating asymptomatic ratio of each pathogen in such a case.
In this study, we use log-linear binomial regression model, in which independent variables are set as the situations of pathogen infection of the cases and dependent variable is set as whether the cases have symptoms that can be observed symptoms (symptom coding with 0, non-symptom coding with 1), for model fitting. We derive the regression coefficients of each independence variable from PROC GENMOD in SAS. Regression coefficient taking exponential is the probability of infected cases without symptoms caused by the pathogen. We call that probability pathogen-specific asymptomatic ratio. Intercept taking exponential is the probability of non-infected cases in asymptomatic state. We call that probability background asymptomatic ratio.
We random sample 600 from Lin’s [1] study of 1104 children as an example. We find that while estimating asymptomatic ratio, log-linear binomial regression model is more direct and effective than logistic regression model, which is generally used in dealing with binary dependant variables. Moreover, log-linear binomial regression model is more clearly discriminate between the effects of background factors and those of pathogens. In terms of goodness-of-fit of two regression models to the data, they are both consistent with the observed data on the numbers of non-infected cases and infected cases in various situations. However, log-linear binomial regression model is more accurate than logistic regression model in fitting the observed numbers.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44234
全文授權: 有償授權
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
372.19 kBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved